

GATEFORUM Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.

For more details visit gateforumonline.com
© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

GENERAL ApTITUDE

Q. No. 1 - 5 Carry One Mark Each

1. There are two candidates P and Q in an election. During the campaign, 40% of the voters promised to vote for P , and rest for Q . However, on the day of election 15% of the voters went back on their promise to vote for P and instead voted for $\mathrm{Q} .25 \%$ of the voters went back on their promise to vote for Q and instead voted for P. Suppose, P lost by 2 votes, then what was the total number of voters?
(A) 100
(B) 110
(C) 90
(D) 95

Answer:
2. Choose the most appropriate word from the options given below to complete the following sentence:

It was her view that the country's problems had been \qquad by foreign technocrats, so that to invite them to come back would be counter-productive.
(A) Identified
(B) ascertained
(C) Texacerbated
(D) Analysed

Answer:
(C)

3. Choose the word from the options given below that is most nearly opposite in meaning to the given word:

Frequency

(A) periodicity
(B) rarity
(C) gradualness
(D) persistency

Answer:
(C)
4. Choose the most appropriate word from the options given below to complete the following sentence: Under ethical guidelines recently adopted by the Indian Medical Association, human genes are to be manipulated only to correct diseases for which \qquad treatments are unsatisfactory.
(A) Similar
(B) Most
(C) Uncommon
(D) Available

Answer: (D)

5. The question below consists of a pair of related words followed by four pairs of words. Select the pair that best expresses the relation in the original pair:

Gladiator : Arena
(A) dancer: stage
(B) commuter: train
(C) teacher : classroom
(D) lawyer: courtroom

Answer: (D)

Q. No. 6 - 10 Carry Two Marks Each

6. The fuel consumed by a motorcycle during a journey while traveling at various speeds is indicated in the graph below.

The distances covered during four laps of the journey are listed in the table below

Lap	Distance (kilometers)	Average speed (kilometers per hour)
P	15	15
Q	75	45
R	40	75
S	10	10

From the given data, we can conclude that the fuel consumed per kilometre was least during the lap
(A) P
(B) Q
(C) R
(D) S

Answer: (A)

7. Three friends, R, S and T shared toffee from a bowl. R took $1 / 3^{\text {rd }}$ of the toffees, but returned four to the bowl. S took $1 / 4^{\text {th }}$ of what was left but returned three toffees to the bowl. T took half of the remainder but returned two back into the bowl. If the bowl had 17 toffees left, how many toffees-were originally there in the bowl?
(A) 38
(B) 31
(C) 48
(D) 41

Answer: (C)
8. Given that $f(y)=|y| / y$, and q is any non-zero real number, the value of
$|f(q)-f(-q)|$ is
(A) 0
(B) -1
(C) 1
(D) 2

Answer: (D)

9. The sum of n terms of the series $4+44+444+\ldots$ is
(A) $(4 / 81)\left[10^{n+1}-9 n-1\right]$
(B) $(4 / 81)\left[10^{n-1}-9 n-1\right]$
(C) $(4 / 81)\left[10^{n+1}-9 n-10\right]$
(D) $(4 / 81)\left[10^{n}-9 n-10\right]$

Answer: (C)
10. The horse has played a little known but very important role in the field of medicine. Horses were injected with toxins of diseases until their blood built up immunities. Then a serum was made from their blood. Serums to fight with diphtheria and tetanus were developed this way.
It can be inferred from the passage that horses were
(A) given immunity to diseases
(B) generally quite immune to diseases
(C) given medicines to fight toxins
(D) given diphtheria and tetanus serums

Answer: (B)

Electrical Engineering

Q. No. 1 - 5 Carry One Mark Each

1. Roots of the algebraic equation $x^{3}+x^{2}+x+1=0$ are
(A) $(+1,+\mathrm{j},-\mathrm{j})$
(B) $(+1,-1,+1)$
(C) $(0,0,0)$
(D) $(-1,+\mathrm{j},-\mathrm{j})$

