

GENERAL APTITUDE

Q. No. 1to5 Carry One Mark Each

There are two candidates P and Q in an election. During the campaign, 40% of the voters promised to vote for P, and rest for Q. However, on the day of election 15% of the voters went back on their promise to vote for P and instead voted for Q. 25% of the voters went back on their promise to vote for Q and instead voted for P. Suppose, P lost by 2 votes, then what was the total number of voters?

(A) 100	(B) 110	(C) 90	(D) 95	

Answer: (A)

2. Choose the most appropriate word from the options given below to complete the following sentence: It was her view that the country's problems had been_____ by foreign technocrats, so that to invite them to come back would be counter-productive.

(A) Identified	(B) ascertained	(C) Texacerbated	(D) Analysed	
----------------	-----------------	------------------	--------------	--

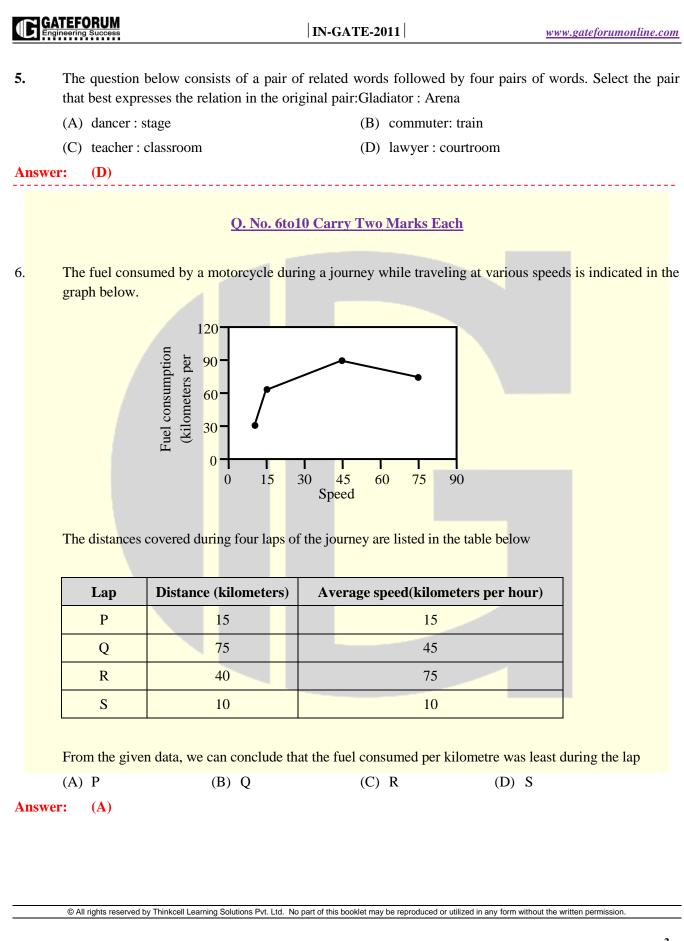
Answer:	(C)
---------	--------------

3. Choose the word from the options given below that is most nearly opposite in meaning to the given word:

Frequency

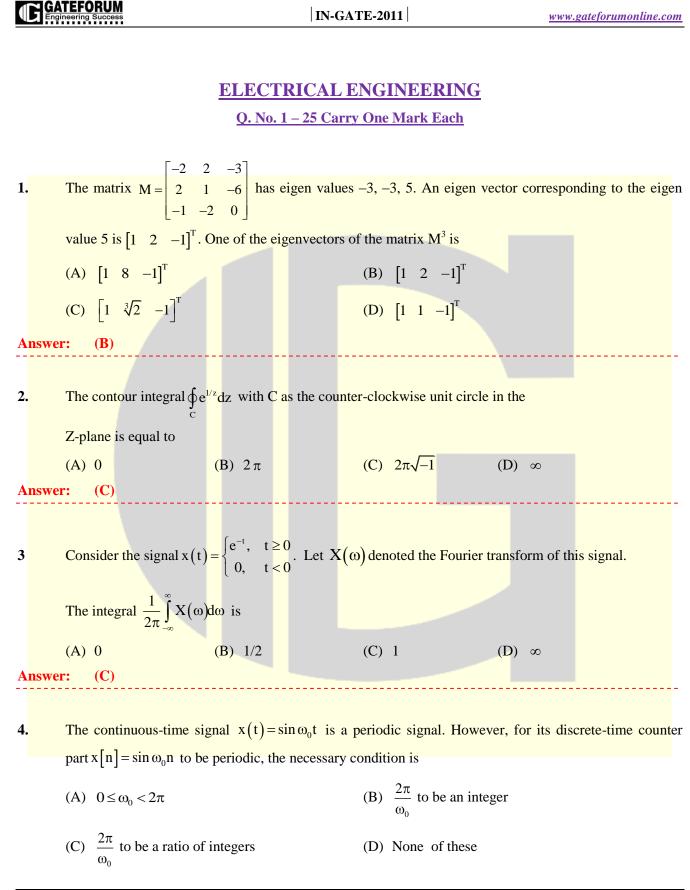
- (A) periodicity
- (C) gradualness

(B) rarity


(D) persistency

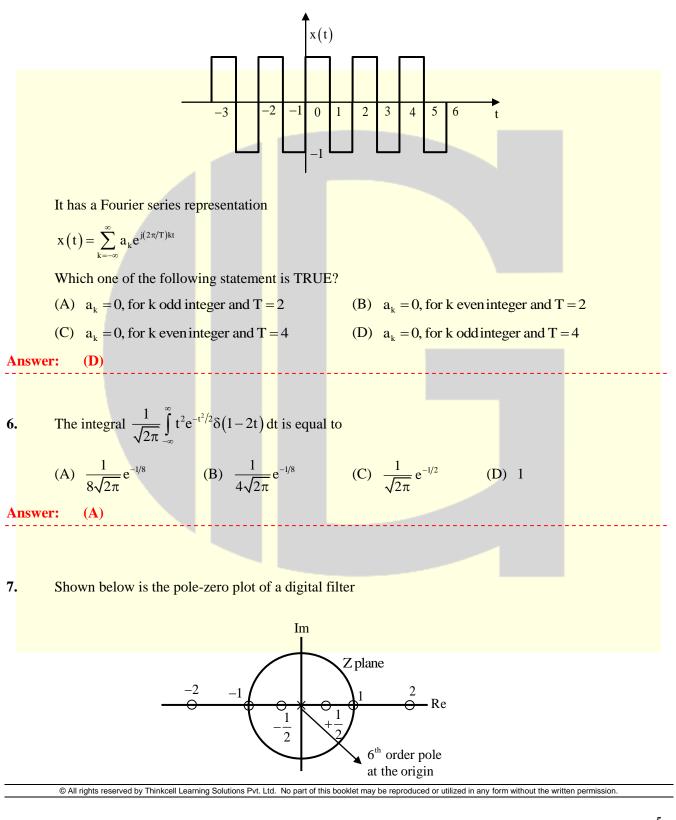
Answer: (B)

4. Choose the most appropriate word from the options given below to complete the following sentence: Under ethical guidelines recently adopted by the Indian Medical Association, human genes are to be manipulated only to correct diseases for which treatments are unsatisfactory.


