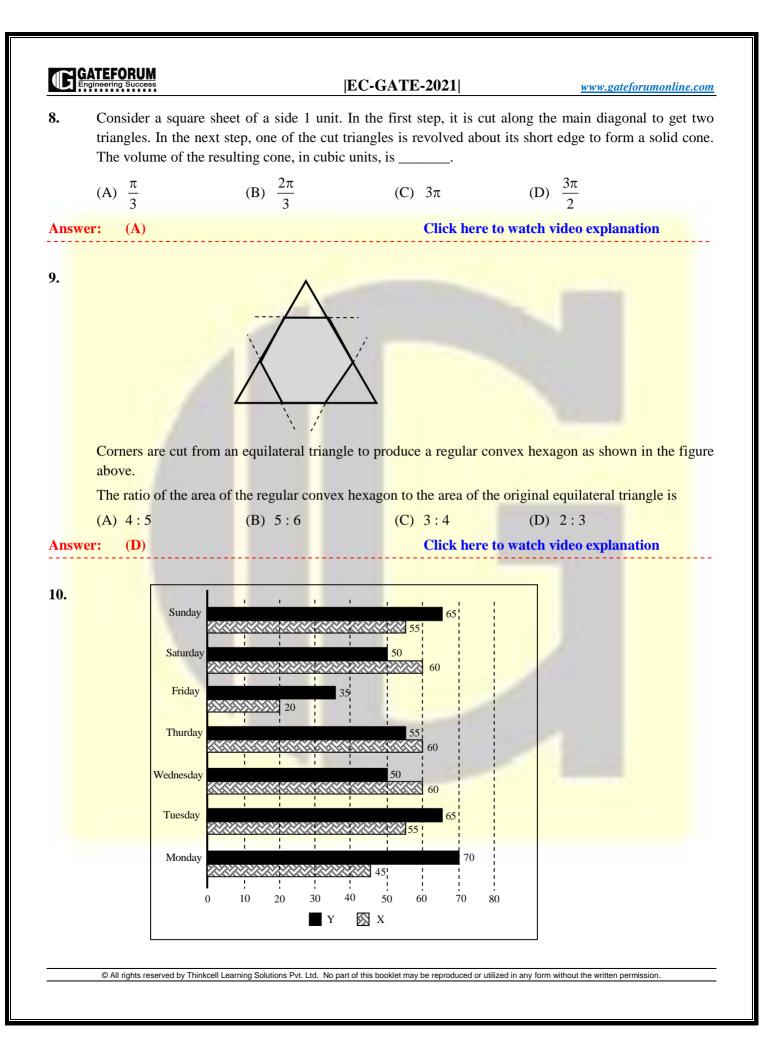


www.gateforumonline.com

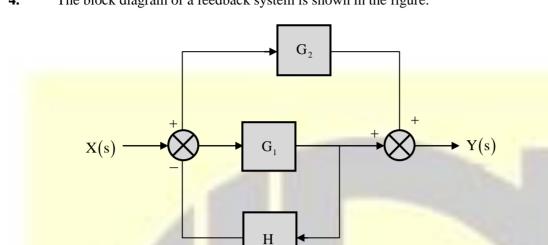


# GATE PREVIOUS YEAR SOLVED PAPERS

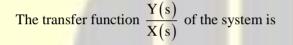

Electronics & Telecommunications Previous Year Solved Papers

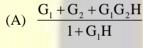
**GATEFORUM** Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.

For more details visit gateforumonline.com


|     | , , , , , , , , , , , , , , , , , , ,                                                                        | EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C-GATE-2021                                                                              | <u>www.gateforumonline.co</u>                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                              | GENERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L APTITUDE                                                                               |                                                                                                                                                        |
|     |                                                                                                              | <u>Q. No. 1 - 5 Ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rry One Mark Each                                                                        |                                                                                                                                                        |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
| •   |                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If it has been increas                                                                   | ing at the rate of 5% per annum, wh                                                                                                                    |
|     | was its population 2                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          | (D) 10.00.000                                                                                                                                          |
|     |                                                                                                              | (B) 12,51,506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (C) 9,95,006                                                                             | (D) 10,00,000                                                                                                                                          |
| nsw | rer: (D)                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Click here                                                                               | to watch video explanation                                                                                                                             |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              | , D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              | I P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
|     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                        |
|     | The least number (                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ided so that the line l                                                                  | P.O. becomes the line of symmetry                                                                                                                      |
|     | The least number of                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lded so that the line                                                                    | P-Q becomes the line of symmetry                                                                                                                       |
|     | The least number of<br>(A) 6                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          | P-Q becomes the line of symmetry<br>(D) 7                                                                                                              |
| nsw | (A) 6                                                                                                        | of squares that must be ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C) 4                                                                                    | (D) 7                                                                                                                                                  |
| nsw | (A) 6                                                                                                        | of squares that must be ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C) 4                                                                                    |                                                                                                                                                        |
|     | (A) 6<br>rer: (A)                                                                                            | of squares that must be ad<br>(B) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C) 4<br>Click here                                                                      | (D) 7                                                                                                                                                  |
| nsw | (A) 6<br>rer: (A)                                                                                            | of squares that must be ad<br>(B) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C) 4<br>Click here                                                                      | (D) 7                                                                                                                                                  |
|     | (A) 6<br>er: (A)<br>p and q are positive                                                                     | (B) 3<br>(B) $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{q}{q} + \frac{q}{p} = 3$ . | (C) 4<br>Click here<br>hen, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$                        | (D) 7<br>to watch video explanation                                                                                                                    |
|     | (A) 6<br>(A) 6<br>p and q are positive<br>(A) 3                                                              | of squares that must be ad<br>(B) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C) 4<br><b>Click here</b><br>hen, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$<br>(C) 7        | (D) 7<br>to watch video explanation<br>(D) 11                                                                                                          |
|     | (A) 6<br>er: (A)<br>p and q are positive<br>(A) 3                                                            | (B) 3<br>(B) $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{q}{q} + \frac{q}{p} = 3$ . | (C) 4<br><b>Click here</b><br>hen, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$<br>(C) 7        | (D) 7<br>to watch video explanation                                                                                                                    |
|     | (A) 6<br>(A) 6<br>p and q are positive<br>(A) 3                                                              | (B) 3<br>(B) $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{p}{q} + \frac{q}{p} = 3$ , the integers and $\frac{q}{q} + \frac{q}{p} = 3$ . | (C) 4<br><b>Click here</b><br>hen, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$<br>(C) 7        | (D) 7<br>to watch video explanation<br>(D) 11                                                                                                          |
| nsw | (A) 6<br>eer: (A)<br>p and q are positive<br>(A) 3<br>eer: (C)                                               | of squares that must be ad<br>(B) 3<br>e integers and $\frac{p}{q} + \frac{q}{p} = 3$ , th<br>(B) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C) 4<br>Click here<br>hen, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$<br>(C) 7<br>Click here | (D) 7<br>to watch video explanation<br>(D) 11                                                                                                          |
| nsw | (A) 6<br>er: (A)<br>p and q are positive<br>(A) 3<br>er: (C)<br>Nostalgia is to antic                        | of squares that must be ad<br>(B) 3<br>e integers and $\frac{p}{q} + \frac{q}{p} = 3$ , th<br>(B) 9<br>cipation as is to _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C) 4<br>Click here<br>hen, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$<br>(C) 7<br>Click here | (D) 7<br>to watch video explanation<br>(D) 11<br>to watch video explanation                                                                            |
| nsw | (A) 6<br>er: (A)<br>p and q are positive<br>(A) 3<br>er: (C)<br>Nostalgia is to antio<br>Which one of the fo | of squares that must be ad<br>(B) 3<br>e integers and $\frac{p}{q} + \frac{q}{p} = 3$ , th<br>(B) 9<br>cipation as is to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C) 4<br>Click here<br>hen, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$<br>(C) 7<br>Click here | <ul> <li>(D) 7</li> <li>to watch video explanation</li> <li>(D) 11</li> <li>to watch video explanation</li> <li>tion in the above sentence?</li> </ul> |
|     | (A) 6<br>er: (A)<br>p and q are positive<br>(A) 3<br>er: (C)<br>Nostalgia is to antic                        | of squares that must be ad<br>(B) 3<br>e integers and $\frac{p}{q} + \frac{q}{p} = 3$ , th<br>(B) 9<br>cipation as is to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C) 4<br>Click here<br>hen, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$<br>(C) 7<br>Click here | (D) 11<br>to watch video explanation                                                                                                                   |

