

For more details visit gateforumonline.com

Answer:

(C)

COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Q. No. 1 - 25 Carry One Mark Each

1.		h of the following p								
	1.	Does a given program ever produce an output?								
	2.	If L is context-free language, then, is \overline{L} also context-free?								
	3.	If L is regular lang	guage, 1	then, is \overline{L} also	regular?					
	4.	If L is recursive la	anguag	e, then, is \overline{L} al	so recursi	ve?				
	(A)	1,2,3,4	(B)	1,2	(C)	2,3,4	(D)	3,4		
An	swer:	(D)								
2.	Give	n the language L-{a	b, aa, t	oaa}, which of t	he follow	ing strings are in	ı L*?			
	1.	abaabaaabaa								
	2.	aaaabaaaa								
	3.	baaaaabaaaab								
	4.	baaaaabaa								
	(A)	1,2 and 3	(B)	2,3 and 4	(C)	1,2 and 4	(D)	1,3 and 4		
An	swer:	(C)								
3.	In the	e IPv4 addressing fo	ormat, t	he number of n	etworks a	llowed under Cl	ass C addre	esses is		
	(A)	2^{14}	(B)	2^7	(C)	2^{21}	(D)	2^{24}		
An	swer:	(C)								
4.	Whic	h of the following t	ranspo	rt layer protoco	ls is used	to support electr	onic mail?			
	(A)	SMTP	(B)	IP	(C)	TCP	(D)	UDP		
	` /		` /		` /		` /			

5.	Consider a random variable X that takes values + 1 and -1 with probability 0.5 each. The values of the
	cumulative distribution function $F(x)$ at $x = -1$ and $+1$ are

(A) 0 and 0.5

(B) 0 and 1

(C) 0.5 and 1

(D) 0.25 and 0.75

Answer: (C)

6. Register renaming is done is pipelined processors

- (A) as an alternative to register allocation at compile time
- (B) for efficient access to function parameters and local variables
- (C) to handle certain kinds of hazards
- (D) as part of address translation

Answer: (C)

7. The amount of ROM needed to implement a 4 bit multiplier is

(A) 64 bits

(B) 128 bits

(C) 1 Kbits

(D) 2 Kbits

Answer: (D)

8. Let W(n) and A(n) denote respectively, the worst case and average case running time of an algorithm executed on an input of size n. Which of the following is **ALWAYS TRUE**?

(A) $A(n) = \Omega(W(n))$

(B) $A(n) = \Theta(W(n))$

(C) A(n) = O(W(n))

(D) A(n) = o(W(n))

Answer: (C)

9. Let G be a simple undirected planar graph on 10 vertices with 15edges. If G is a connected graph, then the number of **bounded** faces in any embedding of G on the plane is equal to

(A) 3

(B) 4

(C) 5

(D) 6

Answer:

(D)

10.	The recurrence	relation	capturing	the	optimal	execution	time	of the	Towers	of	Hanoi	problem	with	n
	discs is													

(A)
$$T(n) = 2T(n-2) + 2$$

(B)
$$T(n) = 2T(n-1) + n$$

(C)
$$T(n) = 2T(n/2) + 1$$

(D)
$$T(n) = 2T(n-1)+1$$

Answer: **(D)**

- Which of the following statements are **TRUE** about an SQL query? 11.
 - P: An SQL query can contain a HAVING clause even if it does not have a **GROUP BY clause**
 - An SQL query can contain a HAVING clause only if it has GROUP BY Q: clause
 - R: All attributes used in the GROUP BY clause must appear in the SELECT clause
 - Not all attributes used in the GROUP BY clause need to appear in the S: SELECT clause
 - (A) P and R (B) P and S
- Q and R (D) (C)
 - Q and S

Answer: (B)

- Given the basic ER and relational models, which of the following is **INCORRECT**?
 - (A) An attribute of an entity can have more than one value
 - (B) An attribute of an entity can be composite
 - (C) In a row of a relational table, an attribute can have more than one value
 - In a row of a relational table, an attribute can have exactly one value or a NULL value (D)

13. What is the complement of the language accepted by the NFA show below? Assume $\Sigma = \{a\}$ and ε is the empty string.