Answer: (D)
2. With K as a constant, the possible solution for the first order differential equation $\frac{d y}{d x}=e^{-3 x}$ is
(A) $-\frac{1}{3} e^{-3 x}+K$
(B) $-\frac{1}{3} e^{3 x}+K$
(C) $-\frac{1}{3} \mathrm{e}^{-3 \mathrm{x}}+\mathrm{K}$
(D) $-3 e^{-x}+K$

Answer: (A)
3. The r.m.s value of the current $\mathrm{i}(\mathrm{t})$ in the circuit shown below is

(A) $\frac{1}{2} \mathrm{~A}$
(B) $\frac{1}{\sqrt{2}} \mathrm{~A}$
(C) 1 A
(D) $\sqrt{2} \mathrm{~A}$

Answer: (B)
4. The Fourier expansion
$f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \omega t+b_{n} \sin n \omega t$ of the periodic signal shown below will contain the following nonzero terms

(A) a_{0} and $\mathrm{b}_{\mathrm{n}}, \mathrm{n}=1,3,5 \ldots \infty$
(B) a_{0} and $\mathrm{a}_{\mathrm{n}}, \mathrm{n}=1,2,3 \ldots . \infty$
(C) $\mathrm{a}_{0}, \mathrm{a}_{\mathrm{n}}$ and $\mathrm{b}_{\mathrm{n}}, \mathrm{n}=1,2,3 \ldots \infty$
(D) a_{0} and $\mathrm{a}_{\mathrm{n}}, \mathrm{n}=1,3,5 \ldots . \infty$

Answer: (D)
5. A 4 - point starter is used to start and control the speed of a
(A) dc shunt motor with armature resistance control
(B) dc shunt motor with field weakening control
(C) dc series motor
(D) dc compound motor

Answer: (B)

6. A three-phase, salient pole synchronous motor is connected to an infinite bus. It is operated at no load and normal excitation. The field excitation of the motor is first reduced to zero and then increased in reverse direction gradually. Then the armature current
(A) Increases continuously
(B) First increases and then decreases steeply
(C) First decreases and then increases steeply
(D) Remains constant

Answer: (B)

7. A nuclear power station of 500 MW capacity is located at 300 km away from a load center. Select the most suitable power evacuation transmission configuration among the following options:
(A)

(B)

(C)

(D)

Answer:
(D)
8. The frequency response of a linear system $G(j \omega)$ is provided in the tubular form below

$\|\mathrm{G}(\mathrm{j} \omega)\|$	1.3	1.2	1.0
$\angle \mathrm{G}(\mathrm{j} \omega)$	-130°	-140°	-150°
$\|\mathrm{G}(\mathrm{j} \omega)\|$	0.8	0.5	0.3
$\angle \mathrm{G}(\mathrm{j} \omega)$	-160°	-180°	-200°

Calculate gain margin and phase margin?
(A) 6 dB and 30°
(B) 6 dB and -30°
(C) -6 dB and 30°
(D) -6 dB and -30°

Answer: (A)
9. The steady state error of a unity feedback linear system for a unit step input is 0.1 . The steady state error of the same system, for a pulse input $\mathrm{r}(\mathrm{t})$ having a magnitude of 10 and a duration of one second, as shown in the figure is

(A) 0
(B) 0.1
(C) 1
(D) 10

Answer: (A)

10. Consider the following statements:
(i) The compensating coil of a low power factor wattmeter compensates the effect of the impedance of the current coil.
(ii) The compensating coil of a low power factor wattmeter compensates the effect of the impedance of the voltage coil of the circuit.
(A) (i) is true but (ii) is false
(B) (i) is false but (ii) is true
(C) both (i) and (ii) are true
(D) both (i) and (ii) are false

Answer: (B)
11. A low - pass filter with a cut-off frequency of 30 Hz is cascaded with a high-pass filter with a cut-off frequency of 20 Hz . The resultant system of filters will function as
(A) an all-pass filter
(B) an all-stop filter
(C) an band stop (band-reject) filter
(D) a band - pass filter

Answer: (D)

12.

The CORRECT transfer characteristic is
(A)

(B)

(C)

Answer: (D)
13. A three-phase current source inverter used for the speed control of an induction motor is to be realized using MOSFET switches as shown below. Switches S_{1} to S_{6} are identical switches.