| ſ   |               | DRUM                                    | IEC                      | ·GATE-2021               |                                                                          |
|-----|---------------|-----------------------------------------|--------------------------|--------------------------|--------------------------------------------------------------------------|
|     |               |                                         | ·                        | ·GATE-2021               | <u>www.gateforumonline.com</u>                                           |
| 5.  |               | sider the following                     |                          |                          |                                                                          |
|     |               | I woke up from sle                      | *                        |                          |                                                                          |
|     |               | I woked up from s<br>I was woken up fro | -                        |                          |                                                                          |
|     |               | I was wokened up                        |                          |                          |                                                                          |
|     |               | -                                       | tences are grammatical   |                          |                                                                          |
|     |               | (i) and (iv)                            | -                        | (C) (ii) and (iii)       | (D) (i) and (ii)                                                         |
| Ans |               | (I) and (IV)<br>(B)                     |                          |                          | watch video explanation                                                  |
|     |               |                                         |                          |                          |                                                                          |
|     |               |                                         | O. No. 6- 10 Car         | ry Two Marks Each        |                                                                          |
|     |               |                                         |                          |                          |                                                                          |
| 6.  | Give          | en below are two sta                    | atements and two concl   | usions.                  |                                                                          |
|     | State         | ement 1: All purple                     | e are green.             |                          |                                                                          |
|     | State         | ement 2: All black                      | are green.               |                          |                                                                          |
|     | Con           | clusion I: Some bla                     | ack are purple           |                          |                                                                          |
|     | Con           | clusion II: No blac                     | k is purple              |                          |                                                                          |
|     |               | ed on the above s                       | tatements and conclus    | sions, which one of th   | he following options is logically                                        |
|     | (A)           | Either conclusion l                     | or II is correct         | (B) Only conclusion      | on I is correct                                                          |
|     | (C)           | Both conclusion I                       | and II are correct       | (D) Only conclusion      | on II is correct                                                         |
| Ans | wer:          | (A)                                     |                          | Click here to            | watch video explanation                                                  |
|     |               |                                         |                          |                          |                                                                          |
|     |               |                                         |                          |                          |                                                                          |
| 7.  |               | · ·                                     | •                        | 1 2                      | most all fields from agriculture to                                      |
|     | -             | •                                       |                          | • •                      | c. AI enables computers to learn,<br>r for long hours can lead to health |
|     | issue         |                                         |                          | 8                        |                                                                          |
|     | Whie          | ch of the following                     | can be deduced from th   | ne above passage?        |                                                                          |
|     | (i)           | Nowadays, compu                         | ters are present in almo | st all places.           |                                                                          |
|     | ( <b>ii</b> ) | Computers cannot                        | be used for solving pro  | blems in engineering.    |                                                                          |
|     | (iii)         | For humans, there                       | are both positive and no | egative effects of using | computers.                                                               |
|     | (iv)          | Artificial intelliger                   | nce can be done without  | t data.                  |                                                                          |
|     | (A)           | (ii) and (iv)                           | (B) (i) and (iii)        | (C) (ii) and (iii)       | (D) (i), (iii) and (iv)                                                  |
| Ans | wer:          | <b>(B)</b>                              |                          | Click here to            | watch video explanation                                                  |
|     |               |                                         |                          |                          |                                                                          |





|     | The number of mir<br>in the bar chart abo                        |                            | ents, X and Y, exercising              | g every day in a given week are sho |
|-----|------------------------------------------------------------------|----------------------------|----------------------------------------|-------------------------------------|
|     |                                                                  | vs in the given week in    | which one of the student               | ts spent a minimum of 10% more th   |
|     | (A) 4                                                            | (B) 7                      | (C) 6                                  | (D) 5                               |
| isv | wer: (C)                                                         |                            | Click here                             | to watch video explanation          |
|     |                                                                  |                            |                                        |                                     |
|     |                                                                  | <b>ELECTRONICS</b>         | AND COMMUNICAT                         | <u>FIONS</u>                        |
|     |                                                                  | <u>Q. No. 1 to 2</u>       | 5 Carry One Mark Eac                   | <u>:h</u>                           |
|     | If(1225) = (2022)                                                | )                          | sta the bases of the same              | an an dia a manahana dha a          |
|     |                                                                  |                            |                                        | esponding numbers, then             |
|     | <ul> <li>(A) x = 9 and y =</li> <li>(C) x = 7 and y =</li> </ul> |                            | (B) $x = 8$ and y<br>(D) $x = 6$ and y |                                     |
| nsv | <b>wer:</b> ( <b>B</b> )                                         | 5                          |                                        | to watch video explanation          |
|     |                                                                  |                            |                                        |                                     |
|     |                                                                  |                            |                                        |                                     |
|     | Addressing of a 32 gates required for t                          |                            | ilized using a single dec              | coder. The minimum number of Al     |
|     | (A) 2 <sup>8</sup>                                               | (B) $2^{19}$               | (C) $2^{15}$                           | (D) $2^{32}$                        |
| isv | wer: (C)                                                         |                            | Click here                             | to watch video explanation          |
|     |                                                                  |                            |                                        |                                     |
|     | Consider the differ                                              | ential equation given be   | elow                                   |                                     |
|     |                                                                  |                            |                                        |                                     |
|     | $\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{x}{1-x^2}y = x\sqrt{x}$ | У                          |                                        |                                     |
|     | The integrating fac                                              | tor of the differential ec | quation is                             |                                     |
|     | (A) $(1-x^2)^{-\frac{1}{4}}$                                     | (B) $(1-x^2)^{-3/4}$       | (C) $(1-x^2)^{-\frac{1}{2}}$           | (D) $(1-x^2)^{-3/2}$                |
| nsv | wer: (A)                                                         |                            | Click here                             | to watch video explanation          |
|     |                                                                  |                            |                                        |                                     |
|     |                                                                  |                            |                                        |                                     |
|     |                                                                  |                            |                                        |                                     |
|     |                                                                  |                            |                                        |                                     |