(A) Similar	(B) Most	(C) Uncommon	(D) Available	
-------------	----------	--------------	---------------	--

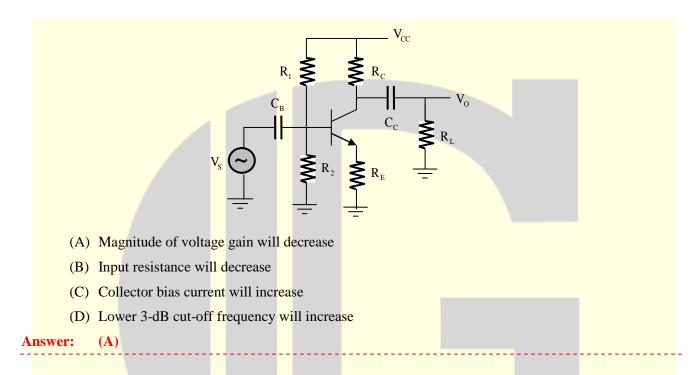
Answer: (D)

C	ATEFORUM	IN-0	GATE-2011	www.gateforumonlin	e.com
7.	bowl. S took 1/4 th of what w	was left but return	ed three toffees to	^d of the toffees, but returned four t the bowl. T took half of the rema left, how many toffees-were origi	inder
) 31	(C) 48	(D) 41	
Answ	er: (C)				
8.	Given that $f(y) = y / y$, and	l q is any non-zero	real number, the v	value of	
	f(q) - f(-q) is (A) 0 (B)) —1	(C) 1	(D) 2	
Answ			(0) 1		
9.	The sum of n terms of the se	ries 4+44+444+			
	(A) $(4/81) [10^{n+1} - 9n - 1]$		(B) $(4/81)[1]$	-	
	(C) $(4/81) [10^{n+1} - 9n - 10]$]	(D) $(4/81)[1]$	$0^n - 9n - 10$	
Answ	er: (C)				
10.		ses until their bloo	d built up immuni	in the field of medicine. Horses ties. Then a serum was made from d this way.	
	It can be inferred from the pa	assage that horses	were		
	(A) given immunity to disea		•••••••••••••••••••••••••••••••••••••••	quite immune to diseases	
Answ	(C) given medicines to figher: (B)	t toxins	(D) given dipl	htheria and tetanus serums	
Answ	er. (b)				
		Induce Database Marca	haddet ere d	r utilized in any form without the written permission.	