The proper configuration for realizing switches S_{1} to S_{6} is \qquad .
(A)

(B)

(C)

Answer: (C)
14. A point Z has been plotted in the complex plane, as shown in figure below.

The plot of the complex number $y=\frac{1}{z}$ is
(A)

(B)

(C)

(D)

Answer: (D)
15. The voltage applied to a circuit is $100 \sqrt{2} \cos (100 \pi t)$ volts and the circuit draws a current of $10 \sqrt{2} \sin$ $(100 \pi t+\pi / 4)$ amperes. Taking the voltage as the reference phasor, the phasor representation of the current in amperes is
(A) $10 \sqrt{2} \angle-\pi / 4$
(B) $10 \angle-\pi / 4$
(C) $10 \angle+\pi / 4$
(D) $10 \sqrt{2} \angle+\pi / 4$

Answer: (B)

16. In the circuit given below, the value of R required for the transfer of maximum power to the load having a resistance of 3Ω is

(A) Zero
(B) 3Ω
(C) 6Ω
(D) Infinity

Answer: (A)

17. Given two continuous time signals $x(t)=e^{-t}$ and $y(t)=e^{-2 t}$ which exist for $t>0$, the convolution $z(t)$ $=x(t)^{*} y(t)$ is
(A) $e^{-t}-e^{-2 t}$
(B) $e^{-3 t}$
(C) $\mathrm{e}^{+\mathrm{t}}$
(D) $e^{-t}+e^{-2 t}$

Answer: (A)
18. A single phase air core transformer, fed from a rated sinusoidal supply, is operating at no load. The steady state magnetizing current drawn by the transformer from the supply will have the waveform
(A)

(B)

(C)

(D)

Answer:
(C)
19. A negative sequence relay is commonly used to protect
(A) an alternator
(B) an transformer
(C) a transmission line
(D) a bus bar

Answer: (A)
20. For enhancing the power transmission in along EHV transmission line, the most preferred method is to connect a
(A) Series inductive compensator in the line
(B) Shunt inductive compensator at the receiving end
(C) Series capacitive compensator in the line
(D) Shunt capacitive compensator at the sending end

Answer: (C)
21. An open loop system represented by the transfer function
$G(s)=\frac{(s-1)}{(s+2)(s+3)}$ is
(A) Stable and of the minimum phase type
(B) Stable and of the non - minimum phase type
(C) Unstable and of the minimum phase type
(D) Unstable and of non-minimum phase type

Answer: (B)
22. The bridge circuit shown in the figure below is used for the measurement of an unknown element Z_{X}. The bridge circuit is best suited when Z_{X} is a

(A) low resistance
(B) high resistance
(C) low Q inductor
(D) lossy capacitor

Answer: (C)
23. A dual trace oscilloscope is set to operate in the ALTernate mode. The control input of the multiplexer used in the y-circuit is fed with a signal having a frequency equal to
(A) the highest frequency that the multiplexer can operate properly
(B) twice the frequency of the time base (sweep) oscillator
(C) the frequency of the time base (sweep) oscillator
(D) half the frequency of the time base (sweep) oscillator

Answer: (C)

GATEFORUM Pioneers in Digital courses for GATE since 2008 offers GATE refresher course giving you access to video solutions for previous 11 years GATE questions and Topic-wise formula Compendium (Handbook).

Enroll now and get 20\% discount use Promo Code GATEPAPERS

For more details visit gateforumonline.com
24. The output Y of the logic circuit given below is

(A) 2
(B) 0
(C) x
(D) $\overline{\mathrm{x}}$

Answer: (A)
25. Circuit turn-off time of an SCR is defined as the time
(A) taken by the SCR turn of
(B) required for the SCR current to become zero
(C) for which the SCR is reverse biased by the commutation circuit
(D) for which the SCR is reverse biased to reduce its current below the holding current

Answer: (C)

