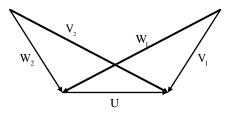




# GATE PREVIOUS YEAR SOLVED PAPERS

Mechanical Engineering Previous Year Solved Papers

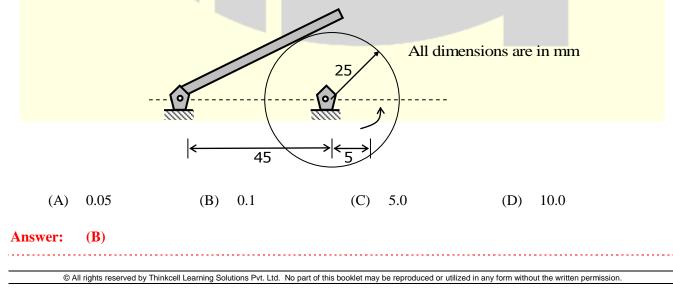
**GATEFORUM** Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.


For more details visit gateforumonline.com

**|ME-GATE-2012|** www.gateforumonline.com **MECHANICAL ENGINEERING** Q. No. 1 - 25 Carry One Mark Each 1. Which one of the following is NOT a decision taken during the aggregate production planning stage? Scheduling of machines (A) (B) Amount of labour to be committed Rate at which production should happen (C) (D) Inventory to be carried forward Answer: **(B)** A CNC vertical milling machine has to cut a straight slot of 10mm width and 2mm depth by a cutter of 2. 10mm diameter between points (0,0) and (100,100) on the XY plane (dimensions in mm). The feed rate used for milling is 50mm/min. milling time for the slot (in seconds) is (A) 120 (B) 170 (C) 180 (D) 240 **(A)** Answer: A solid cylinder of diameter 100mm and height 50mm is forged between two frictionless flat dies to a 3. height of 25mm. The percentage change in diameter is (A) 0 (B) 2.07 20.7 (C) (D) 41.4 **(D)** 

4. The velocity triangles at the inlet and exit of the rotor of a turbo machine are shown. V denotes the absolute velocity of the fluid, W denotes the relative velocity of the fluid, and U denotes the blade velocity. Subscripts 1 and 2 refer to inlet and outlet respectively.

\_\_\_\_\_


Answer:



|          | Engineering Suc                | cess                                                              |           |                      | ME-GA                 | ATE-201   | .2          |                 |        | www.gat   | <u>eforumonline.co</u> i |
|----------|--------------------------------|-------------------------------------------------------------------|-----------|----------------------|-----------------------|-----------|-------------|-----------------|--------|-----------|--------------------------|
|          | If $\mathbf{V}_2 = \mathbf{W}$ | $V_1$ and $V_1 = W_2$                                             | , then tl | ne degre             | ee of reac            | tion is   |             |                 |        |           |                          |
|          | (A) 0                          |                                                                   | (B)       | 1                    |                       | (C)       | 0.5         |                 | (D)    | 0.25      |                          |
| Insv     | wer: (C                        | )                                                                 |           |                      |                       |           |             |                 |        |           |                          |
|          |                                |                                                                   |           |                      |                       |           |             |                 |        |           |                          |
| 5.       | Which or                       | ne of the follow                                                  | ving cor  | figurati             | ions has t            | he highes | st fin effe | ectiveness?     |        |           |                          |
|          | (A) Thin                       | , closely spaced                                                  | l fins    |                      |                       | (B)       | Thin, w     | idely space     | d fins |           |                          |
|          | (C) Thicl                      | c widely spaced                                                   | l fins    |                      |                       | (D)       | Thick, c    | closely spac    | ed fin | IS        |                          |
|          |                                |                                                                   |           |                      |                       |           |             |                 |        |           |                          |
| Ansv     | wer: (A                        | )                                                                 |           |                      |                       |           |             |                 |        |           |                          |
|          |                                |                                                                   |           |                      |                       |           |             |                 |        |           |                          |
| <b>.</b> | An ideal                       | gas of mass r                                                     | n and t   | tempera              | ture T <sub>1</sub> t | indergoe  | s a rever   | sible isothe    | ermal  | process   | from an initia           |
|          | pressure                       | P <sub>1</sub> to a final p                                       | ressure   | P <sub>2</sub> . The | heat los              | s during  | the proce   | ess is Q. Th    | ne ent | tropy cha | nge $\Delta S$ of th     |
|          | gas is                         |                                                                   |           |                      |                       |           |             |                 |        |           |                          |
|          | •                              |                                                                   |           |                      |                       |           | (           |                 |        |           |                          |
|          | (A) m                          | $\operatorname{R}\ln\left(\frac{P_2}{P}\right)$                   |           |                      |                       | (B)       | mR ln       | $\frac{P_1}{P}$ |        |           |                          |
|          |                                |                                                                   |           |                      |                       |           | (           | 12)             |        | _         |                          |
|          |                                | $\operatorname{R}\ln\left(\frac{P_2}{P_1}\right) - \frac{Q}{T_1}$ |           |                      |                       |           | -           |                 |        |           |                          |
|          | $(\mathbf{C})$ m               | $\operatorname{R}\ln\left[\frac{12}{2}\right] = \mathbf{X}$       |           |                      |                       | (D)       | Zero        |                 |        |           |                          |

Answer: (B)

7. In the mechanism given below, if the angular velocity of the eccentric circular disc is 1rad/s, the angular velocity (rad/s) of the follower link for the instant shown in the figure is