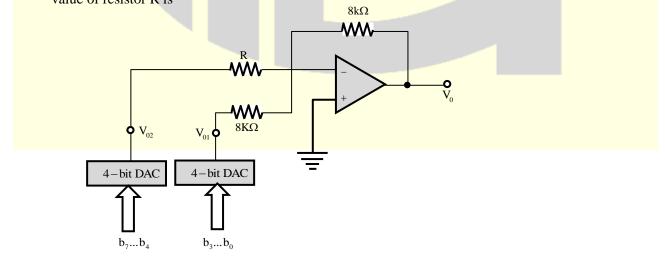

3

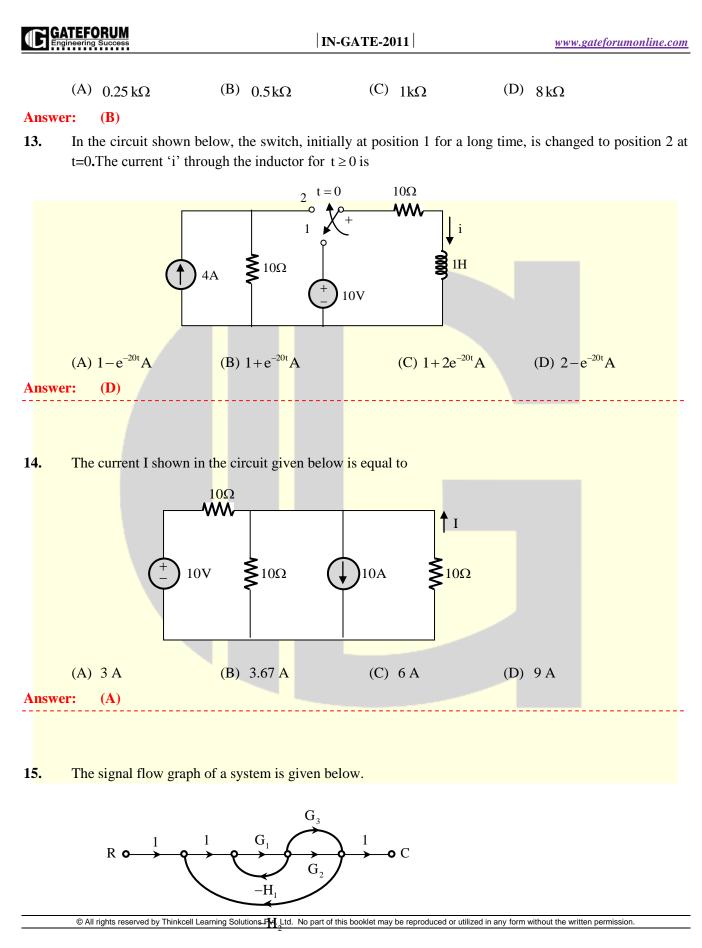
Answer: (C)

5. Consider a periodic signal x(t) as shown below


	Ingineering Success	IN-GATE-2011 www.gateforumonline.com
	Which one of the following stater	nents is TRUE?
	(A) This is a low pass filter	(B) This is a high pass filter
	(C) This is an IIR filter	(D) This is an FIR filter
Insv	ver: (D)	
3.	This continuous time signal $x(t)$ signal	$=\cos(100\pi t)+\sin(300\pi t)$ is sampled at the rate 100 Hz to get the
	$\mathbf{x}_{s}(t) = \sum_{n=-\infty}^{\infty} \mathbf{x}(nT_{s})\delta(t-nT_{s}).$	
	$T_s = sampled period$	
	The signal $x_s(t)$ is passed throug the filter is proportional to	th an ideal low pass filter with cutoff frequency 100 Hz. The output o
	(A) $\cos(100\pi t)$	(B) $\cos(100\pi t) + \sin(100\pi t)$
	(C) $\cos(100\pi t) - \sin(100\pi t)$	(D) $\sin(100\pi t)$
Ansv	· · · · · · · · · · · · · · · · · · ·	
9.	Consider a system with input $x(t)$	and output y(t) related as follows
).	Consider a system with input x(t) $y(t) = \frac{d}{dt} \{e^{-t}x(t)\}$	and output y(t) related as follows
).		
).	$\mathbf{y}(t) = \frac{\mathbf{d}}{\mathbf{d}t} \{ \mathbf{e}^{-t} \mathbf{x}(t) \}$	
).	$y(t) = \frac{d}{dt} \{e^{-t}x(t)\}$ Which one of the following stater (A) The system is nonlinear (C) The system is stable	nents is TRUE?
	$y(t) = \frac{d}{dt} \{e^{-t}x(t)\}$ Which one of the following stater (A) The system is nonlinear (C) The system is stable	nents is TRUE? (B) The system is time-invariant
Answ	$y(t) = \frac{d}{dt} \{e^{-t}x(t)\}$ Which one of the following stater (A) The system is nonlinear (C) The system is stable ver: (D)	nents is TRUE? (B) The system is time-invariant (D) The system has memory
Answ	$y(t) = \frac{d}{dt} \{e^{-t}x(t)\}$ Which one of the following stater (A) The system is nonlinear (C) The system is stable ver: (D) The first two rows of Routh's table	nents is TRUE? (B) The system is time-invariant
Answ	$y(t) = \frac{d}{dt} \{e^{-t}x(t)\}$ Which one of the following stater (A) The system is nonlinear (C) The system is stable ver: (D) The first two rows of Routh's table s ³ 3 3 3	nents is TRUE? (B) The system is time-invariant (D) The system has memory
Answ	$y(t) = \frac{d}{dt} \{e^{-t}x(t)\}$ Which one of the following stater (A) The system is nonlinear (C) The system is stable ver: (D) The first two rows of Routh's table $s^3 \qquad 3 \qquad 3$ $s^2 \qquad 4 \qquad 4$	nents is TRUE? (B) The system is time-invariant (D) The system has memory llation of a third order equation are as follows.
Answ	$y(t) = \frac{d}{dt} \{e^{-t}x(t)\}$ Which one of the following stater (A) The system is nonlinear (C) The system is stable ver: (D) The first two rows of Routh's table $s^3 \qquad 3 \qquad 3$ $s^2 \qquad 4 \qquad 4$	nents is TRUE? (B) The system is time-invariant (D) The system has memory llation of a third order equation are as follows. em hasOne real pole in the right-half of s-plane.
	$y(t) = \frac{d}{dt} \{e^{-t}x(t)\}$ Which one of the following stater (A) The system is nonlinear (C) The system is stable ver: (D) The first two rows of Routh's table $s^3 \qquad 3 \qquad 3$ $s^2 \qquad 4 \qquad 4$ (A) It can be inferred that the system	hents is TRUE? (B) The system is time-invariant (D) The system has memory lation of a third order equation are as follows. em hasOne real pole in the right-half of s-plane. poles in the right-half of s-plane.

