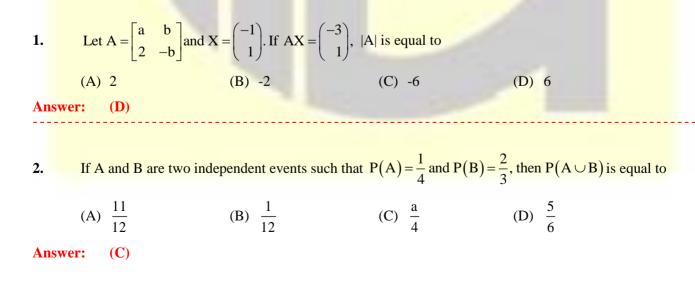

G	GATEFORUM Engineering Success TF-GATE-2018
	GENERAL APTITUDE
	Q. 1- Q.5 Carry one mark each
1.	When she fell down the she received many but little help "
1.	When she fell down the, she received many but little help." The words that best fill the blanks in the above sentence are
	(A) stairs, stares (B) stairs, stairs
	(C) stares, stairs (D) stares, stares
Ans	wer: (A)
2.	"In spite of being warned repeatedly, he failed to correct his behaviour."
	The word that best fills the blank in the above sentence is
	(A) rational (B) reasonable (C) errant (D) good
	wer: (C)
3.	For $0 \le x \le 2\pi$, sin x and cos x are both decreasing functions in the interval
	(A) $\left(0,\frac{\pi}{2}\right)$ (B) $\left(\frac{\pi}{2},\pi\right)$ (C) $\left(\pi,\frac{3\pi}{2}\right)$ (D) $\left(\frac{3\pi}{2},2\pi\right)$
Ans	wer: (B)
4.	The area of an equilateral triangle is $\sqrt{3}$. What is the perimeter of the triangle?
	(A) 2 (B) 4 (C) 6 (D) 8
Ans	wer: (C)
E	Amongo the following three dimensional chiests in the descending order of their veloces:
5.	 Arrange the following three-dimensional objects in the descending order of their volumes: i. A cuboid with dimensions 10 cm, 8 cm and 6 cm
	i. A cuboid with dimensions 10 cm, 8 cm and 6 cmii. A cube of side 8 cm
	iii. A cylinder with base radius 7 cm and height 7 cm
	iv. A sphere of radius 7 cm
	© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