- (A) Ø
- (B) $\{\epsilon\}$
- (C) a*
- (D) $\{a, \varepsilon\}$

Answer: (B)

14. What is the correct translation of the following statement into mathematical logic?

"Some real numbers are rational"

- (A) $\exists x (real(x)v rational(x))$
- (B) $\forall x (real(x) \rightarrow rational(x))$
- (C) $\exists x (real(x) \land rational(x))$
- (D) $\exists x (rational(x) \rightarrow real(x))$

Answer: (C)

- 15. Let A be the 2 x 2 matrix with elements $a_{11} = a_{12} = a_{21} = + 1$ and $a_{22} = -1$. Then the eigen values of the matrix A^{19} are
 - (A) 1024 and -1024

(B) $1024\sqrt{2}$ and $-1024\sqrt{2}$

(C) $4\sqrt{2}$ and $-4\sqrt{2}$

(D) $512\sqrt{2}$ and $-512\sqrt{2}$

Answer: (D)

- 16. The protocol data unit (PDU) for the application layer in the Internet stack is
 - (A) Segment
- (B) Datagram
- (C) Message
- (D) Frame

- 17. Consider the function $f(x) = \sin(x)$ in the interval $x \in [\pi/4, 7\pi/4]$. The number and location (s) of the local minima of this function are
 - (A) One, at $\pi/2$

(B) One, at $3\pi/2$

(C) Two, at $\pi/2$ and $3\pi/2$

(D) Two, at $\pi/4$ and $3\pi/2$

Answer: (B)

18. A process executes the code

fork();

fork();

fork();

The total number of **child** processes created is

- (A) 3
- (B) 4
- (C) 7
- (D) 8

Answer: (C)

- 19. The decimal value 0.5 in IEEE single precision floating point representation has
 - (A) fraction bits of 000...000 and exponent value of 0
 - (B) fraction bits of 000...000 and exponent value of -1
 - (C) fraction bits of 100...000 and exponent value of 0
 - (D) no exact representation

Answer: (B)

20. The truth table

X	Y	f(X,Y)
0	0	0
0	1	0
1	0	1
1	1	1

(A) X

(B) X + Y (C) $X \oplus Y$ (D) Y

Answer: (A)

The worst case running time to search for an element in a balanced binary search tree with $n2^n$ elements is 21.

(A) $\Theta(n \log n)$

(B) $\Theta(n2^n)$ (C) $\Theta(n)$

(D) $\Theta(\log n)$

Answer: (C)

Assuming $P \neq NP$, which of the following is **TRUE**? 22.

(A) NP-complete = NP

NP-complete $\cap P = \emptyset$ (B)

NP-hard = NP(C)

(D) P = NP-complete

Answer: (B)

23. What will be the output of the following C program segment?

```
Char inChar = 'A';
```

switch (inChar) {

case 'A': printf ("Choice A\n");

case 'B':

case 'C': print f("Choice B");

case 'D':

case 'E':

default : printf ("No Choice"); }

- (A) No choice
- (B) Choice A
- (C) Choice A, Choice B No choice
- Program gives no output as it is erroneous (D)

- **24.** Which of the following is **TRUE?**
 - (A) Every relation is 3NF is also in BCNF
 - (B) A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent on every key of R
 - (C) Every relation in BCNF is also in 3NF
 - (D) No relation can be in both BCNF and 3NF

Answer: (C)

- 25. Consider the following logical inferences.
 - I_1 : If it rains then the cricket match will not be played.

The cricket match was played.

Inference: There was no rain.

 I_2 : If it rains then the cricket match will not be played.

It did not rain.

Inference: The cricket match was played.

Which of the following is **TRUE**?

- (A) Both I_1 and I_2 are correct inferences
- (B) I_1 is correct but I_2 is not a correct inference
- (C) I_1 is not correct but I_2 is a correct inference
- (D) Both I_1 and I_2 are not correct inferences

Q. No. 26 – 51 Carry Two Marks Each

26. Consider the set of strings on {0,1} in which, *every substring of 3 symbols* has at most two zeros. For example, 001110 and 011001 are in the language, but 100010 is not. All strings of length less than 3 are also in the language. A partially completed DFA that accepts this language is shown below.