| G          | <b>GATE</b> | ORUM<br>ng Success                                      |                             | ME-                                                     | GATE-20             | 12                        |                             | www.gateforumonline.com                                           |
|------------|-------------|---------------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------|---------------------------|-----------------------------|-------------------------------------------------------------------|
| 8.         | A ci        | rcular solid disc of                                    | uniforn                     | n thickness 20r                                         | nm, radius          | 200mm and ma              | ss 20kg, is                 | s used as a flywheel. If it                                       |
|            | rotat       | es at 600rpm, the k                                     | inetic e                    | energy of the fly                                       | ywheel, in          | Joules is                 |                             |                                                                   |
|            | (A)         | 395                                                     | (B)                         | 790                                                     | (C)                 | 1580                      | (D)                         | 3160                                                              |
| Ansv       | ver:        | ( <b>B</b> )                                            |                             |                                                         |                     |                           |                             |                                                                   |
| 9.         | A ca        | ntilever beam of le                                     | ength L                     | is subjected to                                         | o a momen           | t M at the free           | end. The                    | moment of inertia of the                                          |
|            | bean        | n cross section ab                                      | out the                     | e neutral axis                                          | is I and tl         | ne Young mod              | ulus is E                   | . The magnitude of the                                            |
|            | maxi        | mum deflection is                                       |                             |                                                         |                     |                           |                             |                                                                   |
|            | (A)         | $\frac{\mathrm{ML}^2}{\mathrm{2EI}}$                    | (B)                         | $\frac{\mathrm{ML}^2}{\mathrm{EI}}$                     | (C)                 | $\frac{2ML^2}{EI}$        | (D)                         | $\frac{4\mathrm{ML}^2}{\mathrm{EI}}$                              |
| Ansv       | ver:        | (A)                                                     |                             |                                                         |                     |                           |                             |                                                                   |
|            |             |                                                         |                             |                                                         |                     |                           |                             |                                                                   |
| <b>10.</b> | For a       | a long slender colu                                     | umn of                      | uniform cross                                           | section, th         | e ratio of critic         | al bucklin                  | g load for the case with                                          |
|            | both        | ends clamped to th                                      | ne case                     | with both ends                                          | hinged is           |                           |                             |                                                                   |
|            | (A)         | 1                                                       | (B)                         | 2                                                       | (C)                 | 4                         | (D)                         | 8                                                                 |
| Ansv       | ver:        | ( <b>C</b> )                                            |                             |                                                         |                     |                           |                             |                                                                   |
|            |             |                                                         |                             |                                                         |                     |                           |                             |                                                                   |
| 11.        | At x        | = 0, the function f                                     | $(\mathbf{x}) = \mathbf{x}$ | $x^3 + 1$ has                                           |                     |                           |                             |                                                                   |
|            | (A)         | A maximum valu                                          | ie                          |                                                         | (B)                 | A minimum v               | alue                        |                                                                   |
|            | (C)         | A singularity                                           |                             |                                                         | (D)                 | A point of infl           | ection                      |                                                                   |
| Ansv       | ver:        | ( <b>D</b> )                                            |                             |                                                         |                     |                           |                             |                                                                   |
|            |             |                                                         |                             | 2 2                                                     |                     |                           |                             |                                                                   |
| 12.        | For t       | the spherical surface                                   | ce, $x^{2}$ +               | $-y^2 + z^2 - 1$ , th                                   | e unit outv         | ard normal vec            | tor at the                  | point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is |
|            | giver       | n by                                                    |                             |                                                         |                     |                           |                             |                                                                   |
|            | (A)         | $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$ | (B)                         | $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$ | (C)                 | <b>k</b> (D)              | $\frac{1}{\sqrt{3}}\hat{i}$ | $+\frac{1}{\sqrt{3}}\hat{j}+\frac{1}{\sqrt{3}}\hat{k}$            |
| Ansv       | ver:        | (A)                                                     |                             |                                                         |                     |                           |                             |                                                                   |
|            | © A         | Il rights reserved by Thinkcell L                       | earning Sol                 | utions Pvt. Ltd. No part o                              | of this booklet may | be reproduced or utilized | in any form with            | put the written permission.                                       |

g Success

**13.** Match the following metal forming processes with their associated stresses in the workpiece.

|      |         | List I        |   | List II                 |
|------|---------|---------------|---|-------------------------|
|      | Р       | Coining       | 1 | Tensile                 |
|      | Q       | Wire Drawing  | 2 | Shear                   |
|      | R       | Blanking      | 3 | Tensile and compressive |
|      | S       | Deep drawing  | 4 | Compressive             |
| (4   | A) P-4, | Q-1, R-2, S-3 |   | (B) P-4, Q-1, R-3, S-2  |
| (0   | C) P-1, | Q-2, R-4, S-3 |   | (D) P-1, Q-3, R-2, S-4  |
| nswe | er: (A) |               |   |                         |
|      |         |               |   |                         |

14. In abrasive jet machining, as the distance between the nozzle tip and the work surface increases, the material removal rate
(A) Increases continuously
(B) Decreases continuously
(C) Decreases, becomes stable and then increases

(D) Increases, becomes stable and then decreases

Answer: (D)

A

15. In an interchangeable assembly, shafts of size  $25.000^{+0.040}$  mm mate with holes of size  $25.000^{+0.020}$  mm. The maximum interference (in microns) in the assembly is

.....

(A) 40 (B) 30 (C) 20 (D) 10

Answer: (C)

**16.** During normalizing process of steel, the specimen is heated

(A) Between the upper and lower critical temperature and cooled in still air

(B) Above the upper critical temperature and cooled in furnace

(C) Above the upper critical temperature and cooled in still air

(D) Between the upper and lower critical temperature and cooled in furnace

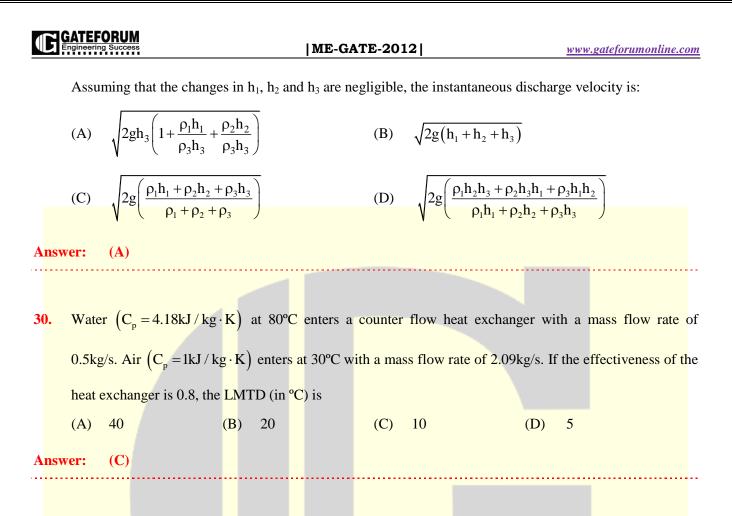
Answer: (C)