	gineering Success		TF-GATE-2018	www.gateforumonline.co
	(A) (i), (ii), (iii), (i	v)	(B) (ii), (i), (iv),	(iii)
	(C) (iii), (ii), (i), (i	v)	(D) (iv), (iii), (ii), (i)
Answe	er: (D)			
		<u>Q. 6- Q.</u>	10 carry two marks each	
j.	An automobile trav	vels from city A to cit	B and returns to city A by	the sameroute.
	The speed of the	vehicle during the o		s were constant at 60 km/h and
	(A) 72	(B) 73	(C) 74	(D) 75
Inswe	er: (A)	<u> </u>		
' •	A set of 4 parallel formed?	l lines intersect with	another set of 5 parallel	lines. How many parallelograms a
	(A) 20	(B) 48	(C) 60	(D) 72
Inswe	er: (C)			
	To more a test o a	andidate needs to an	swer at least 2 out of 3 que	estions correctly. A total of 6,30,0
	To pass a test, a ca			11 2 20 000 111 (0 (
	candidates appeared	-	on A was correctly answere	•
	candidates appeared was answered cor	rectly by 2,50,000	candidates. Question C w	as answered correctly by 2,60,0
.	candidates appeared was answered cor candidates. Both qu and C were answer	rectly by 2,50,000 uestions A and B we red correctly by 90,0	candidates. Question C work answered correctly by 1, 00 candidates. Both question	vas answered correctly by 2,60,0 ,00,000 candidates. Both questions ons A and C were answered correct
	candidates appeared was answered cor candidates. Both qu and C were answer by 80,000 candida	rectly by 2,50,000 uestions A and B we red correctly by 90,0 tes.If the number of	candidates. Question C we be answered correctly by 1, 00 candidates. Both question 5 students answering all qu	vas answered correctly by 2,60,0 ,00,000 candidates. Both questions ons A and C were answered correct testions correctly is the same as t
	candidates appeared was answered cor candidates. Both qu and C were answer by 80,000 candida	rectly by 2,50,000 uestions A and B we red correctly by 90,0 tes.If the number of none, how many can	candidates. Question C we be answered correctly by 1, 00 candidates. Both question f students answering all que didates failed to clear the test	vas answered correctly by 2,60,0 ,00,000 candidates. Both questions ons A and C were answered correct testions correctly is the same as t st?
	candidates appeared was answered corr candidates. Both qu and C were answer by 80,000 candida number answering (A) 30,000	rectly by 2,50,000 uestions A and B we red correctly by 90,0 tes.If the number of	candidates. Question C we re answered correctly by 1, 00 candidates. Both questic 5 students answering all qu	vas answered correctly by 2,60,0 ,00,000 candidates. Both questions ons A and C were answered correct testions correctly is the same as t
	candidates appeared was answered corr candidates. Both qu and C were answer by 80,000 candida number answering (A) 30,000	rectly by 2,50,000 uestions A and B we red correctly by 90,0 tes.If the number of none, how many can	candidates. Question C we be answered correctly by 1, 00 candidates. Both question f students answering all que didates failed to clear the test	vas answered correctly by 2,60,0 ,00,000 candidates. Both questions ons A and C were answered correct testions correctly is the same as t st?
	candidates appeared was answered corr candidates. Both qu and C were answer by 80,000 candida number answering (A) 30,000	rectly by 2,50,000 uestions A and B we red correctly by 90,0 tes.If the number of none, how many can	candidates. Question C we be answered correctly by 1, 00 candidates. Both question f students answering all que didates failed to clear the test	vas answered correctly by 2,60,0 ,00,000 candidates. Both questions ons A and C were answered correct testions correctly is the same as t st?
Answe	candidates appeared was answered corr candidates. Both qu and C were answer by 80,000 candida number answering (A) 30,000 er: (D)	rectly by 2,50,000 uestions A and B we red correctly by 90,0 tes.If the number of none, how many can (B) 2,70,000	candidates. Question C w ore answered correctly by 1, 00 candidates. Both questic 5 students answering all qu didates failed to clear the tes (C) 3,90,000	vas answered correctly by 2,60,0 ,00,000 candidates. Both questions ons A and C were answered correct testions correctly is the same as t st?
	candidates appeared was answered corr candidates. Both quantum of the correct of	rectly by 2,50,000 uestions A and B we red correctly by 90,0 tes.If the number of none, how many can (B) 2,70,000	candidates. Question C we be answered correctly by 1, 00 candidates. Both questic 5 students answering all que didates failed to clear the test (C) 3,90,000 $+\frac{1}{x^4}?$	vas answered correctly by 2,60,0 ,00,000 candidates. Both questions ons A and C were answered correct testions correctly is the same as t st? (D) 4,20,000
Answe	candidates appeared was answered corr candidates. Both quand C were answer by 80,000 candida number answering (A) 30,000 er: (D) If $x^2 + x - 1 = 0$ wh (A) 1	rectly by 2,50,000 uestions A and B we red correctly by 90,0 tes.If the number of none, how many can (B) 2,70,000	candidates. Question C w ore answered correctly by 1, 00 candidates. Both questic 5 students answering all qu didates failed to clear the tes (C) 3,90,000	vas answered correctly by 2,60,0 ,00,000 candidates. Both questions ons A and C were answered correct testions correctly is the same as t st?

|TF-GATE-2018|

10. In a detailed study of annual crow births in India, it was found that there was relatively no growth during the period 2002 to 2004 and a sudden spike from 2004 to 2005. In another unrelated study, it was found that the revenue from cracker sales in India which remained fairly flat from 2002 to 2004, saw a sudden spike in 2005 before declining again in 2006. The solid line in the graph below refers to annual sale of crackers and the dashed line refers to the annual crow births in India. Choose the most appropriate inference from the above data.


