

GENERAL APTITUDE

Q. 1- Q.5 Carry one mark each

1.	Th	e chairman requ	ested the aggrieved shareho	olders to	him.
	(A)) bare with	(B) bore with	(C) bear with	(D) bare
Ans	swer:	(C)			
2.	Ide	entify the correc	et spelling out of the given of	ptions:	
	(A)) Managable	(B) Manageable	(C) Mangaeble	(D) Managible
Ans	swer:	(B)			
3.	Pic	ck the odd one o	out in the following:		
	13,	, 23, 33, 43, 53			
	(A)) 23	(B) 33	(C) 43	(D) 53
Ans	swer:	(B)			
4.			22D2 can repair aeroplanes.		
			wing can be logically inferr		atements?
			oot which can only repair ae		
			only robot which can repair a		
			oot which can repair only ae	roplanes	
	(D)	Only R2D2 is	s a robot		
Ans	swer:	(B)			
5.	If	9y - 6 = 3, then	$1 y^2 - 4y/3 \text{ is}$		
	(A)	0	(B) $+1/3$	(C) -1/3	(D) undefined
Ans	swer:	(C)			

Q. 6- Q. 10 carry two marks each.

6. The following graph represents the installed capacity for cement production (in tonnes) and the actual production (in tonnes) of nine cement plants of a cement company. Capacity utilization of a plant is defined as ratio of actual production of cement to installed capacity. A plant with installed capacity of at least 200 tonnes is called a large plant and a plant with lesser capacity is called a small plant. The difference between total production of large plants and small plants, in tonnes is _____.

Answer: (120)

A poll of students appearing for masters in engineering indicated that 60 % of the students believed that mechanical engineering is a profession unsuitable for women. A research study on women with masters or higher degrees in mechanical engineering found that 99 % of such women were successful in their professions.

Which of the following can be logically inferred from the above paragraph?

- (A) Many students have misconceptions regarding various engineering disciplines.
- (B) Men with advanced degrees in mechanical engineering believe women are well suited to be mechanical engineers.
- (C) Mechanical engineering is a profession well suited for women with masters or higher degrees in mechanical engineering.
- (D) The number of women pursuing higher degrees in mechanical engineering is small.

Answer: (C)

8.	Sourya committee had proposed the establishment of Sourya Institutes of Technology (SITs) in line with Indian Institutes of Technology (IITs) to cater to the technological and industrial needs of a developing country.
	Which of the following can be logically inferred from the above sentence?
	Based on the proposal,
	(i) In the initial years, SIT students will get degrees from IIT.
	(ii) SITs will have a distinct national objective.
	(iii) SIT like institutions can only be established in consultation with IIT.
	(iv) SITs will serve technological needs of a developing country.
	(A) (iii) and (iv) only (B) (i) and (iv) only
	(C) (ii) and (iv) only (D) (ii) and (iii) only
Ans	swer: (C)
9.	Shaquille O' Neal is a 60% career free throw shooter, meaning that he successfully makes 60 free throws out of 100 attempts on average. What is the probability that he will successfully make exactly 6 free throws in 10 attempts?
	(A) 0.2508 (B) 0.2816 (C) 0.2934 (D) 0.6000
Ans	swer: (A)
10.	The numeral in the units position of $211^{870} + 146^{127} \times 3^{424}$ is Swer: (7)