| G                | <b>GATE</b> | ORUM<br>ng Success     |                  | ME                         | C-GATE-20             | 12                  |                  | www.gateforumonline.com     |
|------------------|-------------|------------------------|------------------|----------------------------|-----------------------|---------------------|------------------|-----------------------------|
| 17.              | Oil f       | lows throug            | gh a 200mm di    | ameter horizo              | ontal cast irc        | on pipe (fric       | tion factor, f=  | 0.0225) of length 500m      |
|                  | The         | volumetric             | flow rate is 0.2 | $2m^3/s$ . The l           | nead loss (in         | m) due to fi        | riction is (assu | $me g=9.81 m/s^2$ )         |
|                  | (A)         | 116.18                 | (B)              | 0.116                      | (C)                   | 18.22               | (D)              | 232.36                      |
| Ansv             | ver:        | (A)                    |                  |                            |                       |                     |                  |                             |
|                  |             |                        |                  |                            |                       |                     |                  |                             |
| 18.              | For         | an opaque              | surface, the     | absorptivity (             | $\alpha$ ), transitiv | vity (τ) an         | d reflectivity   | $(\rho)$ are related by the |
|                  | equa        |                        |                  |                            | ,                     | • ()                |                  |                             |
|                  | (A)         | $\alpha + \rho = \tau$ | (B)              | $\rho + \alpha + \tau = 0$ | 0 (C)                 | $\alpha + \rho = 1$ | (D)              | $\alpha + \rho = 0$         |
| Ansy             | vor•        | ( <b>C</b> )           |                  |                            |                       |                     |                  |                             |
| Allsv            | vei.        | (C)                    |                  |                            |                       |                     |                  |                             |
| 19.              | Stea        | m enters an            | adiabatic turbi  | ne operating               | at steady sta         | te with an e        | nthalny of 325   | 1.0kJ/kg and leaves as      |
| 17.              |             |                        |                  |                            |                       |                     |                  | the saturated liquid and    |
|                  |             |                        |                  |                            |                       |                     | -                | ass flow rate of steam i    |
|                  |             |                        |                  |                            |                       |                     |                  | he turbine in MW is:        |
|                  | (A)         | 6.5                    | (B)              | 8.9                        | (C)                   | 9.1                 | (D)              | 27.0                        |
| Ansv             | ver:        | <b>(B</b> )            |                  |                            |                       |                     |                  |                             |
|                  |             |                        |                  |                            |                       |                     |                  |                             |
| <mark>20.</mark> | The         | following a            | re the data for  | two crossed h              | elical gears          | used for spe        | ed reduction:    |                             |
|                  | Gear        | I: Pitch cire          | cle diameter in  | the plane of               | rotation 80m          | m and helix         | angle 30°.       |                             |
|                  | Gear        | II: Pitch ci           | rcle diameter i  | n the plane of             | rotation 120          | mm and he           | lix angle 22.5°  |                             |
|                  | If the      |                        | d is 1440rpm, 1  |                            | eed in rpm is         |                     |                  |                             |
|                  | (A)         | 1200                   | (B)              | 900                        | (C)                   | 875                 | (D)              | 720                         |
| Ansv             | ver:        | <b>(B)</b>             |                  |                            |                       |                     |                  |                             |
|                  |             |                        |                  |                            |                       |                     |                  |                             |

21. A solid disc of radius r rolls without slipping on the horizontal floor with angular velocity  $\omega$  and angular acceleration  $\alpha$ . The magnitude of acceleration of the point of contact on the disc is

|      | ngineerir              | ng Success                             |                 | N                    | IE-GATE-201    | 12                     |                                                        | www.gate      | e <mark>forumonline.c</mark> |
|------|------------------------|----------------------------------------|-----------------|----------------------|----------------|------------------------|--------------------------------------------------------|---------------|------------------------------|
|      | (A)                    | Zero                                   | (B)             | rα                   | (C)            | $\sqrt{(r\alpha)^2}$ + | $\overline{\left(\mathbf{r}\omega^{2}\right)^{2}}$ (D) | $r\omega^2$   |                              |
| Answ | ver:                   | ( <b>D</b> )                           |                 |                      |                |                        |                                                        |               |                              |
| 22.  | A th                   | in walled sph                          | erical shell is | s subjected          | to an internal | pressure. If           | the radius o                                           | f the shell i | s increased                  |
|      | 1% a                   | and the thick                          | ness is reduc   | ed by 1%,            | with the inter | mal pressu             | re remaining                                           | the same,     | the percenta                 |
|      | chan                   | ge in the circ                         | umferential (l  | noop) stres          | s is           |                        |                                                        |               |                              |
|      | (A)                    | 0                                      | (B)             | 1                    | (C)            | 1.08                   | (D)                                                    | 2.02          |                              |
| Answ | ver:                   | ( <b>D</b> )                           |                 |                      |                |                        |                                                        |               |                              |
|      |                        |                                        |                 |                      |                |                        |                                                        |               |                              |
| 3.   | The                    | area enclosed                          | between the     | straight lin         | e y=x and the  | parabola y             | $= x^2$ in the x-                                      | y plane is    |                              |
|      | (A)                    |                                        |                 | 1/4                  | (C)            |                        | (D)                                                    |               |                              |
| Answ |                        | (A)                                    |                 |                      |                |                        |                                                        |               |                              |
|      |                        | (71)                                   |                 |                      |                |                        |                                                        |               |                              |
| 24.  | (A)<br>(B)             | Continuous<br>Non-contin               | and different   | tiable<br>erentiable | erval -1≤x≤1   | . At the p             | oint x=0, f (x                                         | ) is          |                              |
|      | (C)                    |                                        | and non-diff    |                      |                |                        |                                                        |               |                              |
|      | (D)                    | Neither con                            | tinuous nor d   | interentiab          | le             |                        |                                                        |               |                              |
| Answ | ver:                   | ( <b>C</b> )                           |                 |                      |                |                        |                                                        |               |                              |
| 25.  | $\lim_{x\to 0} \bigg($ | $\left(\frac{1-\cos x}{x^2}\right)$ is |                 |                      |                |                        |                                                        |               |                              |
|      | (A)                    | 1/4                                    | (B)             | 1/2                  | (C)            | 1                      | (D)                                                    | 2             |                              |
| Answ | ver:                   | <b>(B</b> )                            |                 |                      |                |                        |                                                        |               |                              |
|      |                        |                                        |                 |                      |                |                        |                                                        |               |                              |
|      |                        |                                        |                 |                      |                |                        |                                                        |               |                              |
|      |                        |                                        |                 |                      |                |                        |                                                        |               |                              |