- (A) There is a strong correlation between crow birth and cracker sales.
- (B) Cracker usage increases crow birth rate.
- (C) If cracker sale declines, crow birth will decline.
- (D) Increased birth rate of crows will cause an increase in the sale of crackers.

Answer: (A)

GATEFORUM

TEXTILE ENGINEERING

Q. 1- Q.25 Carry one mark each

C	GATEFO	RUM		TF-GATE-2	2018	www.gateforumonline.com
3.	Whie	ch one of the fo	llowing is a leaf fib	re?		
	(A)	Coir	(B) Sisal	(C)	Jute	(D) Hemp
Ans	swer:	(B)				
4.		-	ost prone to accumi		-	
		Cotton and Poly			Silk and	
	(C)	Polyester and P	olypropylene	(D)	Silk and	Polypropylene
Ans	swer:	(C)				
5.			-spun and drawn N		•	r slack condition leads to increase in its
		Tenacity				r orientation
	(C)	Molecular weig	ht	(D)	Dimensio	onal stability
Ans	swer:	(D)				
6.				s-strain curves	as shown	in the figure, is the most suitable for
	maki	ng mountaineei	ing ropes?			
			Р			
					_R	
		Stress				
						S
				State of the second	-	
				Strain		
	(A)	Р	(B) Q	(C)	R	(D) S.
Ans	swer:	(C)				

	Ingineering	Success	TF-GATI	E -201	8	<u>www.gateforumonline.co</u>
	The	technology that produces ya	arn with the maximu	ım fit	ore migration is	
	(A)	Rotor spinning	(1	B) F	riction spinning	
	(C)	Air-jet spinning	(]	D) R	ing spinning	
nsv	ver:	(A or D)				
	The elem	-	n the fine cleaning z	zone	of blowroom, u	ses the following as the openi
	(A)	Roller with saw tooth wire	points			
	(B)	Drum with large spikes				
	(C)	Roller with discs having do	ouble edged teeth			
	(D)	Drum with large bladed dis	cs			
nsv	ver:	(A)				
	The	purpose of having grooves	or notches in modern	n flye	er tops in speed t	frames is to
		purpose of having grooves Increase real twist in roving		Ţ	er tops in speed in speed in speet false twist	
	(A)		g (I	B) In		in roving
	(A) (C)	Increase real twist in roving Reduce neps in roving (B)	g (I (I	B) In D) In	nsert false twist	in roving of roving
	(A) (C)	Increase real twist in roving Reduce neps in roving (B)	g (I	B) In D) In	nsert false twist	in roving of roving
	(A) (C)	Increase real twist in roving Reduce neps in roving (B)	g (I (I	B) In D) In	nsert false twist	in roving of roving
nsv	(A) (C) ver:	Increase real twist in roving Reduce neps in roving (B)	g (I (I	B) Ir D) Ir	nsert false twist	in roving of roving
nsv	(A) (C) ver: With	Increase real twist in roving Reduce neps in roving (B)	g (I (I erse in a drum-drive	B) Ir D) Ir	nsert false twist	in roving of roving
nsv	(A) (C) ver: With (A)	Increase real twist in roving Reduce neps in roving (B)	g (I (I erse in a drum-drive (I	B) Ir D) Ir en wir B) D	nsert false twist ncrease fineness nder Decreases	in roving of roving
nsv	(A) (C) ver: With (A)	Increase real twist in roving Reduce neps in roving (B) n time, wind per double trav Increases	g (I (I erse in a drum-drive (I	B) In D) In en win B) D D) F	nsert false twist ncrease fineness nder Decreases irst increases an	in roving of roving
nsv D.	(A) (C) ver: With (A) (C)	Increase real twist in roving Reduce neps in roving (B) n time, wind per double trav Increases Remains constant	g (I (I erse in a drum-drive (I	B) Ir D) Ir en wir B) D D) F	nsert false twist ncrease fineness nder Decreases	in roving of roving
nsv 0.	(A) (C) ver: With (A) (C)	Increase real twist in roving Reduce neps in roving (B) n time, wind per double trav Increases Remains constant	g (I (I erse in a drum-drive (I	B) Ir D) Ir en wir B) D D) F	nsert false twist ncrease fineness nder Decreases irst increases an	in roving of roving
0.	(A) (C) ver: With (A) (C) ver:	Increase real twist in roving Reduce neps in roving (B) n time, wind per double trav Increases Remains constant	g (I (I erse in a drum-drive (I (I	B) Ir D) Ir en wir B) D D) F	nsert false twist ncrease fineness nder Decreases irst increases an	in roving of roving
nsv 0.	(A) (C) ver: With (A) (C) ver: In a	Increase real twist in roving Reduce neps in roving (B) n time, wind per double trav Increases Remains constant (B)	g (I (I erse in a drum-drive (I (I notion is	B) In D) In en win B) D D) F:	nsert false twist ncrease fineness nder Decreases irst increases an	in roving of roving ad then decreases
nsv).	(A) (C) ver: With (A) (C) ver: In a (A)	Increase real twist in roving Reduce neps in roving (B) n time, wind per double trav Increases Remains constant (B) loom, seven-wheel take-up	g (I (I erse in a drum-drive (I (I (I	B) In D) In En win B) D D) F ² B) N	nsert false twist ncrease fineness nder Decreases irst increases an	in roving of roving Id then decreases

