

www.gateforumonline.com

For more details visit gateforumonline.com

G	UAILFORUM Engineering Success	EE	-GATE-2014, SET-3/	www.gateforumonline.c
		GEN	ERAL APTITUDE	
		<u>Q. No. 1 –</u>	5 Carry One Mark Each	
	While trying to colle	<u>ct</u> an envelope <u>from</u>	under the table, Mr. X fell	down and
	I II	III		
	was losing conscious	sness.		
	IV			
	Which one of the abo	ove underlined parts	of the sentence is NOT app	ropriate?
nci	(\mathbf{A}) I	(b) II	(C) III	(D) IV
	If she	how to calibrate	e the instrument, she	done the experiment.
	(A) knows, will hav	e	(B) knew, had	
	(C) had known, cou	ld have	(D) should have	known, would have
nsv	wer: (C)			
	Choose the word that	t is opposite in mean	ing to the word "coherent".	
	(A) sticky		(B) well-connect	ed
	(C) rambling		(D) friendly	
nsv	wer: (C)			
	Which number does	not belong in the ser	ies below?	
	2, 5, 10, 17, 26, 37, 5	50, 64		
	(A) 17	(B) 37	(C) 64	(D) 26
nsv	wer: (C)			
	© All rights reserved by Thinkcell	Learning Solutions Pvt. Ltd. No	part of this booklet may be reproduced or utiliz	red in any form without the written permission.

5. The table below has question-wise data on the performance of students in an examination. The marks for each question are also listed. There is no negative or partial marking in the examination.

No	Marks	Answered Correctly	Answered Wrongly	Not Attempted
1	2	21	17	6
2	3	15	27	2
3	2	23	18	3
2 3	3	15 23	27 18	2

What is the average of the marks obtained by the class in the examination?

(A) 1.34 (B) 1.74 (C) 3.02 (D) 3.91

Answer: (C)

GATEFORUM

Q. No. 6 – 10 Carry One Mark Each

- 6. A dance programme is scheduled for 10.00 a.m. Some students are participating in the programme and they need to come an hour earlier than the start of the event. These students should be accompanied by a parent. Other students and parents should come in time for the programme. The instruction you think that is appropriate for this is
 - (A) Students should come at 9.00 a.m. and parents should come at 10.00 a.m.
 - (B) Participating students should come at 9.00 a.m. accompanied by a parent, and other parents and students should come by 10.00 a.m.
 - (C) Students who are not participating should come by 10.00 a.m. and they should not bring their parents. Participating students should come at 9.00 a.m.
 - (D) Participating students should come before 9.00 a.m. Parents who accompany them should come at 9.00 a.m. All others should come at 10.00 a.m.

Answer: (B)

7. By the beginning of the 20th century, several hypotheses were being proposed, suggesting a paradigm shift in our understanding of the universe. However, the clinching evidence was provided by experimental measurements of the position of a star which was directly behind our sun.

Which of the following inference(s) may be drawn from the above passage?

- (i) Our understanding of the universe changes based on the positions of stars
- (ii) Paradigm shifts usually occur at the beginning of centuries
- (iii) Stars are important objects in the universe

