

www.gateforumonline.com



# GATE PREVIOUS YEAR SOLVED PAPERS

Mechanical Engineering Previous Year Solved Papers

**GATEFORUM** Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.

For more details visit gateforumonline.com



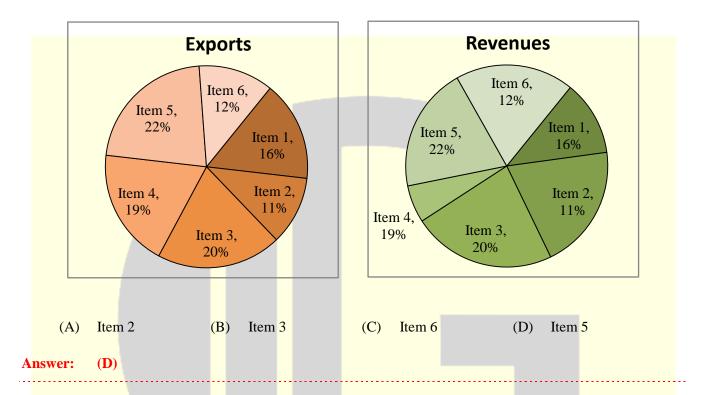
|ME-GATE-2014, SET-2|

www.gateforumonline.com

# **GENERAL APTITUDE**

# Q. No. 1 - 5 Carry One Mark Each

| 1.  | Choo            | ose the m          | ost appropr    | iate w  | ord fron   | n the opti | ons give  | n below to   | complete    | e the f | ollowi | ng sentence.                  |
|-----|-----------------|--------------------|----------------|---------|------------|------------|-----------|--------------|-------------|---------|--------|-------------------------------|
|     | Com             | municatio          | on and inter   | person  | nal skills | s are      |           | important    | in their c  | wn wa   | ays.   |                               |
|     | (A)             | each               |                | (B)     | both       |            | (C)       | all          |             | (D)     | eithe  | er                            |
| An  | swer:           | <b>(B</b> )        |                |         |            |            |           |              |             |         |        |                               |
|     |                 |                    |                |         |            |            |           |              |             | •••••   |        |                               |
| 2.  | Whie            | ch of the          | options give   | en bel  | ow best    | complete   | s the fol | lowing sen   | itence?     |         |        |                               |
|     |                 |                    | l much bette   |         |            | _          | ·         | C            |             |         |        |                               |
|     | (A)             | will get           | some rest      |         |            |            | (B)       | gets som     | e rest      |         |        |                               |
|     | (C)             | will be            | getting som    | ne rest |            |            | (D)       | is getting   | g some res  | st      |        |                               |
| An  | swer:           | <b>(B</b> )        |                |         |            |            |           |              |             |         |        |                               |
|     |                 | (D)                |                |         |            |            |           |              |             |         |        |                               |
| 3.  | sente           | ence.<br>could not | the            | though  | nt of      | t          | he elect  | ion to her b | oitter riva | 1.      |        | lete the following            |
|     | (A)             | bear, lo           | osing          | (B)     | bare, lo   | oosing     | (C)       | bear, losi   | ing         | (D)     | bare   | , losing                      |
| An  | swer:           | ( <b>C</b> )       |                |         |            |            |           |              |             |         |        |                               |
| 4.  | A re            | gular die          | has six side   | s with  | number     |            |           |              |             | 1       |        | per of throws show            |
|     |                 |                    |                |         |            |            |           |              | •           | Ũ       |        | $0.166; 5 \rightarrow 0.168;$ |
|     | $6 \rightarrow$ | 0.180. W           | Ve call this o | lie     |            |            |           |              |             |         |        |                               |
|     | (A)             | irregula           | ır             | (B)     | biased     |            | (C)       | Gaussian     | L           | (D)     | insut  | fficient                      |
| ۸n  | swer:           | <b>(B)</b>         |                |         |            |            |           |              |             |         |        |                               |
| All | 13 W CI .       |                    |                |         |            |            |           |              |             |         |        |                               |