C GATEFORUM Engineering Success ME-


|ME-GATE-2012|

## **Q. No. 26 – 55 Carry Two Marks Each**

26. Calculate the punch size in mm, for a circular blanking operation for which details are given below:

|                   |        | 1                     | ,                           | e i                            | C                                    |  |  |  |
|-------------------|--------|-----------------------|-----------------------------|--------------------------------|--------------------------------------|--|--|--|
|                   | Size   | of the blank          |                             | 25mm                           |                                      |  |  |  |
|                   | Thic   | kness of the sheet    |                             | 2mm                            |                                      |  |  |  |
|                   | Radi   | al clearance betwee   | n punch and die             | 0.06mm                         |                                      |  |  |  |
|                   | Die a  | allowance             |                             | 0.05mm                         |                                      |  |  |  |
|                   | (A)    | 24.83                 | (B) 24.89                   | (C) 25.01                      | (D) 25.17                            |  |  |  |
| Ans               | wer:   | (A)                   | 1                           |                                |                                      |  |  |  |
|                   |        |                       |                             |                                |                                      |  |  |  |
| 27.               | In a s | single pass rolling p | process using 410mm dia     | meter steel rollers, a strip   | of width 140mm and thickness         |  |  |  |
|                   | 8mm    | undergoes 10% red     | duction of thickness. The   | angle of bite in radians is    |                                      |  |  |  |
|                   | (A)    | 0.006                 | (B) 0.031                   | (C) 0.062                      | (D) 0.600                            |  |  |  |
| Ans               | wer:   | ( <b>C</b> )          |                             |                                |                                      |  |  |  |
|                   |        |                       |                             |                                |                                      |  |  |  |
| <b>28.</b>        | In a   | DC arc welding op     | eration, the voltage-arc l  | ength characteristic was o     | btained as $V_{arc} = 20 + 51$ where |  |  |  |
|                   | the a  | rc length l was var   | ied between 5mm and 7       | mm. Here $V_{arc}$ denotes the | e arc voltage in Volts. The arc      |  |  |  |
|                   | curre  | ent was varied from   | n 400A to 500A. Assun       | ning linear power source       | characteristic, the open circuit     |  |  |  |
|                   | volta  | ge and short circuit  | current for the welding of  | operation are:                 |                                      |  |  |  |
|                   | (A)    | 45V, 450A             | (B) 75V, 550A               | (C) 95V, 950A                  | (D) 150V, 1500A                      |  |  |  |
| Ans               | wer:   | ( <b>C</b> )          |                             |                                |                                      |  |  |  |
|                   |        |                       |                             |                                |                                      |  |  |  |
| <mark>29</mark> . | A lar  | ge tank with a nozz   | ele attached contains three | e immiscible inviscid fluid    | s as shown.                          |  |  |  |
|                   |        |                       |                             |                                |                                      |  |  |  |





**31.** A solid steel cube constrained on all six faces is heated so that the temperature rises uniformly by  $\Delta T$ . If the thermal coefficient of the material is  $\alpha$ , Young's modulus is E and the Poisson's ratio is v, the thermal stress developed in the cube due to heating is

(A) 
$$-\frac{\alpha(\Delta T)E}{(1-2v)}$$
 (B)  $-\frac{2\alpha(\Delta T)E}{(1-2v)}$  (C)  $-\frac{3\alpha(\Delta T)E}{(1-2v)}$  (D)  $-\frac{\alpha(\Delta T)E}{3(1-2v)}$   
Answer: (A)

32. A solid circular shaft needs to be designed to transmit a torque of 50Nm. If the allowable shear stress of the material is 140MPa, assuming a factor of safety of 2, the minimum allowable design diameter in mm is
(A) 8 (B) 16 (C) 24 (D) 32

Answer: (B)