GATEFORUM Engineering Success


IN-GATE-2011


Answer: (D)

11. The amplifier shown below has a voltage gain of -2.5, an input resistance of $10k \Omega$ and a lower 3-dB cutoff frequency of 20Hz. Which one of following statements is TRUE when the emitter resistance R_E is doubled?

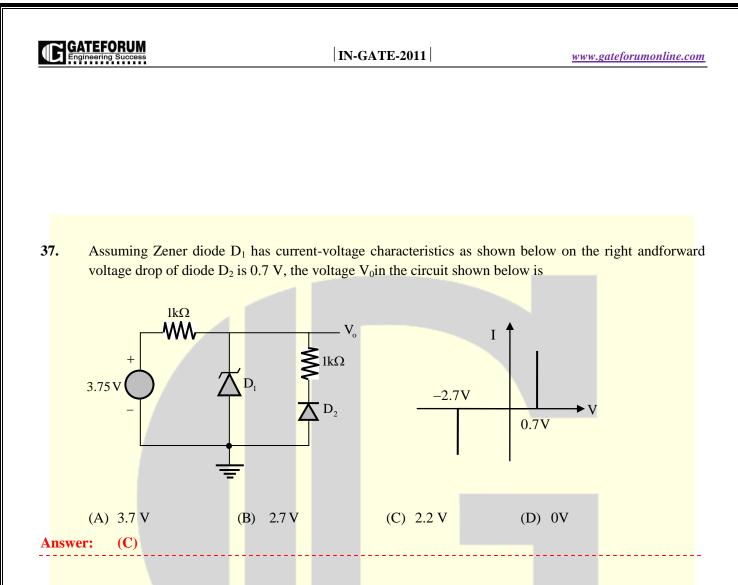
12. Figure below shows a circuit for implementing an 8-bit Digital-to-Analog converter (DAC) using two identical 4-bit DAC's with equal reference voltage. Assume that b_0 represents LBS, b_7 MSB and the opamp is ideal. To obtain correct analog values corresponding to an 8-bit DAC at the output V₀, the value of resistor R is

The transfer function (C/R) of the system is (B) $\frac{G_1G_2 + G_1G_3}{1 - G_1H_1 + G_1G_2H_2}$ (A) $\frac{G_1G_2 + G_1G_3}{1 + G_1G_2H_2}$ (C) $\frac{G_1G_2 + G_1G_3}{1 - G_1H_1 + G_1G_2H_2 + G_1G_3H_2}$ (D) $\frac{G_1G_2 + G_1G_3}{1 - G_1H_1 + G_1G_2H_2 + G_1G_2G_3H_1}$ Answer: **(D)** _____ For the Boolean expression 16. $f = \overline{a}b\overline{c} + \overline{a}b\overline{c} + a\overline{b}\overline{c} + abc + ab\overline{c}$ The minimized product of Sum (PoS) expression is (A) $f = (b + \overline{c}).(a + \overline{c})$ (B) $f = (\overline{b} + c).(\overline{a} + c)$ (D) $f = \overline{c} + abc$ (C) $f = (\overline{b} + c).(a + \overline{c})$ Answer: (A) 17. The base of the number system for the addition operation 24 + 14 = 41 to be true is (B) 7 (A) 8 (C) 6 (D) 5 Answer: (B) 18. An 8Kx8 bit RAM is interfaced to an 8085 microprocessor. In a fully decoded scheme, if the address of the last memory location of this RAM is 4FFFH, theaddress of the first memory location of the RAM will be (A) 1000H (B) 2000H (C) 3000H (D) 4000H (*) Answer: _____ 19. The Treadmill Test is used to diagnose (A) the balancing style during walk of the patient (B) the auditory activity of the patient (C) the visual activity of the patient (D) the cardiac activity of the patient **Answer:** (*) © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