**EC-GATE-2021** 



4. The block diagram of a feedback system is shown in the figure.





C) 
$$\frac{G_1 + G_2}{1 + G_1 H}$$

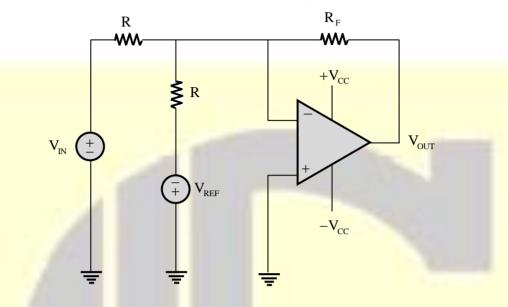
**(C)** 

GATEFORUM

(B)  $\frac{G_1 + G_2}{1 + G_1 H + G_2 H}$ (D)  $\frac{G_1 + G_2 + G_1G_2H}{1 + G_1H + G_2H}$ 

Click here to watch video explanation

5. A speech signal, band limited to 4 kHz, is sampled at 1.25 times the Nyquist rate. The speech samples, assumed to be statistically independent and uniformly distributed in the range -5V to +5V, are subsequently quantized in an 8-bit uniform quantizer and then transmitted over a voice-grade AWGN telephone channel. If the ratio of transmitted signal power to channel noise power is 26 dB, the minimum channel bandwidth required to ensure reliable transmission of the signal with arbitrarily small probability of transmission error (rounded off to two decimal places) is kHz.


(9.25) **Answer:** 

**Answer:** 

Click here to watch video explanation

**GATEFORUM** Engineering Success

6. Consider the circuit with an ideal OPAMP shown in the figure.



Assuming  $|V_{IN}| \ll |V_{CC}|$  and  $|V_{REF}| \ll |V_{CC}|$ , the condition at which  $V_{OUT}$  equals to zero is

| (A)     | $V_{IN} = 0.5 V_{REF}$ | (B) $V_{IN} = 2 + V_{REF}$ | (C) $V_{IN} = 2V_{REF}$ | (D) $V_{IN} = V_{REF}$  |
|---------|------------------------|----------------------------|-------------------------|-------------------------|
| Answer: | (D)                    |                            | Click here to           | watch video explanation |

7. A bar of silicon is doped with boron concentration of  $10^{16}$  cm<sup>-3</sup> and assumed to be fully ionized. It is exposed to light such that electron-hole pairs are generated throughout the volume of the bar at the rate of  $10^{20}$  cm<sup>-3</sup>s<sup>-1</sup>. If the recombination lifetime is 100 µs, intrinsic carrier concentration of silicon is  $10^{10}$  cm<sup>-3</sup> and assuming 100% ionization of boron, then the approximate product of steady-state electron and hole concentrations due to this light exposure is

 (A)  $10^{20} \text{ cm}^{-6}$  (B)  $2 \times 10^{20} \text{ cm}^{-6}$  (C)  $10^{32} \text{ cm}^{-6}$  (D)  $2 \times 10^{32} \text{ cm}^{-6}$  

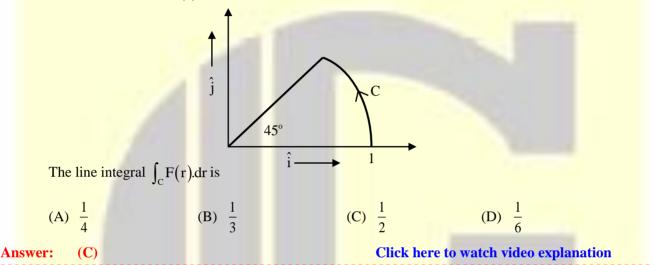
 Answer:
 (D)
 (D)
 (D)
 (D)

8. The refractive indices of the core and cladding of an optical fiber are 1.50 and 1.48, respectively. The critical propagation angle, which is defined as the maximum angle that the light beam makes with the axis of the optical fiber to achieve the total internal reflection, (rounded off to two decimal places) is \_\_\_\_\_ degree.

Answer: (9.36)

Click here to watch video explanation

#### G GATEFORUM Engineering Success


**EC-GATE-2021** 

**9.** A 4 kHz sinusoidal message signal having amplitude 4V is fed to a delta modulator (DM) operating at a sampling rate of 32 kHz. The minimum step size required to avoid slope overload noise in the DM (rounded off to two decimal places) is \_\_\_\_\_V.

**Answer:** (3.14)

Click here to watch video explanation

10. The vector function  $F(r) = -x\hat{i} + y\hat{j}$  is defines over a circular arc C shown in the figure.

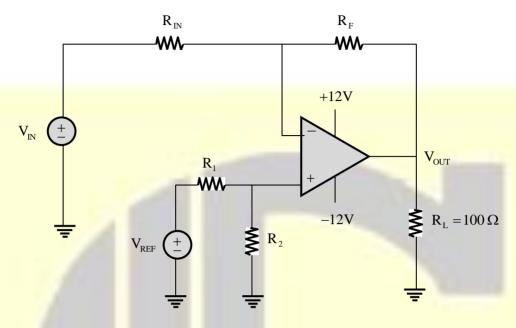


11. Consider two 16-point sequences x[n] and h[n]. Let the linear convolution of x[n] and h[n] be denoted by y[n], while z[n] denotes the 16-point inverse discrete Fourier transform (IDFT) of the product of the 16-point DFTs of x[n] and h[n]. The value(s) of k for which z[k] = y[k] is/are

| (A) $k = 0$  | (B) $k = 0, 1, 2,, 15$                |
|--------------|---------------------------------------|
| (C) $k = 15$ | (D) $k = 0$ and $k = 15$              |
| Answer: (C)  | Click here to watch video explanation |

12. Consider a rectangular coordinate system (x, y, z) with unit vectors  $a_x, a_y$  and  $a_z$ . A plane wave travelling in the region  $z \ge 0$  with electric field vector  $E = 10\cos(2 \times 10^8 t + \beta z)a_y$  is incident normally on the plane at z = 0, where  $\beta$  is the phase constant. The region  $z \ge 0$  is in the free space and the region z < 0 is filled with a lossless medium (permittivity  $\varepsilon = \varepsilon_0$ , permeability  $\mu = 4\mu_0$ , where  $\varepsilon_0 = 8.85 \times 10^{12} \text{ F/m}$  and  $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$ ). The value of the reflection coefficient is

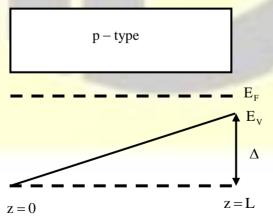
| 3                 | ( <b>D</b> ) 1    | $\sim$ 2          | 2                 |
|-------------------|-------------------|-------------------|-------------------|
| (A) $\frac{3}{5}$ | (B) $\frac{1}{3}$ | (C) $\frac{2}{5}$ | (D) $\frac{2}{3}$ |


Answer: (B)