TEXTILE ENGINEERING

Q. 1- Q.25 Carry one mark each

1.	The	following parti	ial differential equation U	$_{x} + U_{yy} = 0$ is of the type	
	(A)	Elliptic	(B) Parabolic	(C) Hyperbolic (D) Mixed type	
An	swer:	(A)			
2.			wing is a multi-step numer	cal method for solving the ordinary different	ial
	_	ation?			
	(A)	Euler method		(B) Improved Euler method	
	(C)	Runge-Kutta r	nethod	(D) Adams-Multon method	
An	swer:	(D)			
3.	Let	X be a normall	y d <mark>istrib</mark> uted random varia	ple with mean 2 and variance 4. Then, the mo	ean of $\frac{x-2}{2}$ is
	equ	al to			
An	swer:	(-0.01 to 0.01)		
		$\begin{pmatrix} 1 & \frac{1}{2} \end{pmatrix}$			
4.	Let	$A = \begin{bmatrix} 1 & 2 \\ 1 & \end{bmatrix}$	The determinant of A ⁻¹ is	equal to	
		$\left(\frac{1}{2} 1\right)$	The determinant of A^{-1} is		
			700	3	
	(A)	$\frac{1}{2}$	(B) $\frac{4}{3}$	(C) $\frac{3}{4}$ (D) 2	
An	swer:	(B)			
5.	Wh	ich of the follow	wing amino acids is respor	sible for relatively higher wet strength in wo	ol fiber?
	(A)	Threonine	(B) Serine	(C) Cystine (D) Tryosine	
An	swer:	(C)			

6.	Which one of the following stereo structur fibremanufacture?	es of polypropylene is (are) used for commercial
	(A) Atactic	(B) Syndiotactic
	(C) Isotactic & Syndiotactic	(D) Isotactic
Ansv	ver: (D)	
7.	Acrylic fibre has high glass transition temperatur	$T_{\rm g} \approx 100^{\circ} {\rm C}$ primarily due to
	(A) Presence of polar side groups	(B) Presence of bulky side groups
	(C) High crystallinity	(D) Main chain stiffness
Ansv	ver: (A)	
8.	In which of the following polymerization me uncontrolled polymerization?	thods the rate of reaction is very high and leads to
	(A) Solution polymerization	(B) Suspension polymerization
	(C) Bulk polymerization	(D) Emulsion polymerization
Ansv	ver: (C)	
9.	Which of the following textile strands is the fines	st?
	(A) 30s Ne (B) 30 denier	(C) 30 tex (D) 30s Nm
Ansv		
10.	In a carding machine, in which of the following maximum extent?	zones the fibre alignment is negatively affected to the
	(A) Cylinder to flats carding region	(B) Licker-in to cylinder transfer region
	(C) Cylinder to doffer transfer region	(D) Doffer to calendar roller region
Ansv	ver: (C)	

11.	wn	ich of the following is the correct sequence of	of events which happen in a roller drafting zone?		
	(A)	Fibre elongation-fibre decrimping- fibre sli	ding		
	(B) Fibre sliding-fibre elongation-fibre decrimping				
	(C) Fibre decrimping- fibre sliding- fibre elongation				
	(D)	Fibre decrimping- fibre elongation- fibre sl	iding		
Answ	ver:	(D)			
12.	In v	which region of ring spinning, Coriolis force	acts?		
	(A)	Lappet to ring cop			
	(B)	Delivery pair of drafting rollers to lappet			
	(C)	Back pair of drafting rollers to delivery pai	r o <mark>f drafting rollers</mark>		
	(D)	Feed bobbin to back pair of drafting rollers			
Answ	ver:	(A)			
13.	Wh	ich of the followin <mark>g</mark> shuttleless weaving syst	ems can offer maximum fabric width?		
	(A)	Air jet (B) Water jet	(C) Projectile (D) Rapier		
Answ	ver:				
14.		e filling yarn density at selvage is doubled in			
		Fringe selvage	(B) Tucked-in selvage		
	(C)	Shuttle selvage	(D) Leno selvage		
Answ	ver:	(B)			
15.		ich of the following shedding mechanismaving?	ns provides control of individual warp thread during		
		Crank (B) Tappet	(C) Dobby (D) Jacquard		
Angre		**	(C) Dooby (D) Jacquard		
Answ	er:	(D)			

16. The time required (minutes) to wind 10 kg of 40 tex yarn when the winding machine works at 1000 m/min with an efficiency of 90% is _____

Answer: (275 to 280)

The test statistic to be used for carrying out a test of hypothesis on the mean of a normal distribution **17.** with unknown variance is

(A) Z

(B) T

(C) χ^2 (D) F

Answer: (B)

