

GATE PREVIOUS YEAR SOLVED PAPERS

Electronics & Telecommunications Previous Year Solved Papers

GATEFORUM Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.

For more details visit gateforumonline.com

li	Engineering Success	EC-GATE-	2015, SET-3	www.gateforumonline.co			
		GENERAL A	PTITUDE				
		<u>Q. No. 1 – 5 Carry</u>	One Mark Each				
•	Find the missing sequence in the letter series below:						
	A, CD, GHI,?, UVWXY						
nc	(A) LMN	(B) MNO	(C) MNOP	(D) NOPQ			
	wer: (C)						
•	Choose the correct verb t	o fill in the blank below:					
	Let us						
	(A) Introvert	(B) alternate	(C) atheist	(D) altruist			
ns [.]	wer: (B)						
•	Choose the most appropr	iate word from the options	given below to comple	te the following sentence?			
	If the athlete had wanted	to come first in the race, he	eseveral l	nours every day.			
	(A) Should practice	((B) Should have prac	ticed			
	(C) Practiced	((D) Should be practic	ing			
ns	wer: (B)						
	Choose the most suitable	one word substitute for the	e following expression				
	Connotation of a road or way						
	(A) Pertinacious		(B) Viaticum				
	(C) Clandestine		(D) Ravenous				
ns	wer: (B)						

	If x>y>I, which of the following must be true?					
	(i) $\ln x > \ln y$	(ii) $e^x > e^y$	(iii) $y^x > x^y$	(iv) $\cos x > \cos y$		
	(A) (i) and (ii)		(B) (i) and (iii)	i)		
	(C) (iii) and (iv)		(D) (ii) and (i	v)		
.nsw	ver: (A)					
		<u>Q. No. 6 – 10 Carry T</u>	wo Marks Each	100 C		
•				emoved. If th <mark>e remaining par</mark> t		
	used to make a conica	l surface, then the ratio of t	he radius and height of th	e cone is		
nsw	ver: (2.06)					
•	In the following question, the first and the last sentence of the passage are in order and numbered 1 and 6					
		- î		These 4 parts are not arranged i		
			m in a logical sequence to	o make a passage and choose th		
	correct sequence from					
	1. One Diwali, the family rises early in the morning.					
	2. The whole family, including the young and the old enjoy doing this,					
	3. Children let off fireworks later in the night with their friends.					
	4. At sunset, the lamps are lit and the family performs various rituals					
	5. Father, mother, and children visit relatives and exchange gifts and sweets.					
	6. Houses look so pre	etty with lighted lamps all a	round.			
	(A) 2, 5, 3, 4	(B) 5, 2, 4, 3	(C) 3, 5, 4,2	(D) 4, 5, 2, 3		
	ver: (B)					

morning of 21/05/204, she will reach Kochi via Mumbai

Which one of the statements below is logically valid and can be inferred from the above sentences?

	Ms. X will be Ms. X will be Only Ms. X w (B) ; tan 1° + log tan 2	in Kochi for one da in Kochi for only o only in Kochi for o vill be in Kochi for o • + + log tan 89°	ne day in May ne day in May				
(C) (D) nswer: log (A)	Ms. X will be Only Ms. X w (B) ; tan 1° + log tan 2	only in Kochi for o vill be in Kochi for o • + + log tan 89°	ne day in May				
(D) nswer: log (A)	Only Ms. X w (B) $(\tan 1^\circ + \log \tan 2)$	vill be in Kochi for o					
nswer: log (A)	(B) $(\tan 1^\circ + \log \tan 2)$	° + + log tan 89°	one day in May.				
log (A)	$tan 1^\circ + \log tan 2$						
(A)	-						
(A)	-						
(A)	-		ic				
	1						
nswer:		(B) $1/\sqrt{2}$	(C)	0	(D) -1		
	(C)						
). Rar	n and Shyam sha	red a secret and pro	mised to each of	her that it would re	amain between th	em Ram	
	Ram and Shyam shared a secret and promised to each other that it would remain between them. Ram xpressed himself in one of the following ways as given in the choices below. Identify the correct way as						
_	standard English		-8 ····; - ··· 8-···-		· · · · · · · · · · · · · · · · · · ·		
(A)	It would rema	in between you and	me.				
(B)	It would rema	in between I and yo	ou				
(C)	It would rema	in between you and	I				
(D)	It would rema	in with me.					
nswer:	(A)						