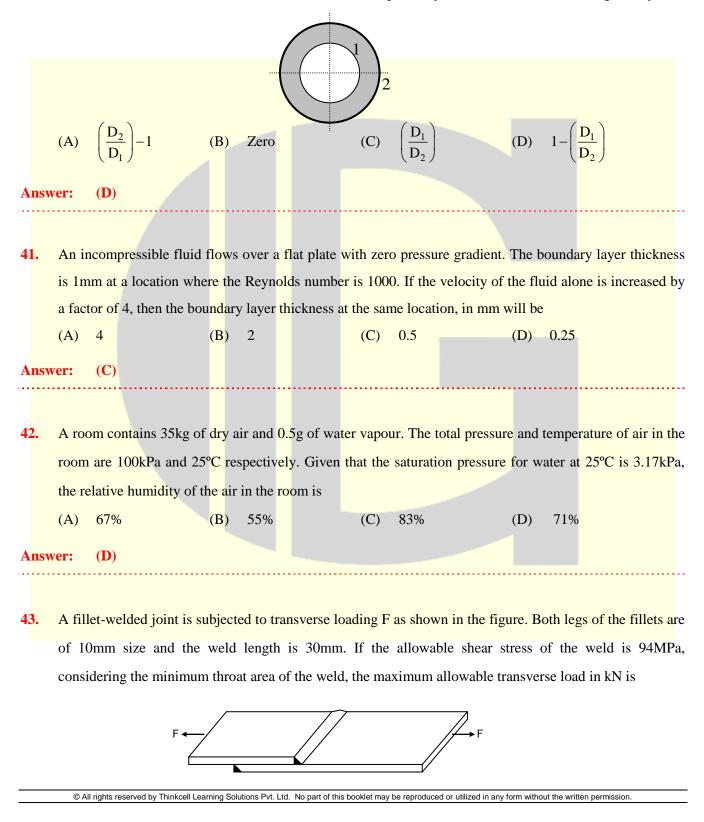


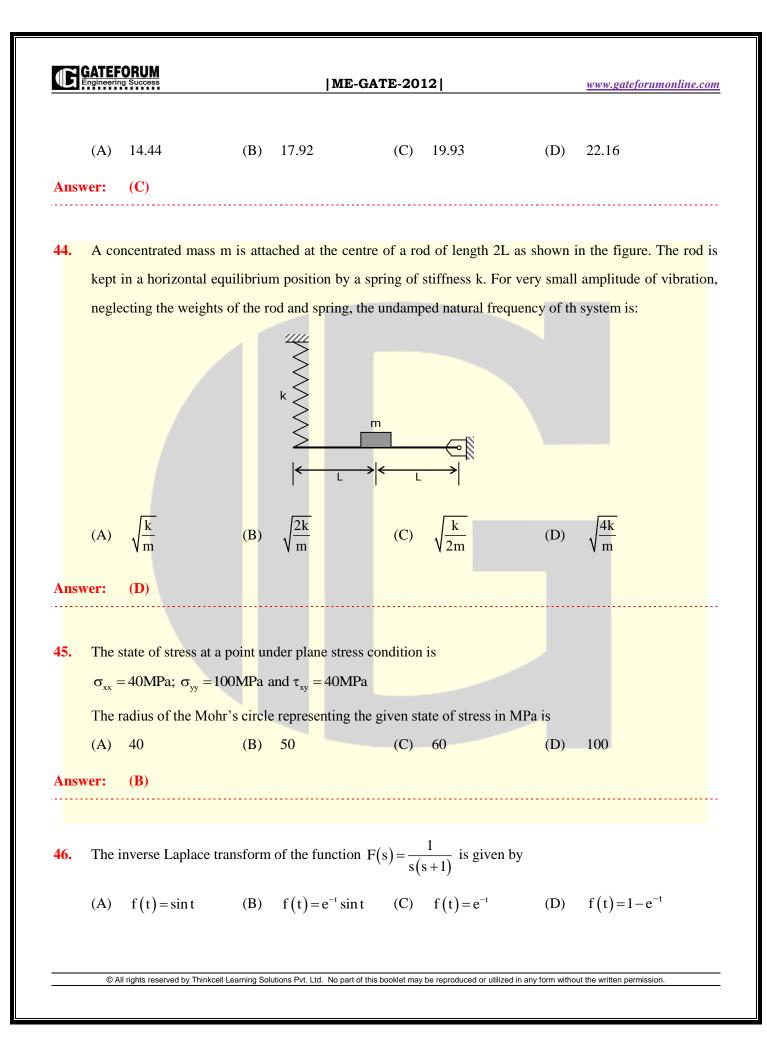


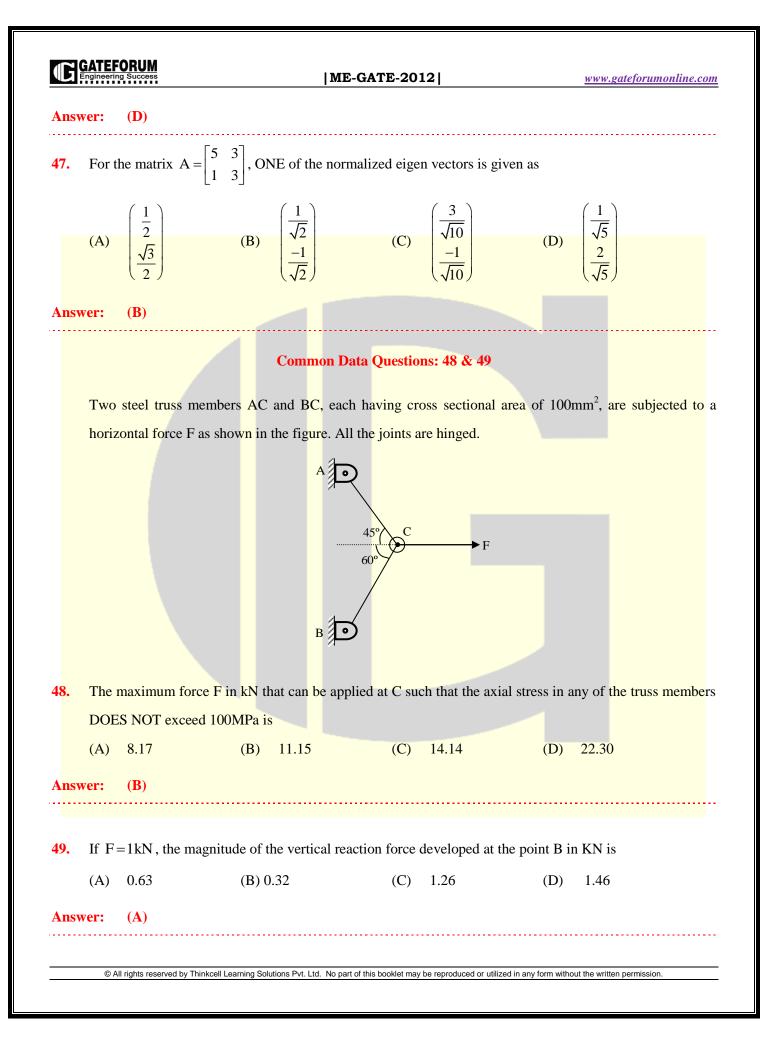
# GATE REFRESHER COURSE Mechanical Engineering

**GATEFORUM** Pioneers in Digital courses for GATE since 2008 offers **GATE refresher course** giving you access to video solutions for previous 11 years GATE questions and Topic-wise formula Compendium (Handbook).

Enroll now and get 20% discount use Promo Code GATEPAPERS


For more details visit gateforumonline.com


**|ME-GATE-2012|** www.gateforumonline.com 33. A force of 400N is applied to the brake drum of 0.5m diameter in a band brake system as shown in the figure, where the wrapping angle is 180°. If the coefficient of friction between the drum and the band is 0.25, the braking torque applied, in Nm is → 400N 100.6 54.4 22.1 15.7 (B) (C) (D) (A) **Answer: (B)** A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after 34. another without replacement. The probability that the selected set contains one red ball and two black balls is (B)  $\frac{1}{12}$ (C)  $\frac{3}{10}$  $\frac{1}{20}$ (D) (A) **Answer: (D)** 35. Consider the differential equation with the boundary conditions of y(0) = 0 and y(1) = 1. The complete solution of the differential equation is (C)  $e^x \sin\left(\frac{\pi x}{2}\right)$  (D)  $e^{-x} \sin\left(\frac{\pi x}{2}\right)$ (B)  $\sin\left(\frac{\pi x}{2}\right)$  $x^2$ (A) **(A)** Answer: **36.** The system of algebraic equations given below has x + 2y + z = 42x + y + 2z = 5x - y + z = 1