Click here to watch video explanation

|       | gineering Success          | EC-GATE-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | www.gateforumonline.com         |
|-------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 13.   | Consider the vector field  | $F = a_x (4y - c_1 z) + a_y (4x + 2z) + a_z (2y + z)$ in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rectangular coordinate system   |
|       |                            | $a_x, a_y$ and $a_z$ . If the field F is irrotational (con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|       | (in integer) is            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| Answe | er: (0)                    | Click here to wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ch video explanation            |
|       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| 14.   | scale voltage range from ( | log output values are positive) digital-to-analo<br>OV to 7.68V. If the digital input code is 10010<br>tage of the DAC (rounded off to one decimal pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110 (the leftmost bit is MSB),  |
| Answe | er: (4.5)                  | Click here to wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ch video explanation            |
| 15.   | Consider the circuit shown | $3\Omega$<br>$M^{A}$<br>$7\Omega$<br>$M^{A}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$<br>$M^{2}$ | ed off to one decimal place) is |
| Answe | er: (0.5)                  | Click here to wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ch video explanation            |
| 16.   | C .                        | which is amplitude modulated by a single-tone<br>%. If the carrier and one of the sidebands ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sinusoidal message signal with  |
| 10.   |                            | ower saved (rounded off to one decimal place) i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e suppressed in the modulated   |

**EC-GATE-2021** 


# 17. For the circuit with an ideal OPAMP shown in the figure, $V_{REF}$ is fixed.



If  $V_{OUT} = 1$  volt for  $V_{IN} = 0.1$  volt and  $V_{OUT} = 6$  volt for  $V_{IN} = 1$  volt, where  $V_{OUT}$  is measured across  $R_L$  connected at the output of this OPAMP, the value of  $R_F/R_{IN}$  is

| (A) 5.555   | (B) 2.860 | (C) 3.825  | (D) 3.285                  |  |
|-------------|-----------|------------|----------------------------|--|
| Answer: (*) |           | Click here | to watch video explanation |  |

**18.** The energy band diagram of a p-type semiconductor bar of length L under equilibrium condition (i.e., the Fermi energy level  $E_F$  is constant) is shown in the figure. The valance band  $E_V$  is sloped since doping is non-uniform along the bar. The difference between the energy levels of the valence band at the two edges of the bar is  $\Delta$ .



© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

#### **GATEFORUM** Engineering Success

| C           | GATEFORUM<br>Engineering Success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E0                                         | C-GATE-2021                                                                  | www.gateforumonline.com                                                                                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | If the charge of an electron semiconductor bar is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | etron is q, then th                        | e magnitude of the                                                           | electric field developed inside this                                                                                                                                         |
|             | (A) $\frac{2\Delta}{qL}$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B) $\frac{\Delta}{2qL}$                    | (C) $\frac{\Delta}{qL}$                                                      | (D) $\frac{3\Delta}{2qL}$                                                                                                                                                    |
| Ans         | wer: (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | Click here t                                                                 | to watch video explanation                                                                                                                                                   |
| 19.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                              | 3  cm, b = 4  cm, operates at  3.4  GHz.<br>the signal is $v_p$ . The value (rounded)                                                                                        |
|             | off to two decimal places)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of $v_p/c$ , where c                       | denotes the velocity of                                                      | light, is                                                                                                                                                                    |
| Ansy        | wer: (1.199)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | Click here t                                                                 | to watch video explanation                                                                                                                                                   |
| 20.<br>Ansv | and '0' respectively, is the variance $0.4 V^2$ . If the a particular variance $V^2$ is the variance $V^2$ vari | ansmitted in the p<br>priori probability o | resence of additive ze<br>f transmission of a bin<br>eceiver (rounded off to | and -2V for representing binary '1'<br>ero-mean white Gaussian noise with<br>ary '1' is 0.4, the optimum threshold<br>two decimal places) isV.<br>to watch video explanation |
| 21.         | Consider a real-valued back<br>$y(t) = x(t)x(1+\frac{t}{2})$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | use-band signal x(t)                       | ), band limited to 10 l                                                      | kHz. The Nyquist rate for the signal                                                                                                                                         |
|             | (A) 15 kHz (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B) 30 kHz                                  | (C) 60 kHz                                                                   | (D) 20 kHz                                                                                                                                                                   |
| Ansv        | wer: (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | Click here t                                                                 | to watch video explanation                                                                                                                                                   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                              |                                                                                                                                                                              |
| 22.         | Two continuous random v<br>Y = 2X + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ariables X and Y a                         | re related as                                                                |                                                                                                                                                                              |
|             | Let $\sigma_X^2$ and $\sigma_Y^2$ denote the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | variances of X and                         | Y, respectively. The v                                                       | variances are related as                                                                                                                                                     |
|             | (A) $\sigma_{\rm Y}^2 = 5\sigma_{\rm X}^2$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B) $\sigma_{\rm Y}^2 = 2\sigma_{\rm X}^2$  | (C) $\sigma_{\rm Y}^2 = 25\sigma_{\rm X}^2$                                  | (D) $\sigma_{\rm Y}^2 = 4\sigma_{\rm X}^2$                                                                                                                                   |
| Ansv        | wer: (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | Click here t                                                                 | to watch video explanation                                                                                                                                                   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                              |                                                                                                                                                                              |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                              |                                                                                                                                                                              |



|EC-GATE-2021|

www.gateforumonline.com





# **|EC-GATE-2021|**

www.gateforumonline.com

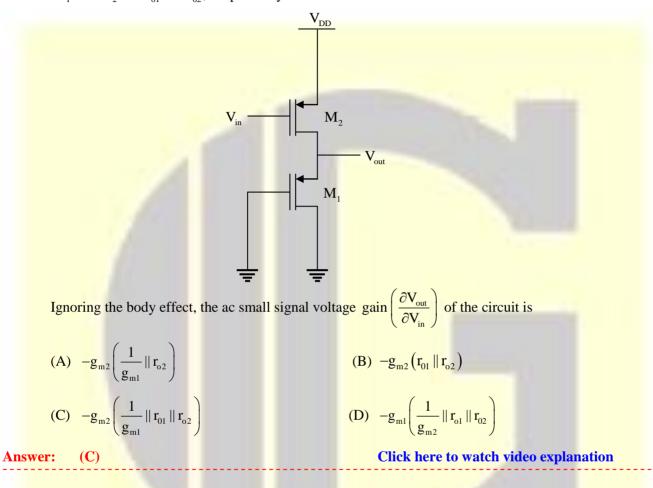
# GATEFORUM Engineering Success

# GATE REFRESHER COURSE

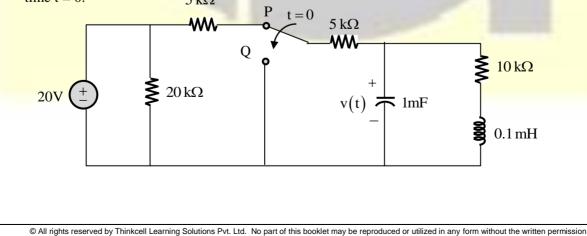
Electronics & Telecommunications Engineering

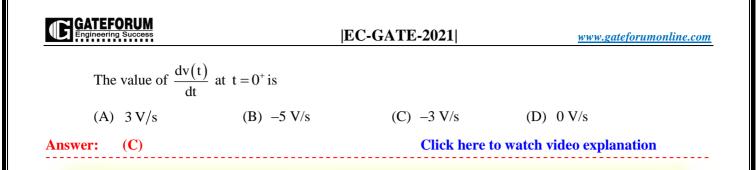
**GATEFORUM** Pioneers in Digital courses for GATE since 2008 offers **GATE refresher course** giving you access to video solutions for previous 11 years GATE questions and Topic-wise formula Compendium (Handbook).