G	GATEF Engineering	ORUM g Success	 T]	F-GATE-2018	www.gateforumon	line.com	
12.	The	relative humid	ity (in %) and temperature	e (in °C) of standard testi	ng atmosphere are respectiv	ely	
	(A)	65 and 25	(B) 65 and 20	(C) 60 and 25	(D) 60 and 20		
Ansv	ver:	(B)					
13.			is the force acting on a fib rectly proportional to	re bundle and θ is the a	ngle through which the pend	lulum i	
	(A)	$\sin \theta$	(B) $\cos\theta$	(C) $\tan \theta$	(D) $\cot \theta$		
Ansv	ver:	(A)					
14.	Yar	n diameter vari	es				
	(A)	Directly with	yarn packing density				
	(B)	Inversely with	yarn packing density				
	(C)	Directly with	square root of yarn packin	g density			
	(D)	Inversely with	square root of yarn packi	ng density			
Ansv	ver:	(D)					
15.			of-extension type tensile te				
		Tongue tear te		(B) Wing rip tear			
		Elmendorf tea	r test	(D) Trapezoid tea	r test		
Ansv	ver:	(C)					
16	D		6		11		
16.	During bleaching of cotton with hydrogen peroxide, addition of sodium silicate						
		(A) Reduces the viscosity of bath					
	(B)	Controls the ra	ate of decomposition of pe	erhydroxyl ions (HO_2^-)			
	(C)	Reduces the st	urface tension of bath				
	(D)	Enhances swe	lling of cotton				
	ver:	(B)					

C	GATEFORUM Ingineering Success	TF-GATE-2018	www.gateforumonline.com
17.	In dyeing of wool with levelling	g acid dyes, with time, the pH of dye batl	h
	(A) Increases	(B) Decreases	
	(C) Remains constant	(D) First increases an	nd then decreases
Answ			
18.	The discharging agent used in c	lischarge printing of cotton with reactive	dyes is
	(A) Citric acid	(B) Sodium dithionit	te
	(C) Thio-urea dioxide	(D) Sodium formald	ehyde sulphoxylate
Answ	ver: (D)		
19.	Application of a fluorochemica	l based finish on a textile fabric imparts	
	P. Water repellency		
	Q. Oil repellency		
	R. Soil repellency		
	S. Soil release property		
	(A) P, Q & R only	(B) Q, R & S only	
	(C) P, R & S only	(D) P, Q & S only	
Answ	v <mark>er: (*)</mark>		
20.	If $\vec{a} = -\hat{i} + 2\hat{j}, \vec{b} = -\hat{j} + 2\hat{k}$ and \vec{b}	$\vec{c} = 2\hat{j} - \hat{k}$ are three vectors such that \vec{a} .	$+\lambda \vec{b}$ is perpendicular to \vec{c} , then
	the value of λ is	_	
Answ	ver: (-1 to -1)		
21 .	If $y(x)$ is the solution of the dif	ferential equation $y y' = 8x$, $y(0) = 2$, the second se	hen the absolute value of $y(2)$ is
Answ	ver: (6)		