Q. No. 26 - 55 Carry Two Marks Each

26. Solution of the variables x_{1} and x_{2} for the following equations is to be obtained by employing the Newton-Raphson iterative method.
equation (i)

$$
\begin{aligned}
& 10 x_{2} \sin x_{1}-0.8=0 \\
& 10 x_{2}{ }^{2}-10 x_{2} \operatorname{Cos} x_{1}-0.6=0
\end{aligned}
$$

Assuming the initial valued $\mathrm{x}_{1}=0.0$ and $\mathrm{x}_{2}=1.0$, the jacobian matrix is
(A) $\left[\begin{array}{ll}10 & -0.8 \\ 0 & -0.6\end{array}\right]$
(B) $\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$
(C) $\left[\begin{array}{ll}0 & -0.8 \\ 10 & -0.6\end{array}\right]$
(D) $\left[\begin{array}{cc}10 & 0 \\ 10 & -10\end{array}\right]$

Answer:
(B)
27. The function $f(x)=2 x-x^{2}-x^{3}+3$ has
(A) a maxima at $\mathrm{x}=1$ and minimum at $\mathrm{x}=5$
(B) a maxima at $\mathrm{x}=1$ and minimum at $\mathrm{x}=-5$
(C) only maxima at $x=1$ and
(D) only a minimum at $\mathrm{x}=5$

Answer: (C)
28. A lossy capacitor C_{x}, rated for operation at $5 \mathrm{kV}, 50 \mathrm{~Hz}$ is represented by an equivalent circuit with an ideal capacitor C_{p} in parallel with a resistor R_{p}. The value C_{p} is found to be $0.102 \mu \mathrm{~F}$ and the value of R_{p} $=1.25 \mathrm{M} \Omega$. Then the power loss and $\tan \partial$ of the lossy capacitor operating at the rated voltage, respectively, are
(A) 10 W and 0.0002
(B) 10 W and 0.0025
(C) 20 W and 0.025
(D) 20 W and 0.04

Answer: (C)
29. Let the Laplace transform of a function $\mathrm{F}(\mathrm{t})$ which exists for $\mathrm{t}>0$ be $\mathrm{F}_{1}(\mathrm{~s})$ and the Laplace transform of its delayed version $f(1-\tau)$ be $F_{2}(s)$. Let $F_{1} *(s)$ be the complex conjugate of $F_{1}(s)$ with the Laplace variable set as $s=\sigma+j \omega$. If $G(s)=\frac{F_{2}(s) \cdot F_{1} *(s)}{\left|F_{1}(s)\right|^{2}}$, then the inverse Laplace transform of $G(s)$ is
(A) An ideal impulse $\delta(\mathrm{t})$
(C) An ideal step function $\mathrm{u}(\mathrm{t})$
(B) An ideal delayed impulse $\delta(\mathrm{t}-\tau)$
(D) An ideal delayed step function $\mathrm{u}(\mathrm{t}-\tau)$

Answer: (B)
30. A zero mean random signal is uniformly distributed between limits $-a$ and $+a$ and its mean square value is equal to its variance. Then the r.m.s value of the signal is
(A) $\frac{\mathrm{a}}{\sqrt{3}}$
(B) $\frac{\mathrm{a}}{\sqrt{2}}$
(C) $\mathrm{a} \sqrt{2}$
(D) $\mathrm{a} \sqrt{3}$

Answer:

(A)

31. A 220 V , DC shunt motor is operating at a speed of 1440 rpm . The armature resistance is 1.0Ω and armature current is 10 A . of the excitation of the machine is reduced by 10%, the extra resistance to be put in the armature circuit to maintain the same speed and torque will be
(A) 1.79Ω
(B) 2.1Ω
(C) 18.9Ω
(D) 3.1Ω

Answer:
(A)
32. A load center of 120 MW derives power from two power stations connected by 220 kV transmission lines of 25 km and 75 km as shown in the figure below. The three generators G1,G2 and G3 are of 100MW capacity each and have identical fuel cost characteristics. The minimum loss generation schedule for supplying the 120 MW load is