Enroll now and get 20% discount use Promo Code GATEPAPERS

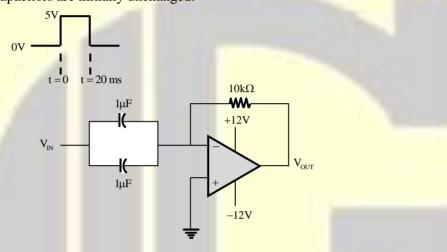

For more details visit gateforumonline.com

| C    | GATEFORUM<br>Engineering Success                                        |                                                                | EC-GATE-2021                                                                                                                                                               | www.gateforumonline.com                                                                          |
|------|-------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 23.  |                                                                         | ace at a distance of                                           | B is radiating a total power of f 8 km from the antenna in the diV/m.                                                                                                      | -                                                                                                |
| Ansv | ver: (0.245)                                                            |                                                                | Click here to wate                                                                                                                                                         | ch video explanation                                                                             |
| 24.  | kHz is sampled and fe<br>PCM output is transm<br>Assuming that the quar | d to a pulse code<br>tted over a chann<br>ntization error is u | lue of 2V, root mean square valu<br>modulation (PCM) system that u<br>el that can support a maximum<br>hiformly distributed, the maximu<br>tem (rounded off to two decimal | uses a uniform quantizer. The<br>transmission rate of 50 kbps.<br>m signal to quantization noise |
| Ansv | ver: (30.72)                                                            |                                                                | Click here to wate                                                                                                                                                         | ch video explanation                                                                             |
| 25.  |                                                                         |                                                                | and (2.0, 3.0, 1.0) in $\mathbb{R}^3$ are line                                                                                                                             |                                                                                                  |
| Ansv | ver: (8)                                                                |                                                                | Click here to wate                                                                                                                                                         | ch video explanation                                                                             |
|      |                                                                         | <u>Q. No. 26 to 5</u>                                          | 5 Carry Two Marks Each                                                                                                                                                     |                                                                                                  |
| 26.  | A box contains the foll                                                 | -                                                              | t tail on the other face                                                                                                                                                   |                                                                                                  |
|      | <b>I.</b> A fair coin with heads                                        |                                                                | 1 tail on the other face.                                                                                                                                                  |                                                                                                  |
|      | III. A coin with tails of                                               |                                                                |                                                                                                                                                                            |                                                                                                  |
|      | A coin is picked rando                                                  | nly from the box a                                             | and tossed. Out of the two remain<br>e first toss results in a head, the p                                                                                                 |                                                                                                  |
|      | (A) $\frac{1}{2}$                                                       | (B) $\frac{2}{5}$                                              | (C) $\frac{2}{3}$ (1)                                                                                                                                                      | D) $\frac{1}{3}$                                                                                 |
| Ansv | ver: (D)                                                                |                                                                | Click here to wate                                                                                                                                                         | ch video explanation                                                                             |
| 27.  | Consider the integral $\oint_{C}$                                       | $\frac{\sin(x)}{x^2(x^2+4)}dx$                                 |                                                                                                                                                                            |                                                                                                  |
|      | Where C is a counter-c                                                  | lockwise oriented of                                           | circle defined as $ x - i  = 2$ . The v                                                                                                                                    | value of the integral is                                                                         |
|      | (A) $-\frac{\pi}{4}\sin(2i)$                                            | (B) $\frac{\pi}{4}\sin(2i)$                                    | (C) $\frac{\pi}{8}\sin(2i)$ (1)                                                                                                                                            | D) $-\frac{\pi}{8}\sin(2i)$                                                                      |
| Ansv | ver: (*)                                                                |                                                                | Click here to watc                                                                                                                                                         | ch video explanation                                                                             |
|      |                                                                         | raing Colutions Dut Ltd. M                                     | st of this booklot may be served used as well-said                                                                                                                         | form without the written norminal an                                                             |
|      | C All rights reserved by Thinkcell Lea                                  | ming Solutions Pvt. Ltd. No pa                                 | art of this booklet may be reproduced or utilized in any                                                                                                                   | form without the written permission.                                                             |


#### **C** Engineering Success


### **|EC-GATE-2021|**

28. In the circuit shown in the figure, the transistors  $M_1$  and  $M_2$  are operating in saturation. The channel length modulation coefficients of both the transistors are non-zero. The transconductance of the MOSFETs  $M_1$  and  $M_2$  are  $g_{m1}$  and  $g_{m2}$ , respectively, and the internal resistance of the MOSFETs  $M_1$  and  $M_2$  are  $r_{01}$  and  $r_{02}$ , respectively.




29. The switch in the circuit in the figure is in position P for a long time and then moved to position Q at time t = 0.  $5 k\Omega$ 





**30.** A circuit with an ideal OPAMP is shown in the figure. A pulse  $V_{IN}$  of 20 ms duration is applied to the input. The capacitors are initially unchanged.



The output voltage  $V_{OUT}$  of this circuit at  $t = 0^+$  (in integer) is \_\_\_\_\_V.Answer:(-12)Click here to watch video explanation

**31.** The exponential Fourier series representation of a continuous-time periodic signal x(t) is defined as

$$x\left(t\right) \!=\! \sum_{k=-\infty}^{\infty}\! a_k e^{jk\omega_o t}$$

Where  $\omega_0$  is the fundamental angular frequency of x(t) and the coefficient of the series are  $a_k$ . The following information is given about x(t) and  $a_k$ .

- **I.** x(t) a real and even, having a fundamental period of 6
- **II.** The average value of x(t) is 2

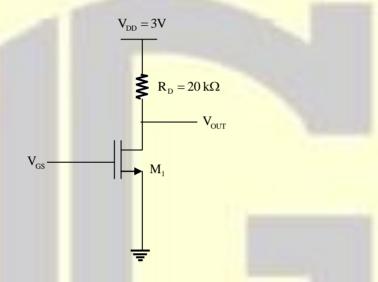
**III.** 
$$a_k = \begin{cases} k, & 1 \le k \le 3 \\ 0, & k > 3 \end{cases}$$

The average power of the signal x(t) (rounded off to one decimal place) is \_\_\_\_\_.

Answer: (32)

Click here to watch video explanation

#### |EC-GATE-2021|


32. For a vector field  $D = \rho \cos^2 \varphi a_{\rho} + z^2 \sin^2 \varphi a_{\varphi}$  in a cylindrical coordinate system  $(\rho, \varphi, z)$  with unit vectors  $a_{\rho}, a_{\varphi}$  and  $a_z$ , the net flux of D leaving the closed surface of the cylinder  $(\rho = 3, 0 \le z \le 2)$  (rounded off to two decimal places) is \_\_\_\_\_.