| <b>GATEFORUM</b><br>Engineering Success                                                                    | ME-GATE-20                              | 12                                 |              | www.gateforumonline.com     |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|--------------|-----------------------------|
| (A) A unique solution of $x=1$ ,                                                                           | y=1 and z=1                             |                                    |              |                             |
| (B) Only the two solutions of                                                                              | (x=1, y=1  and  z=1) and                | (x=2, y=1 and z=0)                 | )            |                             |
| (C) Infinite number of solution                                                                            | 18                                      |                                    |              |                             |
| (D) No feasible solution                                                                                   |                                         |                                    |              |                             |
| Answer: (C)                                                                                                |                                         |                                    |              |                             |
|                                                                                                            |                                         |                                    |              |                             |
| <b>37.</b> The homogeneous state of stress                                                                 | for a metal part underg                 | oing plastic deform                | ation is     | 5                           |
| $T = \begin{bmatrix} 10 & 5 & 0 \\ 5 & 20 & 0 \\ 0 & 0 & -10 \end{bmatrix}$ Where the stress component val |                                         |                                    |              |                             |
| $T = \begin{bmatrix} 5 & 20 & 0 \end{bmatrix}$                                                             |                                         |                                    |              |                             |
|                                                                                                            |                                         |                                    |              |                             |
| where the stress component var                                                                             | ues are in MPa. Using                   | von Mises yield c                  | riterion     | i, the value of estimated   |
| shear yield stress, in MPa is                                                                              |                                         |                                    |              |                             |
| (A) 9.50 (B)                                                                                               | 16.07 (C)                               | 28.52                              | (D)          | 49.41                       |
| Answer: (B)                                                                                                |                                         |                                    |              |                             |
|                                                                                                            |                                         |                                    |              |                             |
| <b>38.</b> Details pertaining to an orthogor                                                               | al metal cutting proces                 | s are given below                  |              |                             |
| Chip thickness ratio                                                                                       |                                         | 0.4                                |              |                             |
| Unreformed thickness                                                                                       |                                         | 0.6mm                              |              |                             |
| Rake angle                                                                                                 |                                         | +10°                               |              |                             |
| Cutting speed<br>Mean thickness of primary shear                                                           | 7000                                    | 2.5m/s<br>25 microns               |              |                             |
| The shear strain rate in $s^{-1}$ during                                                                   |                                         | 25 microns                         |              |                             |
|                                                                                                            | $0.7754 \times 10^5$ (C)                | $1.0104 \times 10^{5}$             | (D)          | $4.397 \times 10^{5}$       |
| (A) 0.1701×10 (D)                                                                                          | J.7754×10 (C)                           | 1.0104×10                          | (D)          | 4.577 ~10                   |
| Answer: (C)                                                                                                |                                         |                                    |              |                             |
|                                                                                                            |                                         |                                    |              |                             |
| <b>39.</b> In a single pass drilling operation                                                             | -                                       |                                    |              | -                           |
| 50mm thickness. Drill spindle sp                                                                           | -                                       |                                    | l point      | angle is 118°. Assuming     |
| 2mm clearance at approach and $(A) = 25.1$                                                                 |                                         |                                    |              | 20.1                        |
| (A) 35.1 (B) 3                                                                                             | 32.4 (C)                                | 31.2                               | (D)          | 30.1                        |
| Answer: (A)                                                                                                |                                         |                                    |              |                             |
|                                                                                                            |                                         |                                    |              |                             |
| © All rights reserved by Thinkcell Learning Solution                                                       | ns Pvt. Ltd. No part of this booklet ma | y be reproduced or utilized in any | y form withc | out the written permission. |

EFUNUIN ering Success

40. Consider two infinitely long thin concentric tubes of circular cross section as shown in the figure. If  $D_1$  and  $D_2$  are the diameters of the inner and outer tubes respectively, then the view factor  $F_{22}$  is given by







**GATEFORUM** Engineering Success

|ME-GATE-2012|

#### Common Data Questions: 50 & 51

A refrigerator operates between 120kPa and 800kPa in an ideal vapour compression cycle with R-134a as the refrigerant. The refrigerant enters the compressor as saturated vapour and leaves the condenser as saturated liquid. The mass flow rate of the refrigerant is 0.2kg/s. Properties for R-134a are as follows

|        | Saturated R-134a |                |                             |                       |                        |  |  |  |  |  |
|--------|------------------|----------------|-----------------------------|-----------------------|------------------------|--|--|--|--|--|
| P(kPa) |                  | $h_{f}(kJ/kg)$ | $h_{g}\left(kJ / kg\right)$ | $s_{f}(kJ/kg\cdot K)$ | $s_{g}(kJ/kg \cdot K)$ |  |  |  |  |  |
| 120    | -22.32           | 22.5           | 237                         | 0.093                 | 0.95                   |  |  |  |  |  |
| 800    | 31.31            | 95.5           | 267.3                       | 0.354                 | 0.918                  |  |  |  |  |  |

|                                                           |                          | Superheat                | ted R-134a               |                    |  |  |  |  |  |
|-----------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------|--|--|--|--|--|
|                                                           | P(kPa)                   | T°C                      | h(kJ/kg)                 | $s(kJ/kg \cdot K)$ |  |  |  |  |  |
|                                                           | 800                      | 40                       | 276.45                   | 0.95               |  |  |  |  |  |
|                                                           |                          |                          |                          |                    |  |  |  |  |  |
| <b>50.</b> The power required for the compressor in kW is |                          |                          |                          |                    |  |  |  |  |  |
| (1                                                        | A) 5.94                  | (B) 1.83                 | (C) 7.9                  | (D) 39.5           |  |  |  |  |  |
| Angregor                                                  |                          |                          |                          |                    |  |  |  |  |  |
| Answer                                                    | :: (C)                   |                          |                          |                    |  |  |  |  |  |
|                                                           |                          |                          |                          |                    |  |  |  |  |  |
| <mark>51.</mark> Т                                        | he rate at which heat is | extracted in kJ/s from t | he refrigerated space is |                    |  |  |  |  |  |
| (/                                                        | A) 28.3                  | (B) 42.9                 | (C) 34.4                 | (D) 14.6           |  |  |  |  |  |
|                                                           |                          |                          |                          |                    |  |  |  |  |  |
| Answer                                                    | ·: (A)                   |                          |                          |                    |  |  |  |  |  |
|                                                           | 5                        | Statement for Linked A   | Answer Questions: 52     | & 53               |  |  |  |  |  |
|                                                           |                          |                          |                          |                    |  |  |  |  |  |

For a particular project, eight activities are to be carried out. Their relationships with other activities and expected durations are mentioned in the table below.