The missing arcs in the DFA are

(A)

	00	01	10	11	q
00	1	0			
01				1	
10	0				
11		,	0		

(B)

	00	01	10	11	q
00		0			1
01		1			
10				0	
11		0			

(C)

	00	01	10	11	q
00		1			0
01		1			
10			0		
11		0			

(D)

	00	01	10	11	q
00		1			0
01				1	
10	0				
11			0		

27. The height of a tree is defined as the number of edges on the longest path in the tree. The function shown in the pseudocode below is invoked as height (root) to compute the height of a binary tree rooted at the tree pointer root.

```
int height (treeptr n)
{ if (n== NULL) return -1;
  if (n \rightarrow left == NULL)
        if (n \rightarrow right == NULL) return 0;
       else return BI;
                                                                                            // Box 1
else \{h1 = height (n \rightarrow left);
        if (n \rightarrow right = NULL) return (1+h1);
       else \{h2 = height (n \rightarrow right)\}\
                               return B2;
                                                                                            // Box 2
The appropriate expressions for the two boxes B1 and B2 are
(A)
         B1: (1 + \text{height}(n \rightarrow \text{right}))
                                                                     B1: (height(n \rightarrow right))
                                                             (B)
                                                                     B2:(1+\max(h1,h2))
        B2:(1+\max(h1,h2))
                                                                     B1: (1 + \text{height } (n \rightarrow \text{right}))
        B1: height (n \rightarrow right)
(C)
                                                             (D)
        B2: max(h1,h2)
                                                                     B2: max(h1,h2)
```

- 28. Consider an instance of TCP's Additive Increase Multiplicative decrease (AIMD) algorithm where the window size at the start of the slow start phase is 2 MSS and the threshold at the start of the first transmission is 8 MSS. Assume that a timeout occurs during the fifth transmission. Find the congestion window size at the end of the tenth transmission.
 - (A) 8MSS
- (B) 14MSS
- (C) 7MSS
- (D) 12MSS

Answer: (C)

Answer:

29. Consider a source computer (S) transmitting a file of size 10⁶ bits to a destination computer (D) over a network of two routers (R₁ and R₂) and three links (L₁, L₂, and L₃). L₁ connects S to R₁; L₂ connects R₁ to R₂; and L₃ connects R₂ to D. Let each link be of length 100km. Assume signals travel over each line at a speed of 10⁸ meters per second. Assume that the link bandwidth on each link is 1Mbps. Let the file be broken down into 1000 packets each of size 1000 bits. Find the total sum of transmission and propagation delays in transmitting the file from S to D?

(A) 1005ms

(B) 1010ms

(C) 3000ms

(D) 3003ms

Answer: (A)

30. Suppose R1 (\underline{A} , B) and R₂ (\underline{C} , D) are two relation schemas. Let r_1 and r_2 be the corresponding relation instances. B is a foreign key that refers to C in R₂. If data in r_1 and r_2 satisfy referential integrity constrains, which of the following is **ALWAYS TRUE**?

(A) $\Pi_{\rm B}(\mathbf{r}_1) - \Pi_{\rm C}(\mathbf{r}_2) = \emptyset$

(B) $\Pi_{\rm C}(\mathbf{r}_2) - \Pi_{\rm B}(\mathbf{r}_1) = \emptyset$

(C) $\Pi_{\rm B}(\mathbf{r}_1) = \Pi_{\rm C}(\mathbf{r}_2)$

(D) $\Pi_{B}(\mathbf{r}_{1}) - \Pi_{C}(\mathbf{r}_{2}) \neq \emptyset$

Answer: (A)

31. Consider the virtual page reference string

1,2,3,2,4,1,3,2,4,1

on a demand paged virtual memory system running on a computer system that has main memory size of 3 page frames which are initially empty. Let LRU, FIFO and OPTIMAL denote the number of page faults under the corresponding page replacement policy. Then