**Answer:** (56.55)

**GATEFORUM** 

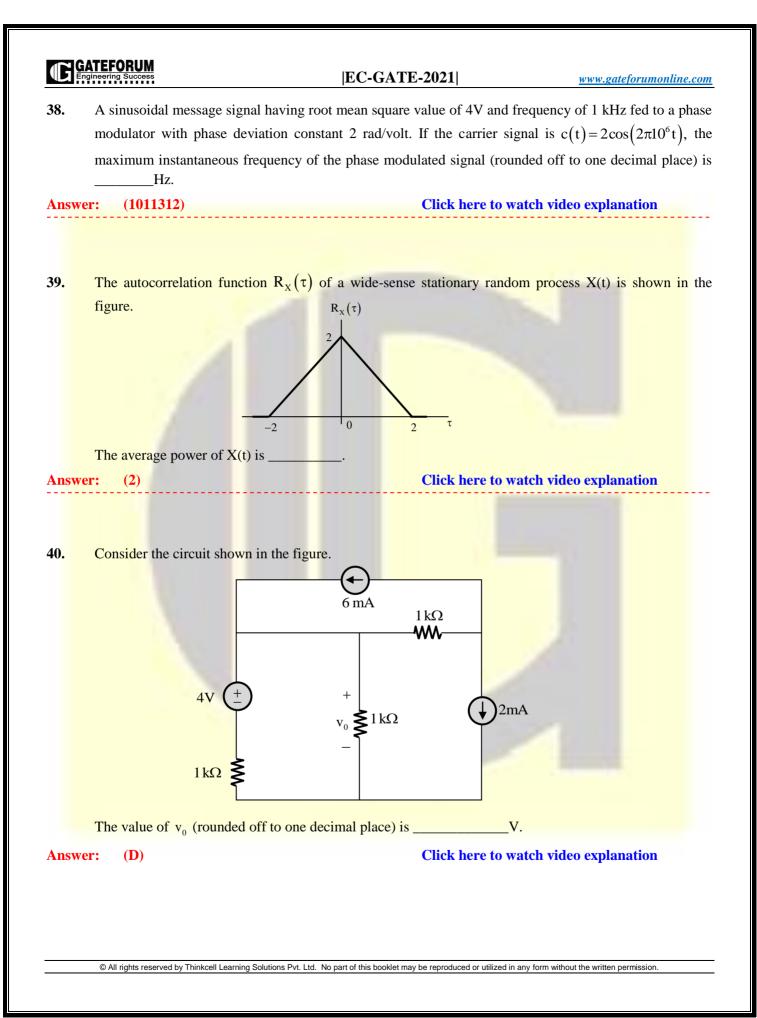
Click here to watch video explanation

33. For the transistor  $M_1$  in the circuit shown in the figure,  $\mu_n C_{ox} = 100 \,\mu A/V^2$  and (W/L) = 10, where  $\mu_n$  is the mobility of electron,  $C_{ox}$  is the oxide capacitance per unit area, W is the width and L is the length.



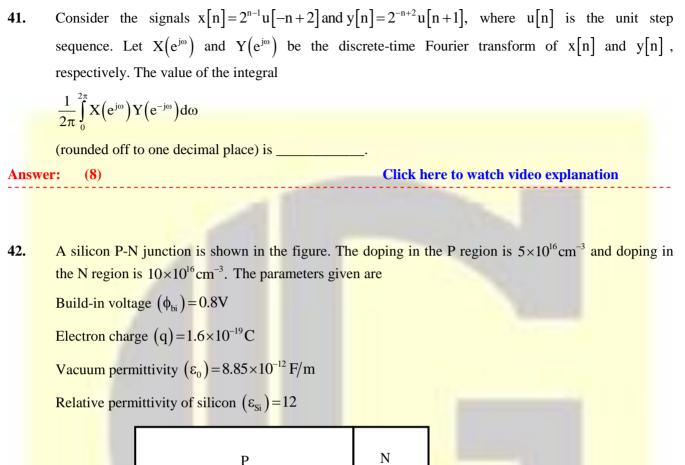
The channel length modulation coefficient is ignored. If the gate-to-source voltage  $V_{GS}$  is 1V to keep the transistor at the edge of saturation, then the threshold voltage of the transistor (rounded off to one decimal place) is \_\_\_\_\_\_V.

**Answer:** (0.55)


Click here to watch video explanation

**34.** In a high school having equal number of boy students and girl students, 75% of the students study science and the remaining 25% students study Commerce. Commerce students are two times more likely to be a boy than are Science students. The amount of information gained in knowing that a randomly selected girl student studies Commerce (rounded off to three decimal places) is \_\_\_\_\_\_ bits.