EC-GATE-2015, SET-3

ELECTRONICS AND COMMUNICATION ENGINEERING

Q. No. 1 – 25 Carry One Mark Each

1. A coaxial cable is made of two brass conductors. The spacing between the conductors is filled with Teflon $(\varepsilon_r = 2.1, \tan \delta = 0)$. Which one of the following circuits can represent the lumped element model of a small piece of this cable having length Δz ?

GATEFORUM Engineering Success

3. In the circuit shown, diodes D_1 , D_2 and D_3 are ideal, and the inputs E_1 , E_2 and E_3 are '0 V' for logic '0' and '10 V' for logic '1'. What logic gate does the circuit represent?

GATEFORUM Engineering Success EC-GATE-2015, SET-3 www.gateforumonline.com Consider the function $g(t) = e^{-t} \sin(2\pi t) u(t)$ where u(t) is the unit step function. The area under g(t) is 9. Answer: (0.1552)_____ **10.** In the circuit shown using an ideal op amp, the 3-dB cut-off frequency (in Hz) is _____. $10k\Omega$ $10k\Omega$ V_i o--^^^ ~~~ -0 V_ $0.1 \mu F$ $10k\Omega$ $10k\Omega$ ₩₩ (159.15) Answer: 11. The modulation scheme commonly used for transmission from GSM mobile terminals is (A) 4-QAM 16-PSK **(B)** (C) Walsh-Hadamard orthogonal codes Gaussian Minimum Shift Keying (GMSK) (D) Answer: **(D)** Which one of the following processes is preferred to from the gate dielectric (SiO₂) of MOSFETs? 12. (A) Sputtering (B) Molecular beam epitaxy (C) Wet oxidation Dry oxidation (D) Answer: **(D**) © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

		ng Success	EC-GATE-2015	s, SET-3			
16.	A message signal $m(t) = A_m sin(2\pi f_m t)$ is used to modulate the phase of a carrier $A_c cos(2\pi f_c t)$ to get the						
	modulated signal $y(t) = A_c cos(2\pi f_c t + m(t))$. The bandwidth of $y(t)$						
	(A)	Depends on $A_{m} but \ not \ on \ f_{m}$	(B)	Depends on f_m but not on A_m			
	(C)	Depends on both A_m and f_m	(D)	Does not depends on $A_m \text{or } f_m$			
Ansv	wer:	(C)					
17.	The	directivity of an antenna array c	an be increased by	adding more antenna elements, as a larger numb			
		ements		8			
	(A)	Improves the radiation efficien	ncy				
	(B)	Increases the effective area of	the antenna				
	(C)	(C) Results in a better impedance matching					
	(D)	Allows more power to be trans	smitted by the anter	ina			
Ansy	wer:	(B)					
	a-b i	the circuit shown in the figure, the signal 3Ω $12V$ $ 12V$ $ (10)$		lent voltage (in Volts) across terminals ——Oa			
Ansv	a-b i wer:	s 12V (10)		lent voltage (in Volts) across terminals —Oa D _O b			
Ansv	a-b i wer: The	s 3Ω 12V (10) impulse response of an LTI syste	1A (†) \$69 em can be obtained	lent voltage (in Volts) across terminals —Oa D _O b			
Ansv	a-b i wer: The (A)	s 3Ω 12V (10) impulse response of an LTI syste Differentiating the unit ramp response	1A (Solution of the second se	lent voltage (in Volts) across terminals —Oa D _O b			
18. Ansv 19.	a-b i wer: The (A) (B)	s 12V (10) impulse response of an LTI syste Differentiating the unit ramp re- Differentiating the unit step re-	1A () Solution (lent voltage (in Volts) across terminals —Oa D _O b			
Ansv	a-b i wer: The (A)	s 3Ω 12V (10) impulse response of an LTI syste Differentiating the unit ramp response	1A () \$69 em can be obtained esponse sponse onse	lent voltage (in Volts) across terminals —Oa D _O b			