(A) OPTIMAL < LRU < FIFO

(B) OPTIMAL < FIFO < LRU

(C) OPTIMAL = LRU

(D) OPTIMAL = FIFO

- 32. A file system with 300 GByte disk uses a file descriptor with 8 direct block addresses, 1 indirect block address and 1 doubly indirect block address. The size of each disk block is 128 Bytes and the size of each disk block address is 8 Bytes. The maximum possible file size in this file system is
 - (A) 3 KBytes

(B) 35 KBytes

(C) 280 KBytes

(D) dependent on the size of the disk

Answer: (B

33. Consider the directed graph shown in the figure below. There are multiple shortest paths between vertices S and T. Which one will be reported by Dijkstra's shortest path algorithm? Assume that, in any iteration, the shortest path to a vertex *v* is updated only when a strictly shorter path to *v* is discovered.

- (A) SDT
- (B) SBDT
- (C) SACDT
- (D) SACET

Answer: (D)

- **34.** A list of n strings, each of length n, is sorted into lexicographic order using the merge-sort algorithm. The worst case running time of this computation is
 - (A) $O(n \log n)$

(B) $O(n^2 \log n)$

(C) $O(n^2 + \log n)$

(D) $O(n^2)$

35		G be a comple				ertices.	f vertice:	s of G are	labele	ed, then the	ne number of
		inct cycles of lea		-	to	(C)	00		(D)	260	
	(A)	15	(B)	30		(C)	90		(D)	360	
Ar	iswer:	(No option n	natching (1	marks to	all)						
36	. Hov	v many onto (or	surjective)	function	ns are the	ere from a	ın n-elem	ent $(n \ge 2)$	set to	a 2-eleme	ent set?
	(A)		(B)	2^n-1		(C)	2 ⁿ - 2	,	(D)	2(2 ⁿ -2)	
			(D)	2 -1		(C)	2 - 2		(D)	2(2 -2)	
Ar	iswer:	(C)	<i></i>								
37	. Con	sider the progr	am given	below,	in a blo	ck-struct	ured psei	udo-langua	ige wi	th lexical	scoping and
	nest	ing of procedure	es permitte	d.							
	Prog	gram main;									
		Var									
	Proc	cedure A1;									
		Var									
		Call A2;									
		End A1									
	Pro	ocedure A2;									
		Var									
	Proc	cedure A21;									
		Var									
		Call A1;									
		End A21									
		Call A21;									
		End A2									
	r 1	Call A1;									
	End	main.									

Consider the calling chain: Main \rightarrow A1 \rightarrow A2 \rightarrow A21 \rightarrow A1

The correct set of activation records along with their access links is given by

Suppose a circular queue of capacity (n-1) elements is implemented with an array of n elements. Assume that the insertion and deletion operations are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are

(A) full: (REAR+1) mod n==FRONT

empty: REAR ==FRONT

(C) full: REAR==FRONT

empty: $(REAR+1) \mod n ==FRONT$

(B) *full:*(REAR+1)mod n==FRONT

empty: (FRONT+1)mod n==REAR

(D) *full:*(FRONT+1)mod n==REAR

empty: REAR ==FRONT

Answer: (A)

39. An Internet Service Provider (ISP) has the following chunk of CIDR-based IP addresses available with it: 245.248.128.0/20. The ISP wants to give half of this chunk of addresses to Organization A, and a quarter

to Organization B, while retaining the remaining with itself. Which of the following is a valid allocation of

address to A and B?

(A) 245.248.136.0/21 and 245.248.128.0/22

(B) 245.248.128.0/21 and 245.248.128.0/22

(C) 245.248.132.0/22 and 245.248.132.0/21

(D) 245.248.136.0/24 and 245.248.132.0/21

Answer: (A)

40. Suppose a fair six-sided die is rolled once. If the value on the die is 1, 2, or 3, the die is rolled a second time. What is the probability that the sum total of values that turn up is at least 6?