22. If $f(x) = \begin{cases} 4-x & x \le 2\\ kx-4, & x > 2 \end{cases}$ is a continuous function for all real values of x, then f (8) is equal to

Answer: (20)

23. A twistless polyester yarn has 90 filaments, each of 2 denier. The metric count of the yarn is ______.

Answer: (49.8–50.2)

24. Bottom shaft of a shuttle loom, weaving 2 up 1 down twill weave, is rotating at 90 rpm. The speed of cam shaft (in rpm) is ______

Answer: (60)

25. If wale constant and course constant for knitted fabrics are 4.2 and 5.46, respectively, then the value of the loop shape factor, accurate to one decimal place, is ______.

Answer: (1.3)

Q. 26- Q.55 Carry one mark each

26. The cross-sectional shape of a fibre affects the following properties of yarn

- **P.** Lustre
- **Q.** Torsional rigidity
- **R.** Flexural rigidity
- S. Packing density
- (A) P & Q only
- (C) P, Q & R only

(B) P & R only

(D) P, Q, R & S

Answer: (D)

TF-GATE-2018

- 27. Determine the correctness or otherwise of the following Assertion [a] and the Reason [r].
 - **[a]:** The reaction temperature and rate of agitation during polymerization of polyethylene terephthalate have an important effect on molecular weight of the polymer produced.
 - [r]: Polymerization of polyester by melt polycondensation is a predominantly diffusion controlled process.
 - (A) Both [a] and [r] are true and [r] is the correct reason for [a]
 - (B) Both [a] and [r] are true but [r] is not the correct reason for [a]
 - (C) Both [a] and [r] are false
 - (D) [a] is true but [r] is false

Answer: (A)

GATEFORUM

28. Group I gives a list of fibres and Group II contains their applications. Match the fibre with itsapplication.

Group I	Group II
P. Polypropylene	1. Fire proof jacket
Q. Carbon	2. Bullet proof jacket
R. Ultra-high molecular weight polyethylene	3. Carpet
S. Meta-aramid	4. Windmill blade
(A) P-4, Q-2, R-3, S-1	(B) P-3, Q-4, R-2, S-1
(C) P-3, Q-4, R-1, S-2	(D) P-4, Q-1, R-2, S-3
··· (D)	

Answer: (B)

29. Techniques used to determine the glass transition temperature of textile fibres are

- **P.** X-ray diffraction (XRD)
- Q. Differential scanning calorimetry (DSC)
- **R.** Thermogravimetric analysis (TGA)
- **S.** Dynamic mechanical analysis (DMA)
- (A) P & Q only

- (B) Q & R only
- (C) Q & S only (D) R & S only

Answer: (C)

G	CATEFORUM Engineering Success	TF-GATE-2018	www.gateforumonline.com
30.	Determine the correctness or	otherwise of the following Assertion [a] a	nd the Reason [r].
	ised between cylinder		
	and doffer.		
	[r]: Carding type of wire po	int configuration gives the best fibre tra	nsfer without disturbing the fibre
	alignment.		
	(A) Both [a] and [r] are true	and [r] is the correct reason for [a]	
	(B) Both [a] and [r] are true	but [r] is not the correct reason for [a]	
	(C) Both [a] and [r] are false		
	(D) [a] is true but [r] is false		

Answer: (D)

31. Match the spinning technology listed in Group I with the machine component / function listed in Group II.

Group I	Group II
P. Wrap spinning	1. False twisting
Q. Rotor spinning	2. Perforated drums
R. Air-jet spinning	3. Back doubling
S. DREF II friction spinning	4. Hollow spindle
(A) P-3, Q-4, R-2, S-1	(B) P-4, Q-1, R-3, S-2
(C) P-4, Q-3, R-1, S-2	(D) P-3, Q-1, R-2, S-4

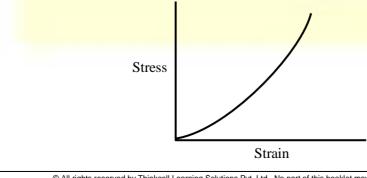
Answer: (C)