	Engineering Success		EE-GA1	E-2014, SET-3/		<u>www.gateforumonline.co</u>
	(iv) Experimenta	al evidence was	important in c	onfirming this para	digm shift	
	(A) (i), (ii) and ((iv) (B) (ii	i) only	(C) (i) and (iv) (iv)) (D)	(iv) only
nsv	wer: (D)					
•	The Gross Dom	nestic Product	(GDP) in Ru	pees grew at 7%	during 20	12-2013. For internation
	rate During the t	GDP is comparent of the second s	13 the exchange	e rate for the USD	increased fi	rom Rs 50/ USD to Rs 6
	USD. India's GE	OP in USD duri	ng the period 2	012-2013	mercuseu n	
	(A) increased by	y 5 %		(B) decreased	by 13%	
	(C) decreased by	y 20%		(D) decreased	by 11%	
Insv	wer: (D)					
) .	The ratio of male	e to female stud	lents in a colle	ge for five years is	plotted in	the following line graph.
	the number of fe	emale <mark>stud</mark> ents i	n 2011 and 20	12 is equal, what i	s the ratio of	of male students in 2012
	male students in	2011?				
		3.5				
					_	
		2.5		<u></u>		
					_	
		2 Rai	008 2009	2010 2011	2012	
		100			1	
						2.5.1
	(A) 1:1	(B) 2:	1	(C) 1.5:1	(D)	2.5:1
Insv	(A) 1:1 wer: (C)	(B) 2:	1	(C) 1.5:1	(D)	2.5:1
Ansv	(A) 1:1 wer: (C)	(B) 2:	1	(C) 1.5:1	(D)	2.5:1
Ansv	(A) 1:1 wer: (C)	(B) 2:	1	(C) 1.5:1	(D)	2.5:1
1 .INSV	(A) 1:1 wer: (C) Consider the equ	(B) 2: ation: (7526)。-	1 $(Y)_8 = (4364)_9$	(C) $1.5:1$	(D)	2.5:1
unsv 0.	(A) 1:1 wer: (C) Consider the equ (A) 1634	(B) 2: ation: (7526) ₈ - (B) 17	1 (Y) ₈ = (4364) ₈ 737	(C) 1.5:1 (C) 1.5:1 (C) 3142	(D) Is for X to t	2.5:1 he base N. Find Y. 3162

ELECTRICAL ENGINEERING

Q. No. 1 – 25 Carry One Mark Each

1. Two matrices A and B are given below: $\mathbf{B} = \begin{bmatrix} \mathbf{p}^2 + \mathbf{q}^2 & \mathbf{pr} + \mathbf{qs} \\ \mathbf{pr} + \mathbf{qs} & \mathbf{r}^2 + \mathbf{s}^2 \end{bmatrix}$ $\mathbf{A} = \begin{vmatrix} \mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{s} \end{vmatrix};$ If the rank of matrix A is N, then the rank of matrix B is (A) N/2 (B) N-1 (C) N (D) 2 N Answer: **(C)** A particle, starting from origin at t = 0 s, is traveling along x-axis with velocity 2. $v = \frac{\pi}{2} \cos\left(\frac{\pi}{2}t\right) m/s$ At t = 3 s, the difference between the distance covered by the particle and the magnitude of displacement from the origin is _____. Answer: (2) _____ Let, $\nabla \cdot (\mathbf{f} \mathbf{v}) = x^2 y + y^2 z + z^2 x$; where f and v are scalar and vector fields respectively. If 3. $\mathbf{v} = \mathbf{y}\mathbf{i} + \mathbf{z}\mathbf{j} + \mathbf{x}\mathbf{k}$, then $\mathbf{v} = \nabla \mathbf{f}$ is (A) $x^2y + y^2z + z^2x$ (B) 2xy+2yz+2zx(D) 0 (C) x + y + zAnswer: (A) _____

4. Lifetime of an electric bulb is a random variable with density $f(x) = kx^2$, where x is measured in years. If the minimum and maximum lifetimes of bulb are 1 and 2 years respectively, then the value of k is

Answer: (0.43)

G	Engineering Success	EE-GATE-2014, SET-3/	www.gateforumonline.com
5.	A function f(t) is shown in the figu	re.	
		f(t)	
		1/2	
		T/2	
	-T/2		
	_	1/2	
	The Fourier transform $F(\omega)$ of $f(t)$) is	
	(A) real and even function of ω	(B) real and odd functio	n of ω
Ans	(C) imaginary and odd function of	ω (D) imaginary and even	function of ω
,		10 /159X 6 h.h	
0.	sequence ABC. The voltage of line	B with respect to line C is given by	ar-connected load with phase
	(A) 10√3∠105°V	(B) 10∠105°V	
	(C) 10√3∠-75°V	(D) –10√3∠90°V	
Ansy	ver: (C)		
7.	A hollow metallic sphere of radius	s r is kept at potential of 1 Volt. The to radius $P(x, r)$ is	tal electric flux coming out of
	(A) $4\pi\varepsilon_0 r$ (B) $4\pi\varepsilon_0 r$	r^2 (C) $4\pi\epsilon_0 R$ ((D) $4\pi\epsilon_0 R^2$
Ansv	wer: (A)		