(A) 10/21

(B) 5/12

(C) 2/3

(D) 1/6

Answer: (B)

41. Fetch_And_Add (X, i) is an atomic Read-Modify-Write instruction that reads the value of memory location X, increments it by the value i, and returns the old value of X. It is used in the pseudocode shown below to implement a busy-wait lock. L is an unsigned integer shared variable initialized to 0. The value of 0 corresponds to lock being available, while any non-zero value corresponds to the lock being not available.


```
AcquireLock(L)\{ \\ While (Fetch\_And\_Add(L,1)) \\ L = 1; \\ \} \\ Release Lock(L)\{ \\ L = 0; \\ \}
```

This implementation

- (A) fails as L can overflow
- (B) fails as L can take on a non-zero value when the lock is actually available
- (C) works correctly but may starve some processes
- (D) works correctly without starvation

Answer: (B)

42. Consider the 3 process, P1, P2 and P3 shown in the table.

Process	Arrival time	Time units Required
P1	0	5
P2	1	7
P3	3	4

The completion order of the 3 processes under the policies FCFS and RR2 (round robin scheduling with CPU quantum of 2 time units) are

- (A) **FCFS:** P1, P2, P3 **RR2:** P1, P2, P3
- (B) **FCFS:** P1, P3, P2 **RR2:** P1, P3, P2
- (C) **FCFS:** P1, P2, P3 **RR2:** P1, P3, P2
- (D) **FCFS:** P1, P3, P2 **RR2:** P1, P2, P3

Enroll now and get 20% discount use Promo Code GATEPAPERS

For more details visit gateforumonline.com

43. What is the minimal form of the Karnaugh map shown below? Assume that X denotes a don't care term.

cd ab	00	01	11	10
00	1	X	X	1
01	X			1
11				
10	1			X

- (A) $\overline{b}\overline{d}$
- (B) $\overline{b}\overline{d} + \overline{b}\overline{c}$
- (C) $\overline{b}\overline{d} + a\overline{b}\overline{c}d$
- (D) $\overline{bd} + \overline{bc} + \overline{cd}$

Answer: (B)

44. Let G be a weighted graph with edge weights greater than one and G' be the graph constructed by squaring the weights of edges in G. Let T and T' be the minimum spanning trees of G and G' respectively, with total weights t and t'. Which of the following statements is **TRUE**?

- (A) T' = T with total weight $t' = t^2$
- (B) T' = T with total weight $t' < t^2$
- (C) $T' \neq T$ but total weight $t' = t^2$
- (D) None of these

Answer: (D)

- 45. The bisection method is applied to compute a zero of the function $f(x) = x^4 x^3 x^2 4$ in the interval [1,9]. The method converges to a solution after _____ iterations.
 - (A) 1
- (B) 3
- (C) 5
- (D) '

Answer: (B)

46. Which of the following graph is isomorphic to

(A)

(B)

(C)

(D)

Answer: (B)

47. Consider the following transactions with data items P and Q initialized to zero:

 T_1 : read (P);

read (Q);

if P = 0 then Q := Q + 1;

write (Q).

 T_2 : read (Q);

read (P)

if Q = 0 then P := P + 1;

write (P).

Any non-serial interleaving of T1 and T2 for concurrent execution leads to

- (A) a serializable schedule
- (B) a schedule that is not conflict serializable
- (C) a conflict serializable schedule
- (D) a schedule for which precedence graph cannot be drawn

Common Data Questions: 48 & 49

Consider the following relations A, B and C:

В

C

(A)

(B)	
(-	

(C)

Name	Age		
Arun	60		
Shreya	24		
Rohit	11		
	Arun Shreya		

Id Name Age 15 24 Shreya 25 Hari 40 98 Rohit 20 99 Rohit 11

Id	Phone	Area
10	220	02
99	2100	01

How many tuples does the result of the following SQL query contain?