32. Compared to filaments in spunbonded nonwovens, those in meltblown nonwovens have

- **P.** Lower orientation of molecular chains
- **Q.** Higher orientation of molecular chains
- **R.** Lower variability in diameter
- **S.** Higher variability in diameter
- (A) P & R only (B) P & S only
- (C) Q & R only (D) Q & S only

Answer: (B)

33. Match the weave in Group I with fabric attribute in Group II.


Group I	Group II		
P. Plain	1. Holes in fabric		
Q. 2 up 1 down twill	2. High tear resistance		
R. 7 end satin	3. High shear resistance		
S. Mock leno	4. Continuous diagonal line		
(A) P-3, Q-4, R-2, S-1	(B) P-1, Q-4, R-2, S-3		
(C) P-3, Q-4, R-1, S-2	(D) P-3, Q-1, R-2, S-4.		
Answer: (A)			

34. Match the test in Group I with fabric property in Group II.

Group I	Group II
P. Cup test	1. Flexural rigidity
Q. Heart loop test	2. Water vapour permeability
R. Spray rating test	3. Resistance to water penetration
S. Hydrostatic head test	4. Resistance to surface wettability
(A) P-1, Q-2, R-3, S-4	(B) P-1, Q-2, R-4, S-3
(C) P-2, Q-1, R-3, S-4	(D) P-2, Q-1, R-4, S-3
r: (D)	

Answer: (

- **35.** Determine the correctness or otherwise of the following Assertion [a] and the Reason [r].
 - **[a]:** The work factor of silk fibre is greater than 0.5.
 - [r]: The work factor is calculated by assuming the following as the stress-strain curve of silk fibre.

GATEFORUM Engineering Success

|TF-GATE-2018|

- (A) Both [a] and [r] are true and [r] is the correct reason for [a]
- (B) Both [a] and [r] are true but [r] is not the correct reason for [a]
- (C) Both [a] and [r] are false
- (D) [a] is true but [r] is false

Answer: (D)

36. Determine the correctness or otherwise of the following Assertion [a] and the Reason [r].

- [a]: As the concentration of a surfactant in water increases, the surface tension of water initially decreases and then becomes constant.
- **[r]:** After reaching the Critical Micelle Concentration, additional surfactant molecules do not further reduce the surface tension.
- (A) Both [a] and [r] are true and [r] is the correct reason for [a]
- (B) Both [a] and [r] are true but [r] is not the correct reason for [a]
- (C) Both [a] and [r] are false
- (D) [a] is true but [r] is false

Answer: (A)

37. A dye is applied on a fibre using $Na_2S_2O_4as$ an auxiliary. Washing fastness of the dye on fibre is good. The correct combination of the dye and the fibre is

(A) Cationic dye, acrylic fibre

(B) Vat dye, cotton fibre

(C) Acid dye, wool fibre

(D) Reactive dye, cotton fibre

Answer: (B)

- **38.** Determine the correctness or otherwise of the following Assertion [a] and the Reason [r].
 - [a]: Emulsion thickener is used in pigment printing of textiles.
 - [**r**]: Emulsion thickener has high solid content.
 - (A) Both [a] and [r] are true and [r] is the correct reason for [a]
 - (B) Both [a] and [r] are true but [r] is not the correct reason for [a]
 - (C) Both [a] and [r] are false
 - (D) [a] is true but [r] is false

Answer: (D)

[©] All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

GATEFORUM Engineering Success

39. Match the dye-fibre in Group I with the interactions in Group II.

Group I	Group II	
P. Reactive dye on cotton	1. Van der Waals forces	
Q. Disperse dye on polyester	2. Covalent bonds	
R. Vat dye on cotton	3. Electrostatic bonds	
S. Basic dye on acrylic	4. Mechanical entrapment	
(A) P-1, Q-2, R-4, S-3	(B) P-1, Q-2, R-3, S-4	
(C) P-2, Q-1, R-4, S-3	(D) P-2, Q-1, R-3, S-4	
nswer: (C)		

40. Let X be a random variable following the binomial distribution. If E(X) = 2 and Var(X) = 1.2, then P(X = 2), accurate to three decimal places, is equal to ______.