Engineering Success

EE-GATE-2014, SET-3/

www.gateforumonline.com

12. A single phase induction motor is provided with capacitor and centrifugal switch in series with auxiliary winding. The switch is expected to operate at a speed of $0.7N_s$, but due to malfunctioning the switch fails to operate. The torque-speed characteristic of the motor is represented by

13. The no-load speed of a 230 V separately excited dc motor is 1400 rpm. The armature resistance drop and the brush drop are neglected. The field current is kept constant at rated value. The torque of the motor in Nm for an armature current of 8 A is ______.

Answer: (12.5)

- 14. In a long transmission line with r,l,g and c are the resistance, inductance, shunt conductance and capacitance per unit length, respectively, the condition for distortionless transmission is
 - (A) rc = lg (B) $rc = \sqrt{l/c}$ (C) rg = lc (D) $g = \sqrt{c/l}$

Answer: (A)

- **15.** For a fully transposed transmission line
 - (A) positive, negative and zero sequence impedances are equal
 - (B) positive and negative sequence impedances are equal
 - (C) zero and positive sequence impedances are equal
 - (D) negative and zero sequence impedances are equal

Answer: (B)

EE-GATE-2014, SET-3/

16. A 183-bus power system has 150 PQ buses and 32 PV buses. In the general case, to obtain the load flow solution using Newton-Raphson method in polar coordinates, the minimum number of simultaneous equations to be solved is ______.s

Answer: (232)

17. The signal flow graph of a system is shown below. U(s) is the input and C(s) is the output

Assuming, $h_1 = b_1$ and $h_0 = b_0 - b_1 a_1$, the input-output transfer function, $G(s) = \frac{C(s)}{U(s)}$ of the system is

given by

(A)
$$G(s) = \frac{b_0 s + b_1}{s^2 + a_0 s + a_1}$$

(B) $G(s) = \frac{a_1 s + a_0}{s^2 + b_1 s + b_0}$
(C) $G(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0}$
(D) $G(s) = \frac{a_0 s + a_1}{s^2 + b_0 s + b_1}$

Answer: (C)

- **18.** A single-input single-output feedback system has forward transfer function G(s) and feedback transfer function H(s) It is given that |G(s).H(s)|<1. Which of the following is true about the stability of the system?
 - (A) The system is always stable
 - (B) The system is stable if all zeros of G(s).H(s) are in left half of the s-plane
 - (C) The system is stable if all poles of G(s).H(s) are in left half of the s-plane
 - (D) It is not possible to say whether or not the system is stable from the information given

Answer: (A)

EE-GATE-2014, SET-3/

19. An LPF wattmeter of power factor 0.2 is having three voltage settings 300 V, 150 V and 75 V, and two current settings 5 A and 10 A. The full scale reading is 150. If the wattmeter is used with 150 V voltage setting and 10 A current setting, the multiplying factor of the wattmeter is _____.

Answer: (2)

20. The two signals S1 and S2, shown in figure, are applied to Y and X deflection plates of an oscilloscope.

www.gateforumonline.com

EE-GATE-2014, SET-3/

31. A perfectly conducting metal plate is placed in x-y plane in a right handed coordinate system. A charge of $+32\pi\epsilon_0\sqrt{2}$ columbs is placed at coordinate (0, 0, 2). \in_0 is the permittivity of free space. Assume $\hat{l}, \hat{j}, \hat{k}$ to be unit vectors along x, y and z axes respectively. At the coordinate . $(\sqrt{2}, \sqrt{2}, 0)$, the electric field vector \vec{E} (Newtons/Columb) will be