| Activity | Predecessors | Duration (days) |
|----------|--------------|-----------------|
| А        | -            | 3               |
| В        | а            | 4               |



|ME-GATE-2012|

www.gateforumonline.com

| -  |                                                                                           |        |                             |                             | •                                  | I                                      |                                         |  |  |  |
|----|-------------------------------------------------------------------------------------------|--------|-----------------------------|-----------------------------|------------------------------------|----------------------------------------|-----------------------------------------|--|--|--|
|    |                                                                                           |        |                             |                             | 1                                  |                                        |                                         |  |  |  |
|    |                                                                                           |        |                             | С                           | a                                  | 5                                      |                                         |  |  |  |
|    |                                                                                           |        |                             | D                           | a                                  | 4                                      | _                                       |  |  |  |
|    |                                                                                           |        |                             | E                           | b                                  | 2                                      |                                         |  |  |  |
|    |                                                                                           |        |                             | F                           | d                                  | 9                                      | _                                       |  |  |  |
|    |                                                                                           |        |                             | G                           | c.e                                | 6                                      | _                                       |  |  |  |
|    |                                                                                           |        |                             | Н                           | f,g                                | 2                                      |                                         |  |  |  |
| 5  | 2.                                                                                        | The o  | critical path for           | the project is              |                                    |                                        |                                         |  |  |  |
|    |                                                                                           | (A)    | a-b-e-g-h                   | (B) a-c                     | -g-h (C)                           | a-d-f-h                                | (D) a-b-c-f-h                           |  |  |  |
| A  | nsw                                                                                       | er:    | ( <b>C</b> )                |                             |                                    |                                        |                                         |  |  |  |
|    |                                                                                           |        |                             |                             |                                    |                                        | ••••••••••••••••••••••••••••••••••••••• |  |  |  |
|    |                                                                                           |        |                             |                             |                                    |                                        |                                         |  |  |  |
| 5. | 3.                                                                                        | If the | duration of act             | ivity f alone is            | changed from 9 to 1                | 0 days, then the                       |                                         |  |  |  |
|    |                                                                                           | (A)    | Critical path r             | emains the sam              | e and the total dura               | tion to complete the pr                | oject changes to 19days                 |  |  |  |
|    | (B) Critical path and the total duration to complete the project remain the same          |        |                             |                             |                                    |                                        |                                         |  |  |  |
|    | (C) Critical path changes but the total duration to complete the project remains the same |        |                             |                             |                                    |                                        |                                         |  |  |  |
|    |                                                                                           | (D)    | Critical path c             | hanges and the              | total duration to co               | mplete the project cha                 | nges to 17days                          |  |  |  |
| A  | nsw                                                                                       | er:    | (A)                         |                             |                                    |                                        |                                         |  |  |  |
|    |                                                                                           |        |                             |                             |                                    |                                        |                                         |  |  |  |
|    |                                                                                           |        |                             | Statement                   | for Linked Answei                  | • Questions: 54 & 55                   |                                         |  |  |  |
|    |                                                                                           | Air e  | nters an adiaba             | tic nozzle at 3             | 00kPa, 500K with a                 | a velocity of 10m/s. It                | leaves the nozzle at 100kPa             |  |  |  |
|    |                                                                                           | with   | a velocity of 18            | 0m/s. The inle              | t area is 80cm <sup>2</sup> . The  | specific heat of air C <sub>p</sub>    | is 1008J/kg.K.                          |  |  |  |
| 54 | 4.                                                                                        |        | exit temperatur             |                             |                                    |                                        |                                         |  |  |  |
| Ũ  |                                                                                           |        | -                           |                             |                                    | 40.412                                 |                                         |  |  |  |
|    |                                                                                           | (A)    | 516K                        | (B) 532                     | 2K (C)                             | 484K                                   | (D) 468K                                |  |  |  |
| A  | nsw                                                                                       | er:    | ( <b>C</b> )                |                             |                                    |                                        |                                         |  |  |  |
| 5  | <br>5.                                                                                    | The e  | exit area of the            | nozzle in cm <sup>2</sup> i | \$                                 |                                        |                                         |  |  |  |
|    |                                                                                           | (A)    | 90.1                        | (B) 56.                     | 3 (C)                              | 4.4                                    | (D) 12.9                                |  |  |  |
| A  | nsw                                                                                       | er:    | <b>(D</b> )                 |                             |                                    |                                        |                                         |  |  |  |
|    |                                                                                           |        |                             |                             |                                    |                                        |                                         |  |  |  |
|    |                                                                                           |        |                             |                             |                                    |                                        |                                         |  |  |  |
|    |                                                                                           |        |                             |                             |                                    |                                        |                                         |  |  |  |
|    |                                                                                           | ©A     | Il rights reserved by Think | cell Learning Solutions F   | vt. Ltd. No part of this booklet m | ay be reproduced or utilized in any fo | orm without the written permission.     |  |  |  |
|    |                                                                                           |        |                             |                             |                                    |                                        |                                         |  |  |  |