(A) $\mathrm{Pl}=80 \mathrm{MW}+$ losses
$\mathrm{P} 2=20 \mathrm{MW}$
$\mathrm{P} 3=40 \mathrm{MW}$
(C) $\mathrm{Pl}=40 \mathrm{MW}$
$\mathrm{P} 2=40 \mathrm{MW}$
P3 $=40 \mathrm{MW}+$ losses
(B) $\mathrm{Pl}=60 \mathrm{MW}$
$\mathrm{P} 2=30 \mathrm{MW}+$ losses
P3 $=30 \mathrm{MW}$
(D) $\mathrm{Pl}=30 \mathrm{MW}+$ losses
$\mathrm{P} 2=45 \mathrm{MW}$
$\mathrm{P} 3=45 \mathrm{MW}$

Answer:
(A)
33. The open loop transfer function $\mathrm{G}(\mathrm{s})$ of a unity feedback control system is given as
$G(s)=\frac{k\left(s+\frac{2}{3}\right)}{s^{2}(s+2)}$
From the root locus, it can be inferred that when k tends to positive infinity,
(A) Three roots with nearly equal real parts exist on the left half of the s-plane
(B) One real root is found on the right half of the s-plane
(C) The root loci cross the $\mathrm{j} \omega$ axis for a finite value of $\mathrm{k} ; \mathrm{k} \neq 0$
(D) Three real roots are found on the right half of the s-plane

Answer: (A)
34. A portion of the main program to call a subroutine SUB is an 8085 environment is given below.

LXI D,DISP

LP: CALL SUB
:

It is desired that that control be returned to LP + DISP + 3 when the RET instruction is executed in the subroutine. The set of instructions that precede the RET instruction in the subroutine are
(A) POP D

DAD H
PUSH D
(C) POP H
DAD D

PUSH H
(B) POP H

DAD D
INX H
INX H
INX H
PUSH H
(D) XTHL

INX D
INX D
INX D
XTHL

Answer: (C)
35. The transistor used in the circuit shown below has a β of 30 and $I_{C B O}$ is negligible.

If the forward voltage drop of diode is 0.7 V , then the current through collector will be
(A) 168 mA
(B) 108 mA
(C) 20.54 mA
(D) 5.36 mA

Answer: (D)
36. A voltage commutated chopper circuit, operated at 500 Hz , is shown below.

If the maximum value of load current is 10 A , then the maximum current through the main (M) and auxiliary (A) thyristors will be
(A) $\mathrm{i}_{\mathrm{M} \max }=12 \mathrm{~A}$ and $\mathrm{i}_{\mathrm{A} \max }=10 \mathrm{~A}$
(B) $\mathrm{i}_{\mathrm{M} \max }=12 \mathrm{~A}$ and $\mathrm{i}_{\mathrm{A} \max }=2 \mathrm{~A}$
(C) $\mathrm{i}_{\mathrm{M} \max }=10 \mathrm{~A}$ and $\mathrm{i}_{\mathrm{A} \max }=12 \mathrm{~A}$
(D) $\mathrm{i}_{\mathrm{M} \max }=10 \mathrm{~A}$ and $\mathrm{i}_{\mathrm{Amax}}=8 \mathrm{~A}$

Answer: (A)
37. The matrix $[\mathrm{A}]=\left[\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right]$ is decomposed into a product of a lower triangular matrix $[\mathrm{L}]$ and an upper triangular matrix [U]. The properly decomposed [L] and [U] matrices respectively are
(A) $\left[\begin{array}{cc}1 & 0 \\ 4 & -1\end{array}\right]$ and $\left[\begin{array}{cc}1 & 1 \\ 0 & -2\end{array}\right]$
(B) $\left[\begin{array}{cc}2 & 0 \\ 4 & -1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right]$ and $\left[\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right]$
(D) $\left[\begin{array}{cc}2 & 0 \\ 4 & -3\end{array}\right]$ and $\left[\begin{array}{cc}1 & 1.5 \\ 0 & 1\end{array}\right]$

Answer: (D)
38. The two vectors $[1,1,1]$ and $\left[1, \mathrm{a}, \mathrm{a}^{2}\right]$, where $\mathrm{a}=\left(-\frac{1}{2}+\mathrm{j} \frac{\sqrt{3}}{2}\right)$, are
(A) Orthonormal
(B) Orthogonal
(C) Parallel
(D) Collinear