32. A series RLC circuit is observed at two frequencies. At $\omega_1 = 1$ k rad/sec, we note that source voltage $V_1 = 100 \angle 0^\circ V$ results in a current $I_1 = 0.03 \angle 31^\circ A$. At $\omega_2 = 2$ k rad/s, the source voltage $V_2 = 100 \angle 0^\circ V$ results in a current $I_2 = 2 \angle 0^\circ A$. The closest values for R, L, C out of the following options are

- (A) $R = 50\Omega; L = 25mH; C = 10\mu F;$
- (B) $R = 50\Omega; L = 10mH; C = 25\mu F;$
- (C) $R = 50\Omega; L = 50mH; C = 5\mu F;$
- (D) $R = 50\Omega; L = 5mH; C = 50\mu F;$

	The bustonesis and addresses	at losses of the transformer of 25 Hz respectively are
	The hysteresis and eddy curren (A) , 250 W and 2.5 W	It losses of the transformer at 25 Hz respectively are $(\mathbf{R})_{250}$ W and 62.5W
	(A) 250 w and 2.5 w	(b) 230 w and 02.5 W
	(C) 512.5 w and 02.5 w	(D) 512.5 w and 250 w
	(D)	
7.	A non-salient pole synchronou	us generator having synchronous reactance of 0.8 pu is supplying 1 pu load at a terminal voltage of 1.1 pu. Neglecting the armsture resistance
	the angle of the voltage behi	nd the synchronous reactance with respect to the angle of the termina
	voltage in degrees is	
Ansv	ver: (33.61°)	
8	A separately excited 300 V DC	C shunt motor under no load runs at 900 rpm drawing an armature curren
<i>,</i> 0.	of 2 A. The armature resistance	$c_{\rm c}$ is 0.5 Ω and leakage inductance is 0.01 H. When loaded, the armature
	current is 15 A. Then the speed	1 in rom is
hev	vor: (880)	
1115 v	(000)	
39.	The load shown in the figure al	bsorbs 4 kW at a power factor of 0.89 lagging.
39.	The load shown in the figure al Ω	bsorbs 4 kW at a power factor of 0.89 lagging.
39.	The load shown in the figure al $\frac{1\Omega}{M}$	bsorbs 4 kW at a power factor of 0.89 lagging.
39.	The load shown in the figure al 1Ω	bsorbs 4 kW at a power factor of 0.89 lagging.
39.	The load shown in the figure at Ω	bsorbs 4 kW at a power factor of 0.89 lagging. 2:1 $10 V$ Z_1
39.	The load shown in the figure all Ω	bsorbs 4 kW at a power factor of 0.89 lagging. 2:1 10 V Z_1
39.	The load shown in the figure all Ω	bsorbs 4 kW at a power factor of 0.89 lagging.
39.	The load shown in the figure at 1Ω 50Hz ac source \bigcirc	bsorbs 4 kW at a power factor of 0.89 lagging. 2:1 $10 V Z_1$ be ideal, the value of the reactance X to improve the input power factor to
39.	The load shown in the figure all Ω 50Hz ac source Θ Assuming the transformer to b unity is	bsorbs 4 kW at a power factor of 0.89 lagging. $ \begin{array}{c} 2:1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$
999.	The load shown in the figure at 1Ω 50 Hz \odot 1Ω ac source \odot 1Ω Assuming the transformer to b unity is	bsorbs 4 kW at a power factor of 0.89 lagging. $ \begin{array}{c} 2:1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$
9. \\	The load shown in the figure all Ω $50Hz$ Θ [Assuming the transformer to b unity is ver: (24)	bsorbs 4 kW at a power factor of 0.89 lagging. $ \begin{array}{c} 2:1 \\ 1:0 $
39. Ansv	The load shown in the figure at $\frac{10}{50 \text{ Hz}}$ ac source \bigcirc (24)	bsorbs 4 kW at a power factor of 0.89 lagging. $ \begin{array}{c} 2:1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$
39.	The load shown in the figure all Ω 50Hz Θ	bsorbs 4 kW at a power factor of 0.89 lagging. $10 \sqrt{Z_1}$ be ideal, the value of the reactance X to improve the input power factor to
39.	The load shown in the figure all 10 50Hz 201050 Hz 20101050 Hz 2010	bsorbs 4 kW at a power factor of 0.89 lagging. 2:1 $10 \sqrt{z_1}$ we ideal, the value of the reactance X to improve the input power factor to