| G   | <b>GATE</b><br>Engineerir | ORUM<br>ng Success |         |          |        | ME-G                | ATE-2    | 2014,    | SET-2          |           |       | <u>www</u> . | .gateforumonlin |
|-----|---------------------------|--------------------|---------|----------|--------|---------------------|----------|----------|----------------|-----------|-------|--------------|-----------------|
| 5.  | Fill i                    | n the mis          | ssing   | number   | in the | e series.           |          |          |                |           |       |              |                 |
|     | 2                         | 3                  | 6       | 15       |        | 157.5               | 63       | 80       |                |           |       |              |                 |
| Ans | wer:                      | (45)               |         |          |        |                     |          |          |                |           |       |              |                 |
|     |                           |                    |         |          |        |                     |          |          |                |           |       |              |                 |
|     |                           |                    |         |          | (      | <b>). No. 6 –</b> 2 | 10 Car   | ry One   | e Mark Each    |           |       |              |                 |
|     |                           |                    |         |          |        |                     |          |          |                |           |       |              |                 |
| 6.  | Find                      | the odd            | one ir  | the fol  | lowin  | ng group            |          |          |                |           |       |              |                 |
|     | Q,W                       | ,Z,B               | B,I     | H,K,M    |        | W,C,G,J             | 1        | M,S,V,2  | X              |           |       |              |                 |
|     | (A)                       | Q,W,Z              | ,В      | (        | (B)    | B,H,K,M             |          | (C)      | W,C,G,J        | (1        | D)    | M,S,         | V,X             |
| Ans | wer:                      | ( <b>C</b> )       |         |          |        |                     |          |          |                |           |       |              |                 |
|     |                           |                    | ·       |          |        |                     |          |          |                | ·····     |       |              |                 |
| 7.  | Ligh                      | ts of fou          | r colo  | rs (red. | blue.  | green, vel          | low) aı  | e hung   | on a ladder.   | On everv  | ste   | p of th      | e ladder there  |
|     | -                         |                    |         |          |        |                     |          | -        |                | -         |       |              | ne of the light |
|     |                           |                    |         |          |        |                     | -        |          | -              | -         |       |              | g statements is |
|     | nece                      | ssarily co         | orrect  | ?        |        |                     |          |          |                |           |       |              |                 |
|     | (A)                       | The nu             | mber    | of red l | ights  | is equal to         | the nu   | mber of  | f blue lights  |           |       |              |                 |
|     | (B)                       | The nu             | mber    | of gree  | n ligh | its is equal        | to the   | number   | of yellow lig  | hts       |       |              |                 |
|     | (C)                       | The su             | m of t  | he red a | and gi | reen lights         | is equa  | l to the | sum of the ye  | ellow and | d blu | ue ligh      | ts              |
|     | (D)                       | The su             | m of t  | he red   | and bl | lue lights is       | s equal  | to the s | sum of the gre | en and y  | ello  | w ligh       | ts              |
| Ans | wer:                      | <b>(D</b> )        |         |          |        |                     |          |          |                |           |       |              |                 |
|     |                           |                    |         |          |        |                     |          |          |                |           |       |              |                 |
| 8.  | The                       | sum of e           | eight a | consecu  | tive c | odd numbe           | rs is 6' | 56. The  | average of f   | our conse | ecut  | ive ev       | en numbers is   |
|     |                           |                    | -       |          |        |                     |          |          | largest even n |           |       |              | •••••••••••••   |
|     |                           |                    |         |          |        |                     |          |          |                |           |       |              |                 |
| A   | wer:                      | <b>163</b>         |         |          |        |                     |          |          |                |           |       |              |                 |

© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

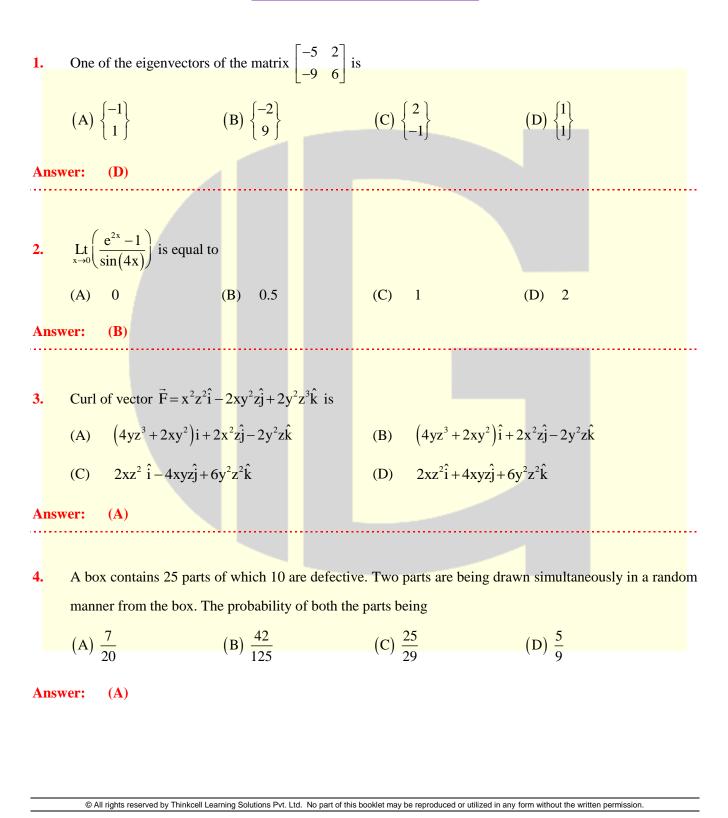
The pie chart for exports shows the quantity of each item exported as a percentage of the total quantity of

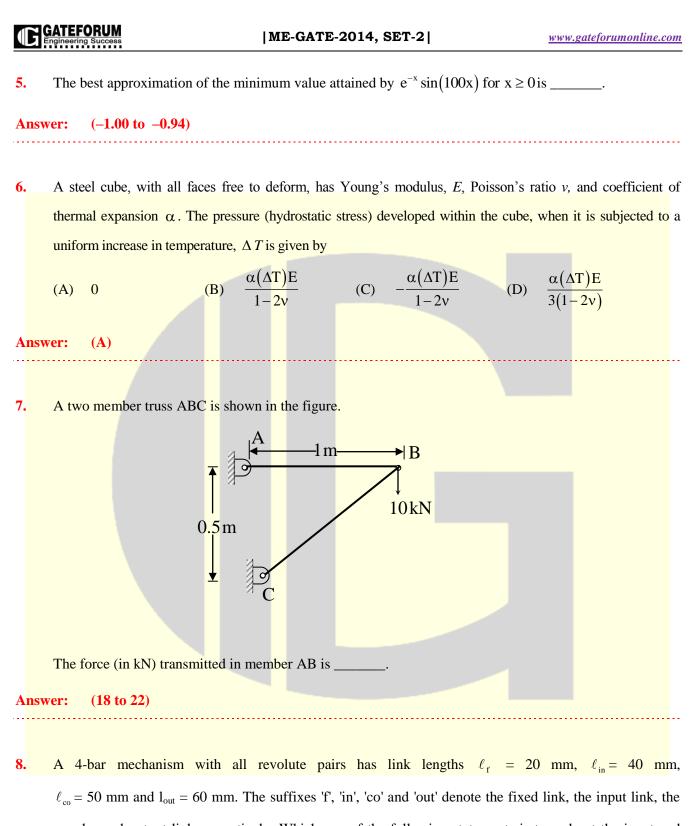


exports. The pie chart for the revenues shows the percentage of the total revenue generated through export of each item. The total quantity of exports of all the items is 500 thousand tonnes and the total revenues are 250 crore rupees. Which item among the following has generated the maximum revenue per kg?