Answer: (B)
39. A three -phase $440 \mathrm{~V}, 6$ pole, 50 Hz , a squirrel cage induction motor is running at a slip of 5%. The speed of stator magnetic field to rotor magnetic field and speed of rotor with respect to stator magnetic field are
(A) zero, - 5 rpm
(B) zero, 950 rpm
(C) 1000rpm, -5 rpm
(D) $1000 \mathrm{rpm}, 950 \mathrm{rpm}$

Answer:
(*)
40. A capacitor is made with a polymeric dielectric having an ε_{r} of 2.26 and a dielectric breakdown strength of $50 \mathrm{kV} / \mathrm{cm}$. The permittivity of free space is $8.85 \mathrm{pF} / \mathrm{m}$. If the rectangular plates of the capacitor have a width of 20 cm and a length of 40 cm , then the maximum electric charge in the capacitor is
(A) $2 \mu \mathrm{C}$
(B) $4 \mu \mathrm{C}$
(C) $8 \mu \mathrm{C}$
(D) $10 \mu \mathrm{C}$

Answer: (C)

41. The response $\mathrm{h}(\mathrm{t})$ of a linear time invariant system to an impulse $\delta(\mathrm{t})$, under initially relaxed condition is $h(t)=e^{-t}+e^{-2 t}$. The response of this system for a unit step in $u(t)$ is
(A) $\left(1+\mathrm{e}^{-\mathrm{t}}+2 \mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
(B) $\left(\mathrm{e}^{-\mathrm{t}}+\mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
(C) $\left(1.5-\mathrm{e}^{-\mathrm{t}}-0.5 \mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
(D) $\mathrm{e}^{-\mathrm{t}} \delta(\mathrm{t})+\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})$

Answer:
(C)
42. The direct axis and quadrature axis reactances of a salient pole alternator are $1.2 \mathrm{p} . \mathrm{u}$ and $1.0 \mathrm{p} . \mathrm{u}$ respectively. The armature resistance is negligible. If this alternator is delivering rated kVA at upf and at rated voltage then its power angle is \qquad .

Answer:
(B)
43. A $41 / 2$ digit DMM has the error specification as : 0.2% of reading +10 counts. If a dc voltage of 100 V is read on its 200 V full scale, the maximum error that can be expected in the reading is
(A) $\pm 0.1 \%$
(B) $\pm 0.2 \%$
(C) $\pm 0.3 \%$
(D) $\pm 0.4 \%$

Answer: (C)
44. A three - bus network is shown in the figure below indicating the p.u. impedances of each element.

The bus admittance matrix, Y - bus, of the network is
(A) $\mathrm{j}\left[\begin{array}{ccc}0.3 & -0.2 & 0 \\ -0.2 & 0.12 & 0.08 \\ 0 & 0.08 & 0.02\end{array}\right]$
(B) $\mathrm{j}\left[\begin{array}{ccc}-15 & 5 & 0 \\ 5 & 7.5 & -12.5 \\ 0 & -12.5 & 2.5\end{array}\right]$
(C) $\mathrm{j}\left[\begin{array}{ccc}0.1 & 0.2 & 0 \\ 0.2 & 0.12 & -0.08 \\ 0 & -0.08 & 0.10\end{array}\right]$
(D) $\mathrm{j}\left[\begin{array}{ccc}-10 & 5 & 0 \\ 5 & 7.5 & 12.5 \\ 0 & 12.5 & -10\end{array}\right]$

Answer: (B)
45. A two loop position control system is shown below:

The gain k of the Tacho-generator influences mainly the
(A) Peak overshoot
(B) Natural frequency of oscillation
(C) Phase shift of the closed loop transfer function at very low frequencies $(\omega \rightarrow 0)$
(D) Phase shift of the closed loop transfer function at very low frequencies $(\omega \rightarrow \infty)$

Answer: (A)
46. A two-bit counter circuit is shown below

If the state $Q_{A} Q_{B}$ of the counter at the clock time t_{n} is " 10 " then the state $Q_{A} Q_{B}$ of the counter at $t_{n}+3$ (after three cycles) will be
(A) 00
(B) 01
(C) 10
(D) 11

Answer: (C)
47. A clipper circuit is shown below.