SELECT A.Id

FROM A

WHERE A.Age > ALL(SELECT B.Age

FROM B

WHERE B.Name = 'Arun')

- (A) 4
- (B) 3
- (C) 0
- (D)

Answer: (B)

49. How many tuples does the result of the following relational algebra expression contain? Assume that the schema of $A \cup B$ is the same as that of A.

$$\left(A \cup B\right) \rhd \vartriangleleft_{A.Id>40\ v\ C.Id<15} C$$

- $(A) \quad 7 \qquad (B)$
- (C) 5
- (D)

Common Data Questions: 50 & 51

```
Consider the following C code segment:
```

```
i nt a, b, c = 0;
void prtFun(void);
```

50. What output will be generated by the given code segment if:

Line 1 is replaced by **auto int a = 1**;

Line 2 is replaced by **register int a = 2**;

- (A) 3 1 4 1 4 2
- (B) 4 2
- (C) 4 2 6 2

0

(D) 4 2 4 2 2 0

Answer: (D)

Aliswei. (D)

- **51.** What output will be generated by the given code segment?
 - (A) 3 1 4 1
- (B) 4 2 6 1
- (C) 4 2 6 2
- (D) 3 1

- 4 1 4 2
- 6 1

- 2 0
- 5252

Statement for Linked Answer Questions: 52 & 53

A computer has a 256 KByte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry contains, in addition to address tag, 2 valid bits, 1 modified bit and 1 replacement bit.

- **52.** The number of bits in the tag field of an address is
 - (A) 11
- (B) 14
- (C) 16
- (D) 27

Answer: (C

(**C**)

- 53. The size of the cache tag directory is
 - (A) 160 Kbits
- (B) 136 Kbits
- (C) 40 Kbits
- (D) 32 Kbits

Answer: (A)

Statement for Linked Answer Questions: 54 & 55

For the grammar below, a partial LL(1) parsing table is also presented along with the grammar. Entries that need to be filled are indicated as **E1, E2, and E3**. ϵ is the empty string, \$ indicates end of input, and | separates alternate right hand sides of productions.

$$S \rightarrow aAbB | bAaB | \varepsilon$$

 $A \rightarrow S$

 $B \rightarrow S$

	a	b	\$
S	E 1	E2	$S \rightarrow \varepsilon$
A	$A \rightarrow S$	$A \rightarrow S$	error
В	$B \rightarrow S$	$B \rightarrow S$	Е3

- 54. The First and Follow sets for the non-terminals A and B are
 - (A) FIRST(A)

$$= \{a, b, \epsilon\} = FIRST(B)$$

FOLLOW(A)

 $= \{a, b\}$

FOLLOW(B)

 $= \{a, b, \$\}$

(B)
$$FIRST(A) = \{a, b, \$\}$$

FIRST(B) =
$$\{a, b, \epsilon\}$$

$$FOLLOW(A) = \{a, b\}$$

$$FOLLOW(B) = \{\$\}$$

(C) FIRST(A) =
$$\{a, b, \epsilon\}$$
 = FIRST(B)

$$FIRST(A) = \{a, b\}$$

$$FOLLOW(B) = \emptyset$$

(D)
$$FIRST(A) = \{a, b,\} = FIRST(B)$$

$$FIRST(A) = \{a, b\}$$

$$FOLLOW(B) = \{a, b\}$$

Answer: (A)