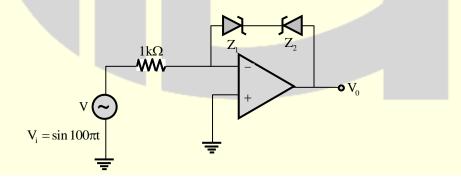
_ _ _

GATEFORUM Engineering Success

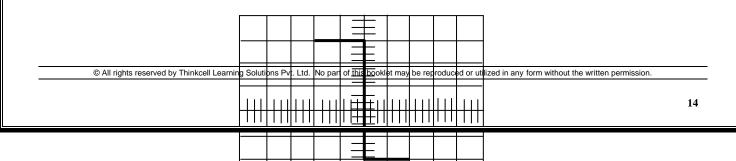
_ _ _ _ _


_ _ _ _ _

20	• The characteristics of a thermometer	er measuring ambient temperature is $2\frac{dT_i}{dt} + T_i - T_a = 0$,
		ambient temperatures, respectively, both in °C and time is in he frequency response of the thermometer is
	(A) $\frac{1}{4\pi}$ Hz (B) $\frac{1}{2}$ Hz	(C) 1 Hz (D) 2π Hz
An	nswer: (A)	
2 <mark>1</mark> .	. For a copper-constantan (Type T) thermo	p-couple, the junction potential E(in μ V) at θ° C is given by E
	$= 38.74\theta + 3.3 \times 10^{-2}\theta + 2.07 \times 10^{-4}\theta^3 + 2.07 \times 10^{-4}\theta^$	$-2.2 \times 10^{-6} \theta^4$ + higher order terms, assuming the cold junction
	compensation. The sensitivity of thermoc	ouple at 100°C is approximately
	(A) $45.35 \mu V / ^{\circ}C$	(B) 42.75µV/°C
	(C) 38.74µV/°C	(D) $0.06 \mu V / ^{\circ}C$
An	nswer: (B)	
22.	range of 0–500°C and provides 4–20 n current have a straight line relationship	d at a distance of 50 m away. The temperature transmitter has a nA current output. The measured temperature and the output with positive slope. The temperature is determined from the 500 Ω in the current loop. If the voltage measured across the furnace is
	(A) 100°C (B) 125°C	(C) 150°C (D) 200°C
An	nswer: (B)	
23.	The core/cladding index difference of a s	single-mode optical fiber cable is 0.01. The refractive index of
	C	num angle of acceptance of the fiber is approximately equal to
	(A) 17.5° (B) 12.1°	(C) 8.6° (D) 2.0°
An	nswer: (B)	
24		
	© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No p	art of this booklet may be reproduced or utilized in any form without the written permission.


G#	ATEFORUM gineering Success	1	N-GATE-2011	www.gateforumonlin
	(A) Richter scale		(B) Acceleration	due to gravity
	(C) Speed of sour	nd	(D) Atmospheric	
nswe	-			•
5.	source and ideal s	emiconductor diode bridg atic at 15 mm above the	ge-based phase sensitive	are connected to 3 kHz sinus demodulator circuit. The core of requency of the voltage observ
	(A) 1 kHz	(B) 1.5 kHz	(C) 3 kHz	(D) 6 kHz
nswe	er: (D)			
		<u>Q. No. 26 to 55</u>	Carry Two Marks Eacl	<u>1</u>
6.	The series $\sum_{m=0}^{\infty} \frac{1}{4^m}$	$(x-1)^{2m}$ converges for		
	(A) $-2 < x < 2$	(B) $-1 < x < 3$	(C) $-3 < x < 1$	(D) x < 3
nswe	er: (B)			
7.	Consider the difference of $y(2)$ is	rential equation ÿ+2y+	y=0 with boundary con	ditions $y(0) = 1; y(1) = 0$. The
	(A) -1	(B) $-e^{-1}$	(C) $-e^{-2}$	(D) $-e^2$
nswe	er: (C)			
8.	and 26. Two chip		e drawn at random. The	contains chips numbered 6,11,1 numbers written on these chip
	(A) 6/25	(B) 2/5	(C) 3/5	(D) 19/25
	er: (D)			

IN-GATE-2011 www.gateforumonline.com 29. The extremum (minimum or maximum) point of a function f(x) is to be determined by solving $\frac{df(x)}{dx} = 0$ using the newton Raphsons method. Let $f(x) = x^3 - 6x$ and $x_0 = 1$ be the initial guess of x. The value of x after two iterations (x_2) is (A) 0.0141 (B) 1.4142 (C) 1.4167 (D) 1.5000 **Answer: (C)** 30. The unit-step response of a negative unity feedback system with the open loop transfer function $G(s) = \frac{6}{s+5}$ is (A) $1-e^{-5t}$ (B) $6-6e^{-5t}$ (C) $\frac{6}{5}-\frac{6}{5}e^{-5t}$ (D) $\frac{6}{11}-\frac{6}{11}e^{-11t}$ Answer: (D) 31. The transfer function of the system described by the state-space equations, $\begin{vmatrix} \dot{x}_1 \\ \dot{x}_2 \end{vmatrix} = \begin{vmatrix} -4 & -1 \\ -3 & -1 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \begin{vmatrix} 1 \\ 1 \end{vmatrix} u, \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$ is (A) $\frac{s}{s^2 + 5s + 1}$ (B) $\frac{2s}{s^2 + 5s + 1}$ (C) $\frac{3s}{s^2 + 5s + 1}$ (D) $\frac{4s}{s^2 + 5s + 1}$ Answer: (A) Consider the second-order system with the characteristic equation 32. s(s+3) + K(s+5) = 0Based on the properties of the root loci, it can be shown that the complex portion of the root loci of the given system, for $0 < K < \infty$ is described by a cycle, and the two breakaway points on the real axis are (A) $-5 \pm \frac{\sqrt{5}}{2}$ (B) $-5 \pm \sqrt{5}$ (C) $-5 \pm \sqrt{10}$ (D) $-5 \pm 2\sqrt{5}$ Answer: (C) 33 In a flapper-nozzle displacement transducer, the values of the following parameters are given: Diameter of the orifice = 0.2 mm, Diameter of the nozzle = 0.8 mm, Supply pressure 1.4×10^2 kPa (gauge), Ambient pressure = 0 (gauge). The maximum value of the sensitivity is (B) 5.6 MPa/mm (A) 4.0 MPa/mm