www.gateforumonline.com

GATEFORUM Engineering Success

GATE REFRESHER COURSE

Electronics & Telecommunications Engineering

GATEFORUM Pioneers in Digital courses for GATE since 2008 offers **GATE refresher course** giving you access to video solutions for previous 11 years GATE questions and Topic-wise formula Compendium (Handbook).

Enroll now and get 20% discount use Promo Code GATEPAPERS

For more details visit gateforumonline.com

- (C) a modulo-5 binary down counter
- (D) a modulo-6 binary up counter

Answer: (A)

GAIEFORU Engineering Succes EC-GATE-2015, SET-3

Q. No. 26 – 55 Carry Two Marks Each

26. A 200 m long transmission line having parameters shown in the figure is terminated into a load R_L . The line is connected to a 400 V source having source resistance R_S through a switch which is closed at t = 0.

The transient response of the circuit at the input of the line (z = 0) is also drawn in the figure. The value of R_L (in Ω) is

27. A coaxial capacitor of inner radius 1mm and outer radius 5mm has a capacitance per unit length of 172 pF/m. If the ratio of outer radius to inner is double, the capacitance per unit length (in pF/m) is ______.

Answer: (120.22)

EC-GATE-2015, SET-3

28. A universal logic gate can implement any Boolean function by connecting sufficient number of them appropriately. Three gates are shown.

Which one of the following statements is TRUE?

- (A) Gate 1 is a universal gate.
- (B) Gate 2 is a universal gate.
- (C) Gate 3 is a universal gate.
- (D) None of the gates shown is a universal gate.

Answer: (C)

29. The Newton-Raphson method is used to solve the equation $f(x) = x^3 - 5x^2 + 6x - 8 = 0$. Taking the initial guess as x = 5, the solution obtained at the end of the first iteration is _____.

(4.2903)**Answer:**

30. A random binary wave y(t) is given by $y(t) = \sum_{n=-\infty}^{\infty} X_n p(t-nT-\phi)$, where p(t) = u(t) - u(t-T), u(t) is the unit step function and ϕ is an independent random variable with uniform distribution in [0, *T*]. The sequence $\{X_n\}$ consists of independent and identically distributed binary valued random variables with $P\{X_n = +1\} = P\{X_n = -1\} = 0.5$ for each n.

The value of the auto correlation $R_{yy}\left(\frac{3T}{4}\right) \triangleq E\left[y(t)y\left(t-\frac{3T}{4}\right)\right]$ equals _____.

Answer: (0.25)

GATEFORUM Engineering Success

EC-GATE-2015, SET-3

31. A three bit pseudo random number generator is shown. Initially the value of output $Y = Y_2Y_1Y_0$ is set to 111. The value of output Y after three clock cycles is

G GATEFORUM Engineering Success

36. In the circuit shown, the current *I* flowing through the 50 Ω resistor will be zero if the value of capacitor *C* (in μ F) is_____.

G GATEFORUM Engineering Success

EC-GATE-2015, SET-3

39. In the circuit shown, assume that the diodes D_1 and D_2 are ideal. The average value of voltage V_{ab} (in Volts), across terminals 'a' and 'b' is _____.

42. A fair die with faces {1, 2, 3, 4, 5, 6} is thrown repeatedly till '3' is observed for the first time. Let X denote the number of times the die is thrown. The expected value of X is _____.