Answer: (0.325-0.365)

41. The value of the integral $\int_0^4 \int_0^{\sqrt{16-x^2}} y \sqrt{x^2 + y^2} \, dy \, dx$ is _____.

Answer: (64)

42. Starting from the initial point $x_0 = 10$, if the sequence $[x_n]$ is generated using NewtonRaphson method to compute the root of the equation $x^4 - 600 = 0$, then x_2 accurate to two decimal places, is equal to

Answer: (5.95-6.25)

43. If $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$, then the sum of all eigenvalues of the matrix $M = A^2 - 4A^{-1}$ is equal to_____. Answer: (17)

TF-GATE-2018

44. If the density of 100% crystalline polyethylene is 1000 kg.m⁻³ and that of 100% amorphous polyethylene is 865 kg.m⁻³, then the mass fractional crystallinity of a polyethylene fibre with density 970 kg.m⁻³, accurate to two decimal places, is _____

Answer: (0.7-0.81)

GATEFORUM

45. In winding zone of ring spinning, the permissible minimum angle of lead is 30°. For a ring of 40 mm diameter, the minimum diameter (in mm) of bobbin required is ______

Answer: (20)

46. A sliver of 4.2 kilotex is fed in a rotor spinning machine with opening zone draft of 1400. The draft in the transport duct is 5 and the sliding draft on the rotor wall till the rotor groove is 2. If the total back doubling within the rotor is 120, then the linear density (in tex) of the output yarn is

Answer: (35-38)

47. An eight head comber is running at 400 nips/min. The lap fed is 60 kilotex and noil extracted is 20%. If the feed/nip is 7 mm, then with machine utilization of 80%, the production rate (in kg/h), accurate to one decimal place, is ______

Answer: (51-52)

48. A shuttle loom having 1.75 m reed width is running at 180 rpm. The shuttle enters and leaves the shed at 120° and 240° angular positions of crankshaft, respectively. If length of the shuttle is 0.25 m, then the mean velocity (in m/s) of the shuttle within the shed is ______

Answer: (18.0-18.2)

49. The diameter and length of torsion rod used in a projectile loom are increased by 5% and 20%, respectively. If the torque required to twist the rod increases by X%, then the value of X, accurate to two decimal places, is _____

Answer: (1.27-1.31)

[TF-GATE-2018]

50. Cloth cover factor of a square plain jammed cotton fabric, accurate to one decimal place, is_____.

Answer: (22.8-23.1)

51. In a vibroscope, a cotton fibre of 25 mm length is clamped at one end, led over a knifeedge support, tensioned by a weight of 350 mg, and is inclined to vibrate at a fundamental resonant frequency of 2.6 kHz. The linear density of the fibre (in tex), accurate to two decimal places, is _____

Answer: (0.19-0.21)

52. The theoretical limit coefficient of variation $(V_r \text{ in}\%)$ of the weight per unit length of cotton sliver is $V_r = 106/\sqrt{N}$, where N is the average number of fibres present in the crosssection of the sliver. To derive this expression, the coefficient of variation (in %) of the fibre weight per unit length, accurate to two decimal places, is considered as______.

Answer: (35-36)

53. The bending length of a nonwoven fabric in machine direction is two times the bendinglength in cross-machine direction. The ratio of flexural rigidities of this fabric in machinedirection to cross-machine direction is ______.

Answer: (8)

54. The standard deviation of population P is two times the standard deviation of population Q. The size of a random sample from population P is four times the size of a random sample from population Q. If e_p and e_q denote the standard error of means of the samples from Pand Q, respectively, then the ratio of e_p to e_q is _____.

Answer: (1)

55. A crease resist (CR) agent is applied by padding on a fabric of 1 m width and $200g/m^2$ areal density. The concentration of CR agent in the pad bath is 100 gpl and the fabric speedis 50 m/min. The expression is 110% and the specific gravity of the pad liquor is 1.1. Inorder to maintain the bath concentration, the rate (in kg/min) at which the CR agent needsto be added to the bath, accurate to one decimal place, is______

Answer: (0.9-1.1)