18. If the length of a confidence interval on the mean of a normal distribution with known variance is to be halved, the sample size must

(A) increase by 2 times

(B) decrease by 2 times

(C) increase by 4 times

(D) decrease by 4 times

Answer: (C)

19. A comb sorter diagram of cotton fibres is shown below:

where OM=0.5 OY, OA=0.25 OC, AN=0.5 AA', and OB=0.25 OD. The effective length is

(A) AA'

(B) BB'

(C) CC'

(D) DD'

Answer: (B)

20. A fabric specimen of original length 75 mm is stretched to a length of 120 mm and after removal of the load the length reduces to 95 mm. The elastic recovery (%) of the fabric specimen is

Answer: (55 to 56)

A sector-shaped, falling-pendulum type apparatus is suitable for measurement of 21.

(A) Elmendorf tear strength

(B) Tongue tear strength

(C) Trapezoidal tear strength

(D) All of them

Answer: **(A)**

22. Sodium persulphate is used in

(A) Bleaching

(B) Scouring

(C) Mercerization

(D) Desizing

Answer: **(B)**

Polyester is dyed with a disperse dye at 100 °C and 120°C till equilibrium is achieved. If D[f] and D[s] 23. represent the dye in fibre and dye in solution respectively, then the correct choice for the dyeing isotherms at the two temperature will be

Answer:

(B)

- 24. A dye with dischargeability rating of 1 (one) WILL NOT be suitable for
 - (A) Resist printing

(B) Direct printing

(C) Discharge printing

(D) Melt transfer printing

Answer:

(C)

- 25. The enzyme used for biopolishing of cotton is
 - (A) Cellulase

(B) Pectinase

(C) Amylase

(D) Lipase

Answer: (A)

Q. 26- Q.55 Carry one mark each

- The eigen values and eigen vectors of $\begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$ are 26.
 - (A) ± 5 and $\binom{1}{2}$, $\binom{2}{1}$ respectively (B) ± 3 and $\binom{1}{2}$, $\binom{2}{1}$ respectively
 - (C) ± 4 and $\binom{1}{2}$, $\binom{2}{1}$ respectively (D) ± 5 and $\binom{1}{1}$, $\binom{2}{1}$ respectively

Answer: (A)

Let $f(x,y,z) = \frac{1}{\sqrt{(x^2 + y^2 + z^2)}}$. The value of $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$ is equal to _____.

Answer: (-0.01 to 0.01)

28. Let X be a continuous type random variable with probability density function

$$f(x) = \begin{cases} \frac{1}{4} & ; -1 \le x \le 3 \\ 0 & ; \text{ otherwise} \end{cases}$$
. When $P(x \le x) = 0.75$, the value of x is equal to _____.

Answer:

(1.99 to 2.01)

- The integrating factor of $(2 \cos y + 4x^2) dx x \sin y dy = 0$ is 29.
 - (A) -x
- (B) x
- (C) x^2 (D) $-x^2$

Answer: **(B)**

The Fourier series of periodic function $f(x) = \begin{cases} -k & -\pi < x < 0 \\ k & 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x) = f(x)$ is given by 30.

$$\frac{4k}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right)$$
. Then, the value of $\frac{4}{\pi} \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \right)$ is equal to _____.

Answer: (0.99 to 1.01)

Match the fibers listed in Column A with the compounds used in its manufacture listed in Column B. 31. Choose the right answer from options A, B, C and D.

Column A	Column B		
P. Polypropylene	1. Carbon disulfide		
Q. Polyethylene Terephthalate	2. Water		
R. Nylon 6	3. Ziegler Natta catalyst		
S. Viscose	4. Antimony trioxide & Antimony triacetate		

(A) P-4, Q-1,R-2,S-3

(B) P-3,Q-4,R-2,S-1

(C) P-3, Q-4,R-1,S-2

(D) P-2,Q-1,R-3,S-4

(B) Answer:

- 32. Consider the following assertion [a] and reason [r] and choose the correct alternative from amongst A, B, C and D.
 - [a] Both polyester and nylon filaments can be drawn at room temperature to achieve higher strength, modulus and dimensional stability.
 - [r] T_gof both polyester and nylon can be lowered to room temperature on absorption of atmospheric moisture.
 - (A) [a] is right and [r] is wrong
- (B) [a] is right and [r] is right
- (C) [a] is wrong and [r] is wrong
- (D) [a] is wrong and [r] is right

Answer: (D)

33.	Low pill PET fibres of a given denier can be produced by a combination of any two options listed below.
	Choose the right combination from A, B, C and D.