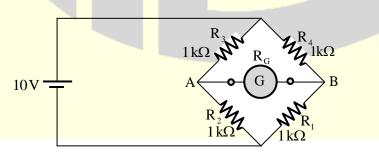

	ingineering Success	IN-GATE-2011	<u>www.gateforumonline.c</u>
	(C) 6.4 MPa/mm	(D) 7.3 MPa/mm	L
nsw			
4.	connected in two adjacent a	be capacitive displacement sensor (nor rms of an ac bridge in such a way that	t the output voltage of the bridge
		y of the supply voltage. Supply to the br placed in the other two arms of the bridg	-
	(A) 0.001 mV/pF (B)	0.05 mV/pF (C) 0.1 mV/pF	(D) 0.5 mV/pF
nsw	ver: (B)		
5.		ting at 72 rpm. The flux $\psi(\theta) = 3 + \cos \theta$	
		olitude and frequency of the output volta	
	(A) 4 mV and 45.8 Hz	(B) 30.2 mV and	
	(C) 30.2 mV and 30.2 Hz	(D) 288 mV and	45.8 Hz
nsw	ver: (B)		
6.	Assuming base-emitter volta 5V (ge of 0.7V and $ \begin{array}{c} 5V \\ 100\Omega \\ \hline Q_1 \\ \hline + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	
	$\beta = 99$ of transistor Q_1 the or	utput voltage V_0 in the ideal op-amp circ	uit shown below is
	(A) –1 V (B)	-1/3.3 V (C) 0V	(D) 2V
nsw	ver: (C)		

38. A transfer characteristic of the circuit drawn below is observed on an oscilloscope used in XY mode. The display on the oscilloscope is shown on the right hand side.

 V_1 is connected to the X input with a setting of 0.5 V/div, and V_0 is connected to the Y input with a setting of 2 V/div. The beam is positioned at the origin when V_i is zero.

Assuming that the opamp is ideal and zener diodes have forward biased voltage drop of 0.7 V, the values of reverse break-down voltages of Z_1 and Z_2 are respectively.

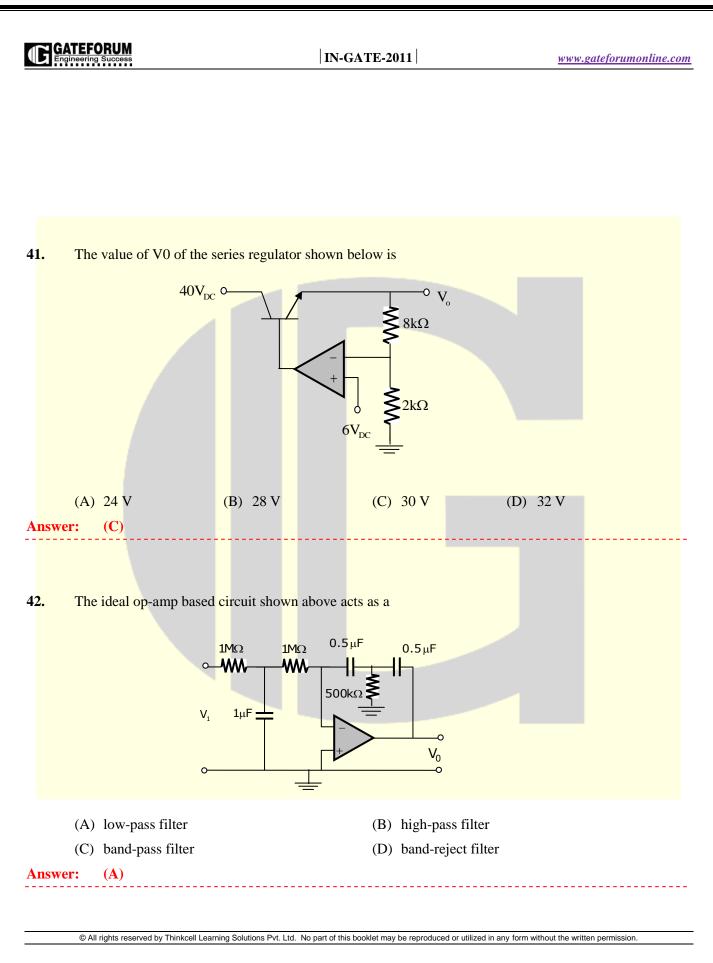
- (A) 3.3V and 5.3 V
- (C) 6.7 V and 4.7 V


- (B) 4.7 V and 6.7 V
- (D) 5.3 V and 3.3 V

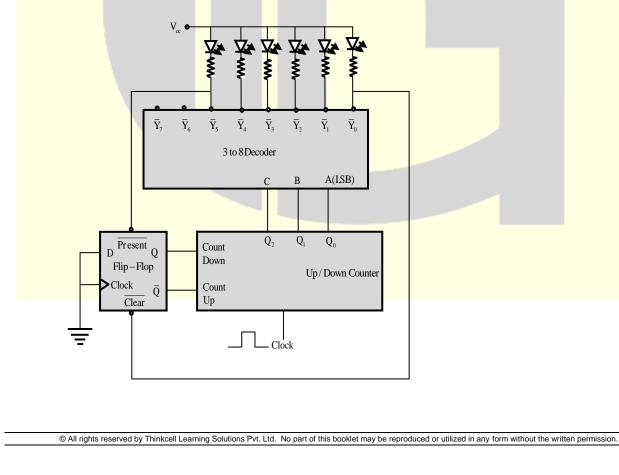
(D) Answer:

- **39.** Power in a three-phase, star connected balanced inductive load is measured by two wattmeter method. The phase voltage and phase current are 230V and 5A, respectively. The power factor of the load is 0.707. The readings W_1 and W_2 of the two wattmeter's are
 - (A) $W_1 = 298$ and $W_2 = 1111W$
 - (C) $W_1 = 1220W$ and $W_2 = 1220W$
- (B) $W_1 = 516W$ and $W_2 = 1924W$
- (D) $W_1 = 1111 W$ and $W_2 = -516W$

(B) Answer:


40. In the Wheatstone bridge shown below, when the resistance R_1 increases by 1 Ω , the current through the galvanometer is

(consider the Thevenin equivalent resistance of the bridge in the calculations)


(A) 1.25 µA (B) 2.5 μA (C) 12.5 µA (D) 25µA

Answer: (A)

GATEFORUM IN-GATE-2011 www.gateforumonline.com 43. A 4-bit successive approximation type of A/D converter has an input range of to 15 volts. The output bit b1 next to the LSB has a stuck-at-zero fault. The pair of input voltages, that produces the same output code word is (A) 2V and 4V(B) 4V and 6V(C) 1V and 2V(D) 8V and 9V Answer: (C) **44.** The number of objects crossing a window sequentially at variable speed is to becounted using an interrupt in the 8085 microprocessor. The objects are sensed by an optical source and a detector with associated signal conditioning circuit. The circuit produces a logic high output as long as the object is in front of the window, and this output is used to interrupt the processor. The duration of an object beingin front of the window is in the range of 100 ms to 2 s. The processor takes 1 msto process the input after an interrupt. The best choice of interrupt for an errorfree counting is (A) RST 5.5 (B) RST 6.5 (C) RST 7.5 (D) INTR (*) **Answer:**

45. The circuit below shows an up/down counter working with a decoder and a flip-flop.

	ngineering Success	IN-GATE-2011	<u>www.gateforumonline.co</u>
	Present and Clear of the flip-flo	op are asynchronous active-low inputs.	
	Assuming that the initial value 12 clock cycles are	e of counter output $(Q_2Q_1Q_0)$ as zero, the	counter outputs in decimal f
	(A) 0,1,2,3,4,4,3,2,1,1,2,3,4	(B) 0,1,2,3,4,5,0,1,2,3	,4,5,0
	(C) 0,1,2,3,4,5,4,3,2,1,0,1	(D) 0,1,2,3,4,5,4,3,2,1	,0,1,2
Answ	rer: (D)		
6.	pass filter with pass band gain a is subsequently "buried" additi	OmV, frequency 5kHz, duty cycle 10 %) and cut off frequency of 0 dB and 10 kHz ively into a zero-mean noise process of or juency of 2MHz. The PSD of the noise is o of the output is	respectively. The filtered sign ne-sided power spectral densi
	(A) 0dB (B) 0	0.1dB (C) 1.0dB	(D) 3dB
nsw	ver: (*)		
7.	Consider the difference equatio	on $y[n] - \frac{1}{3}y[n-1] = x[n]$ and suppose the	at $x[n] = \left(\frac{1}{2}\right)^n u[n]$. Assumi
	the condition of initial rest, the (A) $3\left(\frac{1}{3}\right)^n - 2\left(\frac{1}{2}\right)^n$ (C) $2\left(\frac{1}{3}\right)^n + \frac{1}{3}\left(\frac{1}{2}\right)^n$	on $y[n] - \frac{1}{3}y[n-1] = x[n]$ and suppose the solution for $y[n]$, $n \ge 0$ is (B) $-2\left(\frac{1}{3}\right)^n + 3\left(\frac{1}{2}\right)^n$ (D) $\frac{1}{3}\left(\frac{1}{3}\right)^n + \frac{2}{3}\left(\frac{1}{2}\right)^n$	at $x[n] = \left(\frac{1}{2}\right)^n u[n]$. Assumin
	the condition of initial rest, the (A) $3\left(\frac{1}{3}\right)^n - 2\left(\frac{1}{2}\right)^n$ (C) $2\left(\frac{1}{3}\right)^n + \frac{1}{3}\left(\frac{1}{2}\right)^n$ rer: (B)	solution for y[n], $n \ge 0$ is (B) $-2\left(\frac{1}{3}\right)^n + 3\left(\frac{1}{2}\right)^n$	at $x[n] = \left(\frac{1}{2}\right)^n u[n]$. Assumin
17. Answ	the condition of initial rest, the (A) $3\left(\frac{1}{3}\right)^n - 2\left(\frac{1}{2}\right)^n$ (C) $2\left(\frac{1}{3}\right)^n + \frac{1}{3}\left(\frac{1}{2}\right)^n$ rer: (B)	solution for y[n], $n \ge 0$ is (B) $-2\left(\frac{1}{3}\right)^n + 3\left(\frac{1}{2}\right)^n$ (D) $\frac{1}{3}\left(\frac{1}{3}\right)^n + \frac{2}{3}\left(\frac{1}{2}\right)^n$ Common Data Questions: 48 & 49	at $x[n] = \left(\frac{1}{2}\right)^n u[n]$. Assumin
	the condition of initial rest, the (A) $3\left(\frac{1}{3}\right)^n - 2\left(\frac{1}{2}\right)^n$ (C) $2\left(\frac{1}{3}\right)^n + \frac{1}{3}\left(\frac{1}{2}\right)^n$ there: (B)	solution for y[n], $n \ge 0$ is (B) $-2\left(\frac{1}{3}\right)^n + 3\left(\frac{1}{2}\right)^n$ (D) $\frac{1}{3}\left(\frac{1}{3}\right)^n + \frac{2}{3}\left(\frac{1}{2}\right)^n$ Common Data Questions: 48 & 49	at $x[n] = \left(\frac{1}{2}\right)^n u[n]$. Assumin
	the condition of initial rest, the (A) $3\left(\frac{1}{3}\right)^n - 2\left(\frac{1}{2}\right)^n$ (C) $2\left(\frac{1}{3}\right)^n + \frac{1}{3}\left(\frac{1}{2}\right)^n$ there: (B)	solution for y[n], $n \ge 0$ is (B) $-2\left(\frac{1}{3}\right)^{n} + 3\left(\frac{1}{2}\right)^{n}$ (D) $\frac{1}{3}\left(\frac{1}{3}\right)^{n} + \frac{2}{3}\left(\frac{1}{2}\right)^{n}$ Common Data Questions: 48 & 49 W	at $x[n] = \left(\frac{1}{2}\right)^n u[n]$. Assumin