**Answer:** (3.34)

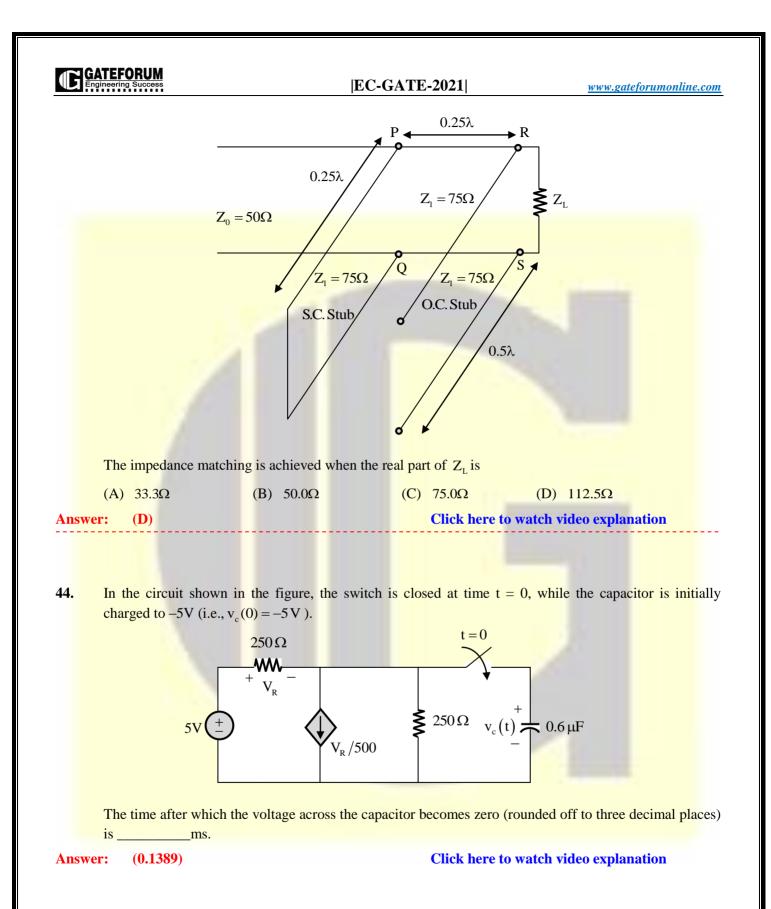

Click here to watch video explanation

| G    | CATEFORUM                                      | EC                           | C-GATE-2021               | www.gateforumonline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>com</u> |
|------|------------------------------------------------|------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 35.  | For a unit step                                | input u[n], a disc           | crete-time LTI sys        | stem produces an output sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gnal       |
|      | $(2\delta[n+1]+\delta[n]+\delta[n]+\delta[n])$ | [n-1]). Let $y[n]$ be the    | output of the system      | for an input $\left(\left(\frac{1}{2}\right)^n u[n]\right)$ . The va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alue       |
|      | of y[0] is                                     | ·                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Answ | /er: (0)                                       |                              | Click here                | to watch video explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|      |                                                |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 36.  | The propagation dela                           | iys of the XOR gate, AN      | ID gate and multiplex     | xer (MUX) in the circuit shown in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the        |
|      | figure are 4ns, 2ns ar                         | d 1 ns, respectively.        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|      | Р ——                                           | <b>—</b> —                   | 0                         | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|      | Q                                              |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|      | l                                              |                              | MUX                       | — Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|      | R                                              |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|      | l                                              | $ 1 s_0$                     | So                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|      | S ———                                          |                              |                           | and the second se |            |
|      | Τ                                              |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|      | If all the inputs P, propagation delay of      |                              | pplied simultaneousl      | ly and held constant, the maxim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | um         |
|      | (A) 3 ns                                       | (B) 6 ns                     | (C) 5 ns                  | (D) 7 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Answ | ver: (B)                                       |                              | Click here                | to watch video explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|      |                                                |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 37.  | A digital transmissio                          | n system uses a $(7, 4)$ sy  | vstematic linear Hamr     | ming code for transmitting data over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er a       |
| 57.  |                                                |                              |                           | le $(\mathbf{m}_t : \mathbf{c}_t)$ , where $\mathbf{c}_t$ is the codew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|      |                                                |                              |                           | 101100), (1110; 001111 <mark>0) and (0</mark> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10;        |
|      |                                                | h of the following is a $va$ |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Answ | (A) 1101001<br>/er: (C)                        | (B) 0110100                  | (C) 0001011<br>Click here | (D) 1011010<br>to watch video explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|      |                                                |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|      |                                                |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|      |                                                |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|      |                                                |                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |



#### **G** Engineering Success

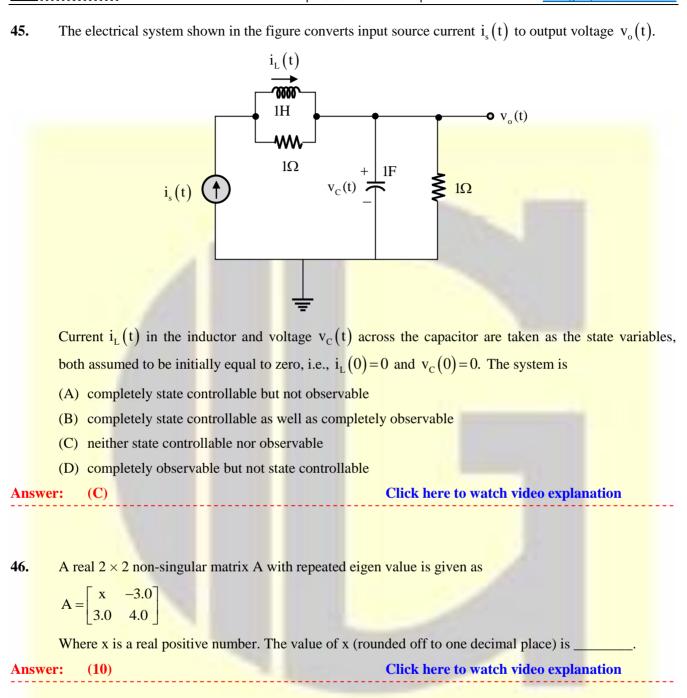
# |EC-GATE-2021|

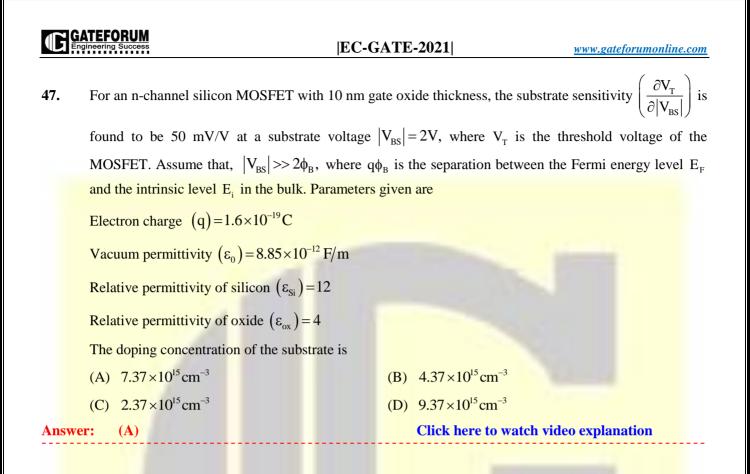



1.2 μm

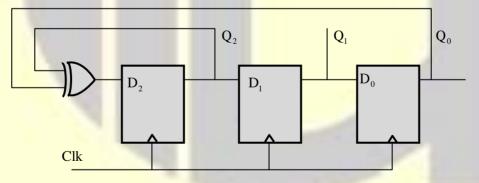
The magnitude of reverse bias voltage that would completely deplete one of the two regions (P or N) prior to the other (rounded off to one decimal place) is \_\_\_\_\_\_V.

| Answer:(8.23)Click here to watch video explanation |
|----------------------------------------------------|
|----------------------------------------------------|


43. The impedance matching network shown in the figure is to match a lossless line having characteristics impedance  $Z_0 = 50\Omega$  with a load impedance  $Z_L$ . A quarter-wave line having a characteristic impedance  $Z_1 = 75\Omega$  is connected to  $Z_L$ . Two stubs having characteristic impedance of  $75\Omega$  each are connected to this quarter-wave line. One is a short-circuited (S.C) stub of length 0.25 $\lambda$  connected across PQ and the other one is an open-circuited (O.C) stub of length 0.5 $\lambda$  connected across RS.




GATEFORUM


#### **EC-GATE-2021**

www.gateforumonline.com





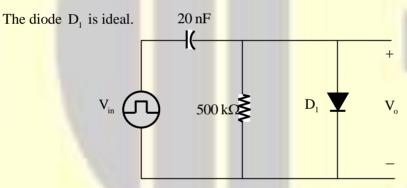
**48.** The propagation delay of the exclusive-OR (XOR) gate in the circuit in the figure is 3 ns. The propagation delay of all the flip-flops is assumed to be zero. The clock (Clk) frequency provided to the circuit is 500 MHz.



Starting from the initial value of the flip-flop outputs  $Q_2Q_1Q_0 = 111$  with  $D_2 = 1$ , the minimum number of triggering clock edges after which the flip-flop outputs  $Q_2Q_1Q_0$  becomes 100 (in integer) is \_\_\_\_\_.