55. The appropriate entries for E1, E2, and E3 are

(A) E1:
$$S \rightarrow aAbB$$
, $A \rightarrow S$

E2:
$$S \rightarrow bAaB$$
, $B \rightarrow S$

E3:
$$B \rightarrow S$$

(C) E1:
$$S \rightarrow aAbB$$
, $S \rightarrow \varepsilon$

E2:
$$S \rightarrow bAaB$$
, $S \rightarrow \varepsilon$

E3:
$$B \rightarrow S$$

(B) E1:
$$S \rightarrow aAbB$$
, $S \rightarrow \varepsilon$

E2: S
$$\rightarrow$$
 bAaB, S $\rightarrow \varepsilon$

E3:
$$S \rightarrow \varepsilon$$

(D) E1:
$$A \rightarrow S, S \rightarrow \varepsilon$$

E2: B
$$\rightarrow$$
S, S \rightarrow ϵ

E3: B
$$\rightarrow$$
S

GENERAL APTITUDE

Q. No. 56 - 60 Carry One Mark Each

56.	The	cost function	for a product	in a firm	is given by	5q ² , w	here q is t	he amount	of prod	uction. Th	e firm
	can s	can sell the product at a market price of Rs.50 per unit. The number of units to be produced by the firm									
	such	such that the profit is maximized is									
	(A)	5	(B)	10	((C) 15		(D)	25		
Ansv	ver:	(A)									
57.	Choo	ose the most a	ppropriate al	ternative fr	om the opt	ions give	en below to	o complete	the foll	owing sen	tence:
		sh's dog is th			_	_				<i>3 3</i>	
	(A)	that	(B)	which		C) wh		(D)	whom	1	
Ansv	ver:	(A)									
58.	Choo	se the gramm	•								
	(A)	They gave u	is the money	back less tl	he service	charges o	of Three H	lundred rup	ees.		
	(B)	This country	y's expenditu	re is not les	s than that	of Bang	ladesh.				
	(C)	The commit	tee initially a	isked for a	funding of	Fifty La	kh rupees,	but later se	ettled fo	r a lesser s	sum.
	(D)	This country	y's expenditu	re on educa	tional refo	rms is ve	ery less				
Ansv	ver:	(D)									
5 0	*****	1 6.1	2 11		1		1	1 ' 1 1	0		
59.		ch one of the f	following opt	ions is the	closest in r	neaning	to the wor	d given bel	ow?		
	Miti										
	(A)	Diminish	(B)	Divulge	((C) De	dicate	(D)		Denote	
Ansv	ver:	(A)									

6	60. Choose the most appropriate alternative from the options given below to complete the following sentence:								
Despite several				tl	he mission succee	lve the	conflict.		
	((A)	attempts	(B)	setbacks	(C)	meetings	(D)	delegations
A	nswe	er:	(B)						
-									
				Q). No. 61 – 65 Car	rry Two	Marks Each		
6	1. `	Want	ed Temporary, Par	t-time	persons for the po	ost of Fi	eld Interviewer to	conduc	et personal interviews to
	(collec	et and collate econo	omic d	lata. Requirements	s: High	School-pass, must	be ava	ilable for Day, Evening
	á	and S	aturday work. Tran	sporta	tion paid, expense	es reimbi	ursed.		
	7	Whic	h one of the follow	ing is t	the best inference	from the	above advertisem	ent?	
	((A)	Gender-discrimina	atory		(B)	Xenophobic		
	((C)	Not designed to m	ake th	e post attractive	(D)	Not gender-discri	minato	ry
A	nswe	er:	(C)						
6.	2. (Giver	the sequence of te	rms, A	D CG FK JP, the	next ter	m is		
	((A)	OV	(B)	OW	(C)	PV	(D)	PW
A	nswe	er:	(A)						
_					CORRECTION				
6.			h of the following as						
	P: Adding 7 to each entry in a list adds 7 to the mean of the list								
	Q: Adding 7 to each entry in a list adds 7 to the standard deviation of the list								
	R: Doubling each entry in a list doubles the mean of the list								
	S: Doubling each entry in a list leaves the standard deviation of the list unchanged								
	((A)	P, Q	(B)	Q, R	(C)	P, R	(D)	R, S
A	nswe	er:	(C)						

An automobile plant contracted to buy shock absorbers from two suppliers X and Y. X supplies 60% and Y **64.** supplies 40% of the shock absorbers. All shock absorbers are subjected to a quality test. The ones that pass the quality test are considered reliable Of X's shock absorbers, 96% are reliable. Of Y's shock absorbers, 72% are reliable.

The probability that a randomly chosen shock absorber, which is found to be reliable, is made by Y is

(A) 0.288

(B) 0.334

(C) 0.667

(D) 0.720

Answer:

65. A political party orders an arch for the entrance to the ground in which the annual convention is being held. The profile of the arch follows the equation $y = 2x - 0.1x^2$ where y is the height of the arch in meters. The maximum possible height of the arch is

(A) 8 meters

(B) 10 meters (C) 12 meters (D) 14 meters

Answer: (B)