G	ATEFORUM ngineering Success	1	N-GATE-2011	www.gateforumonline.co
48.	The current i(t) thro	ugh the capacitor is		
	(A) $sin(5t)A$	(B) $\cos(5t)A$	(C) $\sin(5t-45^{\circ})$)A (D) 1A
Answ	ver: (A)			
10	T 1	1.12 11 11 1	· · ·	
19.	(A) 1 W (B)	ower delivered by the tw 0.5 W	(C) 2 W	(D) 4 W
Answ		0.5 W	(C) 2 W	
		Common D	ata Questions 50&51	
	The open loop trop	for functions of a unity	nagativa faadhaalt aante	al sustam is sizen hu
		ster functions of a unity	negative feedback control	or system is given by
	$G(s) = \frac{K}{(s+5)^3}$			
5 <mark>0.</mark>	The value of K for t	he phase margin of the	system to be 45° is	
	(A) 250√5	(B) $250\sqrt{2}$	(C) 125√5	(D) $125\sqrt{2}$
Answ	ver: (B)			
51.	The value of K for conjugate pole pair		be 0.5, corresponding to	the dominant closed-loop compl
	(A) 250	(B) 125	(C) 75	(D) 50
Answ	ver: (B)			
	Linko		Q.52 to Q.55 Carry Tw	
		Statement for Linke	d Answer Questions: 5	<u>2 & 53</u>
	The level of water	stored in a truncated co	nical bath is measured l	by a gamma-rayradiation sensor. T
				waterinflow at the constant rate
	© All rights reserved by Thinkce	ell Learning Solutions Pvt. Ltd. No part	this booklet may be reproduced or util	ized in any form without the written permission.
			-1	1

'↓'

G	ATEFORUM ngineering Success	IN-GATE-2011	www.gateforumonline.com
	0.125m ³ /s. Assume m kg/m ³ .	ass absorption coefficient of water is 77×10^{-4} m	² /kg and density of water is 1000
5 <mark>2.</mark>	When the intensity of the level of water is	radiation received by the floating detector is half	f of theintensity detected initially,
Answ	(A) 1.09 m er: (*)	(B) 1.5 m (C) 1.8 m	(D) 1.9 m
5 <mark>3.</mark>	-	ector is at the level calculated in Q.52, the time el (7) 10.52	
Answ	(A) 4.1 s er: (*)	(B) 5.23 s (C) 10.52 s	
		Statement for Linked Answer Questions:54 &	<u>: 55</u>
	M. M. and M. in the ci	rcuit shown below are matched N-channel enhancen	pent mode MOSEETs
		+5V 1kΩ	
			D_2
			—o V _o
		5V	

Operating in saturation mode, forward voltage drop of each diode is 0.7 V, reverse leakage current of each diode is negligible and the op-amp is ideal.

			N-GATE-2011	<u>www.gatefoi</u>	www.gateforumonline.com	
54.	The current I_s in the circuit is					
	(A) –1 mA	(B) 0.5 mA	(C) 1 mA	(D) 2 mA.		
Answe	er: (B)					
5 <mark>5.</mark>	For the computed a	alue of summert L the out				
55.	(A) 1.2 V	(B) 0.7V	(D) $0.2V$	(D) -0.7 V		
Answe		(b) $0.7V$	(D) 0.2 V	(D) = 0.7 V		
	© All rights reserved by Thinko	ell Learning Solutions Pvt. Ltd. No part o	f this booklet may be reproduced or ut	ilized in any form without the written permi	ssion.	