GATEFORUM Engineering Success

|ME-GATE-2012|

www.gateforumonline.com

# **GENERAL APTITUDE**

## Q. No. 56 – 60 Carry One Mark Each

| <mark>56.</mark> | 56. The cost function for a product in a firm is given by $5q^2$ , where q is the amount of production. The firm |                                 |                  |                                |                            |                                |                             |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|--------------------------------|----------------------------|--------------------------------|-----------------------------|--|--|--|--|
|                  | can s                                                                                                            | sell the product at             | a market         | price of Rs.50 j               | per unit. The nur          | nber of units to               | be produced by the firm     |  |  |  |  |
|                  | such                                                                                                             | that the profit is n            | naximized        | is                             |                            |                                |                             |  |  |  |  |
|                  | (A)                                                                                                              | 5                               | <b>(B)</b>       | 10                             | (C) 15                     | (D)                            | 25                          |  |  |  |  |
| Ans              | wer:                                                                                                             | (A)                             |                  |                                |                            |                                |                             |  |  |  |  |
|                  |                                                                                                                  |                                 |                  |                                |                            |                                |                             |  |  |  |  |
| 57.              | Choo                                                                                                             | ose the most appro              | priate alte      | rnative from the               | e options given b          | elow to complete               | the following sentence:     |  |  |  |  |
|                  | Suresh's dog is the one was hurt in the stampede.                                                                |                                 |                  |                                |                            |                                |                             |  |  |  |  |
|                  | (A) t                                                                                                            |                                 | (B) wh           |                                | (C) who                    | (D) •                          | whom                        |  |  |  |  |
| Ans              | wer:                                                                                                             | (A)                             |                  |                                |                            |                                |                             |  |  |  |  |
|                  |                                                                                                                  | (A)                             |                  |                                |                            |                                |                             |  |  |  |  |
| 70               | CI                                                                                                               |                                 |                  |                                |                            |                                |                             |  |  |  |  |
| 58.              | 8. Choose the grammatically <b>INCORRECT</b> sentence:                                                           |                                 |                  |                                |                            |                                |                             |  |  |  |  |
|                  | (A)                                                                                                              | They gave us the                | e money b        | ack less the serv              | vice charges of T          | Three Hundred ruj              | pees.                       |  |  |  |  |
|                  | (B)                                                                                                              | This country's ex               | kpenditure       | is not less than               | that of Banglade           | esh.                           |                             |  |  |  |  |
|                  | (C)                                                                                                              | The committee i                 | nitially as      | ked f <mark>or</mark> a fundir | g of Fifty Lakh            | rupees, but later s            | ettled for a lesser sum.    |  |  |  |  |
|                  | (D)                                                                                                              | This country's ex               | kpenditure       | on educational                 | reforms is very            | less                           |                             |  |  |  |  |
| Ans              | wer:                                                                                                             | ( <b>D</b> )                    |                  |                                |                            |                                |                             |  |  |  |  |
|                  |                                                                                                                  |                                 |                  |                                |                            |                                |                             |  |  |  |  |
| 59.              | Whi                                                                                                              | ch one of the follo             | wing optic       | ons is the closes              | t in meaning to t          | he word given be               | low?                        |  |  |  |  |
|                  | Miti                                                                                                             |                                 | in ing opine     |                                |                            |                                |                             |  |  |  |  |
|                  |                                                                                                                  | Diminish                        | (B) Div          | nlæ                            | (C) Dedicate               | (D)                            | Denote                      |  |  |  |  |
|                  |                                                                                                                  |                                 | (2) 21           |                                | (0) 2000000                | (2)                            | 2                           |  |  |  |  |
| Ans              | wer:                                                                                                             | (A)                             |                  |                                |                            |                                |                             |  |  |  |  |
|                  |                                                                                                                  |                                 |                  |                                |                            |                                |                             |  |  |  |  |
|                  |                                                                                                                  |                                 |                  |                                |                            |                                |                             |  |  |  |  |
|                  | © A                                                                                                              | Il rights reserved by Thinkcell | Learning Solutio | ns Pvt. Ltd. No part of thi    | s booklet may be reproduce | d or utilized in any form with | out the written permission. |  |  |  |  |
|                  |                                                                                                                  |                                 |                  |                                |                            |                                |                             |  |  |  |  |

**ME-GATE-2012** www.gateforumonline.com **60.** Choose the most appropriate alternative from the options given below to complete the following sentence: Despite several \_\_\_\_\_\_ the mission succeeded in its attempt to resolve the conflict. (B) setbacks (C) meetings (D) delegations (A) attempts Answer: (B) Q. No. 61 – 65 Carry Two Marks Each **61.** Wanted Temporary, Part-time persons for the post of Field Interviewer to conduct personal interviews to collect and collate economic data. Requirements: High School-pass, must be available for Day, Evening and Saturday work. Transportation paid, expenses reimbursed. Which one of the following is the best inference from the above advertisement? (A) Gender-discriminatory (B) Xenophobic (C) Not designed to make the post attractive (D) Not gender-discriminatory Answer: **(C)** ..... Given the sequence of terms, AD CG FK JP, the next term is **62.** (B) (A) OV OW (C) PV (D) PW Answer: **(A)** Which of the following assertions are CORRECT? **63.** P: Adding 7 to each entry in a list adds 7 to the mean of the list Adding 7 to each entry in a list adds 7 to the standard deviation of the list Q: R: Doubling each entry in a list doubles the mean of the list S: Doubling each entry in a list leaves the standard deviation of the list unchanged (A) P, Q **(B)** Q, R (C) P, R (D) R, S

| U           | Engineerir                                                                                                       | ng Success                 |                     | ME-0                        | GATE-2012                               | www.gateforumonline.co                          |
|-------------|------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|-----------------------------|-----------------------------------------|-------------------------------------------------|
| Ansv        | wer:                                                                                                             | ( <b>C</b> )               |                     |                             |                                         |                                                 |
| 64.         | An automobile plant contracted to buy shock absorbers from two suppliers X and Y. X supplies 60% and Y           |                            |                     |                             |                                         |                                                 |
|             | supplies 40% of the shock absorbers. All shock absorbers are subjected to a quality test. The ones that pass the |                            |                     |                             |                                         |                                                 |
|             | quality test are considered reliable Of X's shock absorbers, 96% are reliable. Of Y's shock absorbers, 72% ar    |                            |                     |                             |                                         |                                                 |
|             | reliable.                                                                                                        |                            |                     |                             |                                         |                                                 |
|             | The p                                                                                                            | probability that           | a randomly          | chosen shock at             | osorber, which is found to              | be reliable, is made by Y is                    |
|             | (A)                                                                                                              | 0.288                      | (B)                 | 0.334                       | (C) 0.667                               | (D) 0.720                                       |
| Ansv        | wer:                                                                                                             | <b>(B)</b>                 |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
| <b>65</b> . | A political party orders an arch for the entrance to the ground in which the annual convention is being held     |                            |                     |                             |                                         |                                                 |
|             | The profile of the arch follows the equation $y = 2x - 0.1x^2$ where y is the height of the arch in meters. The  |                            |                     |                             |                                         |                                                 |
|             | maxi                                                                                                             | imum possible              | height of th        | ne arch is                  |                                         |                                                 |
|             | (A)                                                                                                              | 8 meters                   | (B)                 | 10 meters                   | (C) 12 meters                           | (D) 14 meters                                   |
| Ansı        | wer:                                                                                                             | <b>(B)</b>                 |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             |                                                                                                                  |                            |                     |                             |                                         |                                                 |
|             | © A                                                                                                              | Il rights reserved by Thir | hkcell Learning Sol | utions Pvt. Ltd. No part of | this booklet may be reproduced or utili | zed in any form without the written permission. |