G	GATEFORUM Engineering Success EE-GATE-2014, SET-3/				
40.	The parameters measured for a 220V/110V, 50 Hz, single-phase transformer are:				
	Self inductance of primary winding = 45 mH				
	Self inductance of secondary winding = 30 mH				
	Mutual inductance between primary and secondary windings = 20 mH				
	Using the above parameters, the leakage (L_{l1}, L_{l2}) and magnetizing (L_m) inductances as referred to primary side in the equivalent circuit respectively, are				
	(A) 5mH, 20mH and 40mH (B) 5mH, 80mH and 40mH				
	(C) 25mH, 10mH and 20mH (D) 45mH, 30mH and 20mH				
Ansv	ver: (B)				
41.	For a 400 km long transmission line, the series impedance is $(0.0 + j0.5)\Omega/km$ and the shun				
	admittance is $(0.0 + j5.0) \mu mho/km$. The magnitude of the series impedance (in O) of the equivalent p				
	circuit of the transmission line is				
Ansv	ver: (186.66)				
42 <mark>.</mark>	The complex power consumed by a constant-voltage load is given by $(P_1 + jQ_1)$ where $1kW \le P \le 1.5kW$ and $0.5kVAR \le Q \le 1kVAR$				
	$1 \times 1 \times$				
	A compensating shunt capacitor is chosen such that $ Q \le 0.25$ kVAR where Q is the net reactive power consumed by the capacitor-load combination. The reactive power (in kVAR) supplied by the capacitor is				
Ansv	ver: (0.75)				
43 <mark>.</mark>	The figure shows the single line diagram of a single machine infinite bus system.				
	Infinite bus				
	The inertia constant of the synchronous generator $H = 5 MW_{-s}/MVA$ Frequency is 50 Hz				
	Machanical power is 1 pu. The system is operating				
	at the stable equilibrium point with rotor angle δ equal to 20° . A three phase short simult fault ecours a				
	a certain location on one of the circuits of the double circuit transmission line. During fault, electrica				
	power in pu is $P_{max}\sin\delta$. If the values of δ and $d\delta/dt$ at the instant of fault clearing are 45° and 3.76%				
	radian/s respectively, then P _{max} (in pu) is				
Ansv	ver: (0.24)				

C Engineering Success

EE-GATE-2014, SET-3/

The monoshots M_1 and M_2 when triggered produce pulses of width T_1 and T_2 respectively, where $T_1 > T_2$. The steady state output voltage V_0 of the circuit is

51. A 3-bit gray counter is used to control the output of the multiplexer as shown in the figure. The initial state of the counter 000_2 . The output is pulled high. The output of the circuit follows the sequence

C Engineering Success

EE-GATE-2014, SET-3/

If the lower and upper trigger level voltages are 0.9 V and 1.7 V, the period (in ms), for which output is LOW, is ______.

Answer: (0.66)

53. A three-phase fully controlled bridge converter is fed through star-delta transformer as shown in the figure.

The converter is operated at a firing angle of 30° . Assuming the load current (I₀) to be virtually constant at 1 p.u. and transformer to be an ideal one, the input phase current waveform is ______.

EE-GATE-2014, SET-3/

54. A diode circuit feeds an ideal inductor as shown in the figure. Given $V_s = 100 \sin(\omega t) V$, where $\omega = 100\pi rad/s$, and L = 31.83 mH.

The initial value of inductor current is zero. Switch S is closed at t = 2.5 ms. The peak value of inductor current i_L (in A) in the first cycle is _____.

Answer: (17.07)

55. A single-phase voltage source inverter shown in figure is feeding power to a load. The triggering pulses of the devices are also shown in the figure.

If the load current is sinusoidal and is zero at 0, π , 2π ..., the node voltage V_{AO} has the waveform