Assuming forward voltage drops of the diodes to be 0.7 V , the input-output transfer characteristics of the circuit is
(A)

(B)

(D)

Answer: (C)

Common Data Questions: 48 \& 49

The input voltage given to a converter is
$\mathrm{v}_{\mathrm{i}}=100 \sqrt{2} \sin (100 \pi \mathrm{t}) \mathrm{V}$
The current drawn by the converter is
$\mathrm{i}_{\mathrm{i}}=10 \sqrt{2} \sin (100 \pi \mathrm{t}-\pi / 3)+5 \sqrt{2} \sin (300 \pi \mathrm{t}+\pi / 4)+2 \sqrt{2} \sin (500 \pi \mathrm{t}-\pi / 6) \mathrm{A}$
48. The input power factor of the converter is
(A) 0.31
(B) 0.44
(C) 0.5
(D) 0.71

Answer:
(B)
49. The active power drawn by the converter is
(A) 181 W
(B) 500 W
(C) 707 W
(D) 887 W

Answer: (B)

Common Data Questions: 50 \& 51

An RLC circuit with relevant data is given below.
$\overrightarrow{\mathrm{V}}_{\mathrm{s}}=1 \angle 0 \mathrm{~V}$

$\overrightarrow{\mathrm{I}}_{\mathrm{s}}=\sqrt{2} \angle \pi / 4 \mathrm{~A}$
$\overrightarrow{\mathrm{I}}_{\mathrm{RL}}=\sqrt{2} \angle-\pi / 4 \mathrm{~A}$
50. The power dissipated in the resistor R is
(A) 0.5 W
(B) 1 W
(C) $\sqrt{2} \mathrm{~W}$
(D) 2 W

Answer: (B)
51. The current $\overrightarrow{\mathrm{I}}_{\mathrm{C}}$ in the figure above is
(A) -j 2 A
(B) $-\mathrm{j} \frac{1}{\sqrt{2}} \mathrm{~A}$
(C) $+j \frac{1}{\sqrt{2}} A$
(D) +j 2 A

Answer: (D)

Linked Answer Questions: Q. 52 to Q. 55 Carry Two Marks Each

 Statement for Linked Answer Ouestions: 52 \& 53Two generator units G1 and G2 are connected by 15 kV line with a bus at the mid-point as shown below.

$\mathrm{G} 1=250 \mathrm{MVA}, 15 \mathrm{kV}$, positive sequence reactance $\mathrm{X}=25 \%$ on its own base $\mathrm{G} 2=100 \mathrm{MVA}, 15 \mathrm{kV}$, positive sequence reactance $\mathrm{X}=10 \%$ on its own base L_{1} and $\mathrm{L}_{2}=10 \mathrm{~km}$, positive sequence reactance $\mathrm{X}=0.225 \Omega / \mathrm{km}$.
52. For the above system, the positive sequence diagram with the p.u values on the 100MVA common base is
(A)

(B)

(C)

(D)

Answer:
 (A)

53. In the above system, the three-phase fault MVA at the bus 3 is
(A) 82.55 MVA
(B) 82.55 MVA
(C) 170.91 MVA
(D) 181.82 MVA

Answer: (D)

Statement for Linked Answer Questions: 54 \& 55

A solar energy installation utilizes a three-phase bridge converter to feed energy into power system through a transformer of $400 \mathrm{~V} / 400 \mathrm{~V}$, as shown below.

The energy is collected in a bank of 400 V battery and is connected to converter through a large filter choke of resistance 10Ω.
54. The maximum current through the battery will be
(A) 14 A
(B) 40 A
(C) 80 A
(D) 94 A

Answer: (B)
55. The kVA rating of the input transformer is
(A) 53.2 kVA
(B) 46.0 kVA
(C) 22.6 kVA
(D) 19.6 kVA

Answer: (C)

Follow us @

For more details visit gateforumonline.com