- P. Lowering the IV (intrinsic viscosity) of the polymer
- Q. Increasing the IV (intrinsic viscosity) of the polymer
- R. Increasing the draw ratio
- S. Decreasing the draw ratio
- (A) P,S
- (B) P,R
- (C) Q,S
- (D) Q,R

Answer: (A)

34. Which of the following combination of statements from options A, B, C and D is correct?

- X-ray Diffraction gives information about crystallinity and crystal size in semicrystalline polymers.
- Differential Scanning Calorimetery gives information about T_g, T_m and T_c as well as enthalpy of melting and crystallization.
- In Scanning Electron Microscopy the sample has to be coated with silver to make it conducting.
- Birefringence is a measure of molecular orientation in amorphous phase only.
- (A) 1, 2 and 3 are correct

(B) 1, 3 and 4 are correct

(C) 2, 3 and 4 are correct

(D) All are correct

Answer: **(A)**

35. Match the fibre in Column A with the spinning technique used to manufacture in Column B. Choose the correct alternative from options A, B, C and D.

Column A	Column B
P. Rayon	1. Dry-jet-wet spinning
Q. Aramid (Kevlar)	2. Gel Spinning
R. Ultra High Molecular weight Polyethylene	3. Melt spinning
S. Polyester	4. Wet Spinning

(A) P-3,Q-1,R-2,S-4

(B) P-1,Q-3,R-4,S-2

(C) P-4,Q-2,R-1,S-3

(D) P-4,Q-1,R-2,S-3

Answer:

(D)

36.		0 bales of 5 μg/inch, 20 bales of 3.5 μg/inch ltant μg/inch of the mixed cotton is	and 40 bales of 3.0 μg/inch cotton fibres are mixed, the
Answ	er:	(3.7 to 3.85)	
37.			00 rpm is producing yarn at 140 m/min. The number of
A marry		blings of fibre layers in the rotor is	
Answ	er:	(96.85 to 97.05)	
38.		sider the following assertion [a] and reason and D.	[r] and choose the correct alternative from amongst A,
	[a]	Compared to ring spun yarns, rotor spun ya	rns have better evenness for the same yarn count.
		Rotor spun yarns have more number of fibrame count.	es in the yarn cross section compared to ring spun yarns
	(A)	[a] is right and [r] is wrong	(B) [a] is right and [r] is right
	(C)	[a] is wrong and [r] is wrong	(D) [a] is wrong and [r] is right
Answ	er:	(A)	
39.		•	the is 36s Ne with 28 TPI. The twist contraction during be, the mechanical draft required in the ring frame will be
Answ	er:	(18.40 to 18.65)	
40.		diameter (mm) of a cotton yarn of 50 tex sity to be 1.54g/cm ³ , is	count and 0.45 packing density, assuming cotton fibre
Answ	er:	(0.29 to 0.31)	
41.	In n	eedle punching process, higher punch densit	y CAN NOT cause
	(A)	Lower web thickness	(B) Higher change of fabric dimensions
	(C)	Higher damage of fibres	(D) Higher permeability of fabric
Answ	er:	(D)	