**Answer:** (5)

Click here to watch video explanation


**EC-GATE-2021 WWW.gateforumonline.com 49.** The content of the registers are  $R_1 = 25H$ ,  $R_2 = 30H$  and  $R_3 = 40H$ . The following machine instructions are executed. PUSH $\{R_1\}$ PUSH $\{R_2\}$ PUSH $\{R_3\}$ POP $\{R_1\}$ POP $\{R_1\}$ POP $\{R_3\}$ 

After execution, the content of registers  $R_1, R_2, R_3$  are

(A)  $R_1 = 30H, R_2 = 40H, R_3 = 25H$ (B)  $R_1 = 25H, R_2 = 30H, R_3 = 40H$ (C)  $R_1 = 40H, R_2 = 30H, R_3 = 25H$ (D)  $R_1 = 40H, R_2 = 25H, R_3 = 30H$ 

Answer: (C)

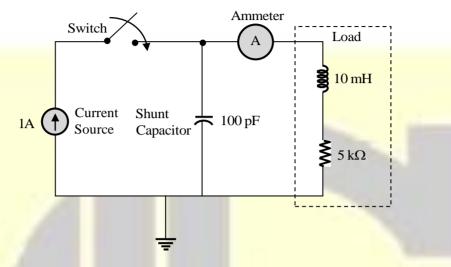
50. An asymmetrical periodic pulse train  $v_{in}$  of 10V amplitude with on-time  $T_{ON} = 1$  ms and off-time  $T_{OFF} = 1 \,\mu s$  is applied to the circuit shown in the figure.



The difference between the maximum voltage and minimum voltage of the output waveform  $v_0$  (in integer) is \_\_\_\_\_\_V.

Answer: (10)

Click here to watch video explanation


Click here to watch video explanation

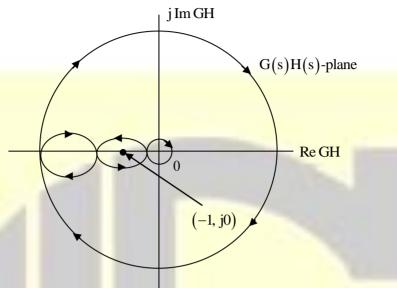
#### GATEFORUM Engineering Success

# **EC-GATE-2021**

www.gateforumonline.com

51. The circuit in the figure contains a current source driving a load having an inductor and a resistor in series, with a shunt capacitor across the load. The ammeters is assumed to have zero resistance. The switch is closed at time t = 0.

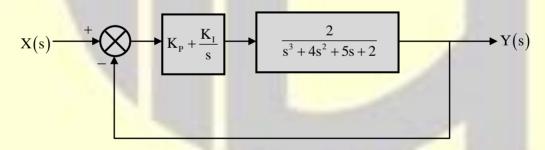



Initially, when the switch is open, the capacitor is discharged and the ammeter reads zero ampere. After the switch is closed, the ammeter reading keeps fluctuating for some till it settles to a final steady value. The maximum ammeter reading that one will observe after the switch is closed (rounded off to two decimal places) is \_\_\_\_\_\_A.

Answer:(1.44)Click here to watch video explanation

#### GATEFORUM Engineering Success

# **EC-GATE-2021**

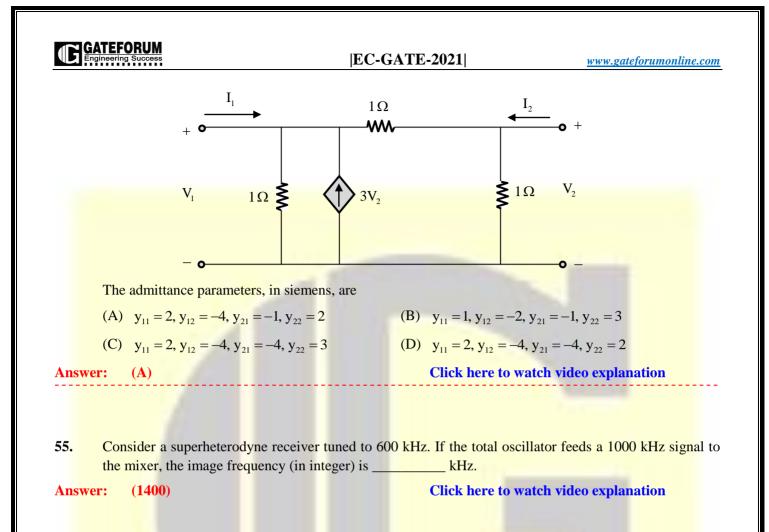

**52.** The complete Nyquist plot of the open-loop transfer function G(s)H(s) of a feedback control system is shown in the figure.

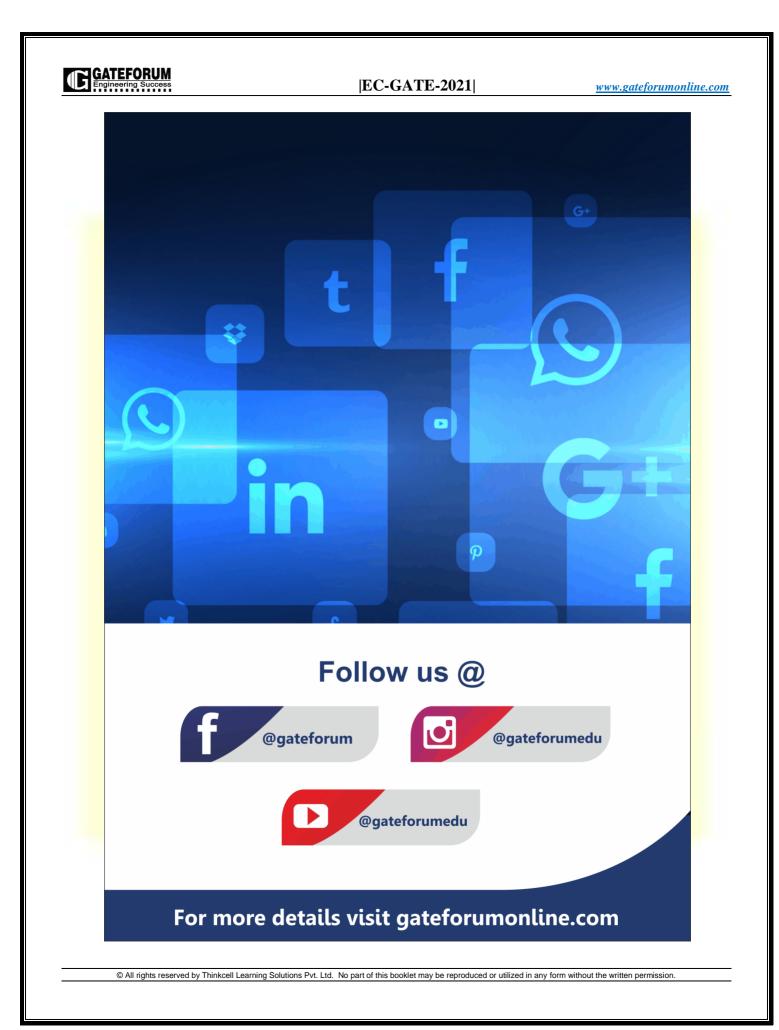


If G(s)H(s) has one zero in the right-half of the s-plane, the number of poles that the closed-loop system will have in the right-half of the s-plane is

| (A) 1       | (B) 3 | (C) 4         | (D) 0                   |
|-------------|-------|---------------|-------------------------|
| Answer: (B) |       | Click here to | watch video explanation |

53. A unity feedback system that uses proportional-integral (PI) control is shown in the figure.





The stability of the overall system is controlled by tuning the PI control parameters  $K_p$  and  $K_I$ . The maximum value of  $K_I$  that can be chosen so as to keep the overall system stable or, in the worst case, marginally stable (rounded off to three decimal places) is \_\_\_\_\_.

**Answer:** (3.125)

Click here to watch video explanation

54. Consider the two-port network shown in the figure.