Answer: (6)

G Engineering Success

43. The electric field profile in the depletion region of a *p*-*n* junction in equilibrium is shown in the figure. Which one of the following statements is NOT TRUE?

- (A) The left side of the junction is n-type and the right side is p-type
- (B) Both the n-type and p-type depletion regions are uniformly doped
- (C) The potential difference across the depletion region is 700 mV
- (D) If the p-type region has a doping concentration of 10¹⁵ cm⁻³, then the doping concentration in the n-type region will be 10¹⁶ cm⁻³

44. A vector field $D = 2\rho^2 a_{\rho} + z$ a_zexists inside a cylindrical region enclosed by the surfaces $\rho = 1$, z = 0 and z = 5. Let Sbe the surface bounding this cylindrical region. The surface integral of this

field on
$$S\left(\bigoplus_{s} D.ds \right)$$
 is _____

Answer: (78.54)

45. An n-p-n BJT having reverse saturation current $I_s = 10^{-15}$ A is biased in the forward active region with $V_{BE} = 700$ mV. The thermal voltage (V_T) is 25 mV and the current gain (β) may vary from 50 to 150 due to manufacturing variations. The maximum emitter current (in μ A) is _____.

Answer: (1475)

Answer: (C)

EC-GATE-2015, SET-3

46. Consider the 3 m long lossless air-filled transmission line shown in the figure. It has a characteristic impedance of $120\pi \Omega$, is terminated by a short circuit, and is excited with a frequency of 37.5 MHz. What is the nature of the input impedance (Z_{in})?

47. The current in an enhancement mode NMOS transistor biased in saturation mode was measured to be 1 mA at a drain-source voltage of 5 V. When the drain-source voltage was increased to 6 V while keeping gate-source voltage same, the drain current increased to 1.02 mA. Assume that drain to source saturation voltages is much smaller than the applied drain-source voltage. The channel length modulation parameter λ (in V⁻¹) is _____.

Answer: (0.022)

48. For the system shown in figure, s = -2.75 lies on the root locus if k is_____.

Answer: (0.3)

50. The variance of the random variable X with probability density function $f(x) = \frac{1}{2}|x|e^{-|x|}$ is _____

Answer: (6)

51. Consider a continuous-time signal defined as

$$\mathbf{x}(t) = \left(\frac{\sin(\pi t/2)}{(\pi t/2)}\right) * \sum_{n=-\infty}^{\infty} \delta(t-10n)$$

Where '*' denotes the convolution operation and t is in seconds. The Nyquist sampling rate (in samples/sec) for x(t) is _____.

Answer: (0.4)

GATEFORUM

In the circuit shown, both the enhancement mode NMOS transistors have the following characteristics: 52. $k_n = \mu_n C_{ox}(W/L) = 1 \text{ mA/V}^2; V_{TN} = 1V.$

The values of the parameters are $K_T = 1$ N-m A, $R_a = 1 \Omega$, $L_a = 0.1$ H. J= 5 kg-m², B= 1 N-m (rad/sec) and K_b= 1 V/(rad/sec). The steady-state position response (in radians) due to unit impulse disturbance torque T_dis _____.

(-0.5)**Answer:**

53.

G	ATEFO	DRUM Success	EC-GATE-2015, SET-3	www.gateforumonline.co
54.	The cl	haracteristic equation of an L	TI system is given by $F(s) = s^5 + 2s^4$ -	$+3s^3 + 6s^2 - 4s - 8 = 0$. The
	numbe	er of roots that lie strictly in t	he left half s-plane is	
Answ	er:	(2)		
			nmable discrete-time signal. Its z-tran	
			les are at $z = \pm 2j$. Which one of the	following statements is TRUE f
	-	gnal x[n]?		100 C
		It is a finite duration signal		
		It is a causal signal		
	(C)	It is a non-causal signal		
	(D)	It is a periodic signal		
Answ	er:	(C)		