42.	Wh	Which of the following features IS NOT found in a crepe weave			
	(A) Highly irregular surface-puckered in appearance				
	(B) Prominent twill effect on the fabric				
	(C) Minute spots or seeds spread over the fabric				
	(D)	High twist yarn with controlled shrinkage			
Answ	er:	(B)			
43.		-	spacing is equal to the yarn diameter and no jamming		
		es place, will be			
Answ	er: 	(56 to 57)			
44.		E	ommodates 4 needles per cm. The stitch length is 6 mm The flat fabric width (cm) in finished – relaxed form is		
		——————————————————————————————————————	The flat rable with (city in finished relaxed form is		
Answ	er:	(67 to 68)			
45.	The	least desired feature of fibre in wet laid nonw	voven fabric is		
	(A)	High affinity for water	(B) Low aspect ratio		
	(C)	High flexural rigidity	(D) Low crimpiness		
Answ	er:	(C)			
46.	The	surface area per unit volume (mm ⁻¹) of a	circular polyester fibre of 1.5 denier fineness and		
	1.38	8g/cm³ density, ignoring the fibre ends, is			
Answ		(322 to 322)			
		(622 to 622)			
47.	The	fibre packing density in a cotton bale of 170	kg weight and dimensions 1060 mm		
	(L)×530 mm (W)×780 mm (H), assuming cotton fibre density to be $1.54 \mathrm{g/cm^2}$, is				
Answ	er:	(0.24 to 2.6)			
	© All	rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this boo	oklet may be reproduced or utilized in any form without the written permission.		

48.		cotton yarn with 5% breaking elongation needs to be tested for breaking strength in a tensile tester at 0 mm gauge length. The clamp speed (mm/min) required to break the specimen in 20 s is
Answ	er:	(74.90 to 75.10)
49.	The	e rotational speed of a card cylinder with locally damaged card clothing is 400 rpm and the sliver
	deli	ivery rate is 100 m/min. The wavelength (m) of the periodic mass variation in the card sliver
		The second secon
Answ	er:	(0.24 to 0.26)
50.	The	e flexural rigidity, expressed in 10 ⁻⁴ mg.cm, of a fabric test specimen of 100 g/m ² areal density and
		0 mm length of overhang determined using a cantilever test with a standard angle of deflection of
		5°, is
Answ	er:	(0.79 to 0.85)
51.	The	e volume strength of 1 molar H_2O_2 solution will be
Answ	er:	(11.00 to 11.40)
52.	Cor	nsider the following assertion [a] and reason [r] and choose the correct alternative from amongst A,
	В, С	C and D.
	[a]	In dyeing of polyester with disperse dyes, it is easier to obtain dark shades with solvent
		dyeingmethod than with aqueous dyeing method.
	[r]	The partition coefficient (D[f]/D[s]) of disperse dyes is much lower in aqueous medium than in asolvent.
	(A)	[a] is right and [r] is wrong (B) [a] is right and [r] is right
	(C)	[a] is wrong and [r] is wrong (D) [a] is wrong and [r] is right
Answ	er:	(C)

A reactive dye is applied on cotton fabric by continuous method. The achieved shade on fabric is 2% on the weight of fabric. The dyebath concentration is 25 gram per litre and the % expressionafter padding is 100. The specific gravity of the solution is 1. The fixation % of the dye on thefabric is

Answer: (79.9 to 80.1)

- 54. Consider the following assertion [a] and reason [r] and choose the correct alternative from amongst A, B, C and D.
 - [a] In resin finishing of cellulosic textiles, usually the curing stage is carried out in hot dry air andnot in steam.
 - [r] The acid catalyst used in resin formulation is activated in hot air only.
 - (A) [a] is right and [r] is wrong
- (B) [a] is right and [r] is right
- (C) [a] is wrong and [r] is wrong
- (D) [a] is wrong and [r] is right

Answer: (A)

Match the printing processes in Column A with print paste components in Column B. Choose the correct alternative from options A, B, C and D.

Column A			Column B		
P.	Pigment printing	1.	Disperse dye		
Q.	Discharge printing	2.	Binder		
R.	Resist printing	3.	High solids content thickener		
S.	Sublimation transfer printing	4.	Sodium formaldehyde sulphoxylate		

(A) P-2,Q-3,R-4,S-1

(B) P-2,Q-4,R-3,S-1

(C) P-2,Q-4,R-1,S-3

(D) P-1,Q-4,R-3,S-2

Answer: (B)