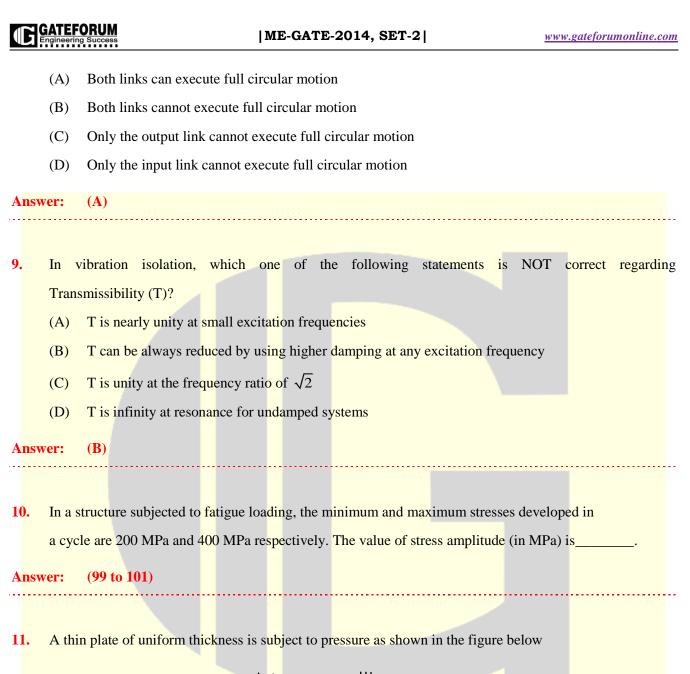


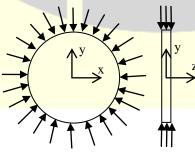
10. It takes 30 minutes to empty a half-full tank by draining it at a constant rate. It is decided to simultaneously pump water into the half-full tank while draining it. What is the rate at which water has to be pumped in so that it gets fully filled in 10 minutes?


- (A) 4 times the draining rate (B) 3 times the draining rate
- (C) 2.5 times the draining rate (D) 2 times the draining rate
- Answer: (A)


**GATEFORUM** 




## MECHANICAL ENGINEERING


Q. No. 1 – 25 Carry One Mark Each





coupler and output link respectively. Which one of the following statements is true about the input and output links?





Under the assumption of plane stress, which one of the following is correct?

| G           | GATEF<br>Engineerin | ORUM<br>g Success                                                                           | ME-GATE                      | -2014, SET-2                                                                                                 | www.gateforumonline.co                               |
|-------------|---------------------|---------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|             | (A)                 | Normal stress is zer                                                                        | ro in the z-direction        |                                                                                                              |                                                      |
|             | (B)                 | Normal stress is ter                                                                        | sile in the z-direction      |                                                                                                              |                                                      |
|             | (C)                 | Normal stress is co                                                                         | mpressive in the z-dire      | ection                                                                                                       |                                                      |
|             | (D)                 | Normal stress varie                                                                         | s in the z-direction         |                                                                                                              |                                                      |
| Ansv        | ver:                | (A)                                                                                         |                              |                                                                                                              |                                                      |
| •••••       |                     |                                                                                             |                              |                                                                                                              |                                                      |
| 1 <b>2.</b> | For la              | aminar forced conve                                                                         | ction over a flat plate      | e, if the free stream velocity i                                                                             | ncreases by a factor of 2, th                        |
|             | avera               | ge heat transfer coef                                                                       | ficient                      |                                                                                                              |                                                      |
|             | (A)                 | remains same                                                                                |                              | (B) decreases by a fact                                                                                      | or of $\sqrt{2}$                                     |
|             | (C)                 | rises by a factor of                                                                        | $\sqrt{2}$                   | (D) rises by a factor of                                                                                     | 4                                                    |
| Ansv        | ver•                | (C)                                                                                         |                              |                                                                                                              |                                                      |
|             |                     |                                                                                             |                              |                                                                                                              |                                                      |
|             |                     |                                                                                             |                              |                                                                                                              |                                                      |
| .3.         | The t               | thermal efficiency of                                                                       | f an air-standard Bray       | ton cycle in terms of pressu                                                                                 | re ratio $r_p$ and $\gamma \left(= c_p / c_p\right)$ |
|             | given               | ı by                                                                                        |                              |                                                                                                              |                                                      |
|             | (A)                 | $1 - \frac{1}{r^{r-1}}$                                                                     | (B) $1 - \frac{1}{r^{r}}$    | (C) $1 - \frac{1}{r_{p}^{1/r}}$                                                                              | (D) $1 - \frac{1}{r_{\rm p}^{(\gamma-1)/\gamma}}$    |
|             | ()                  | $r_p^{r-1}$                                                                                 | $(-)$ $r_p^r$                | $r_p^{1/r}$                                                                                                  | $r_{p}^{(\gamma-1)/\gamma}$                          |
| Ansv        | ver:                | ( <b>D</b> )                                                                                |                              |                                                                                                              |                                                      |
| • • • • •   |                     |                                                                                             |                              |                                                                                                              |                                                      |
| 4.          | For a               | n incompressible flo                                                                        | w field. $\vec{v}$ which one | of the following conditions n                                                                                | nust be satisfied?                                   |
|             |                     |                                                                                             |                              |                                                                                                              |                                                      |
|             | (11)                | $\vec{\nabla} \cdot \vec{\nabla} = 0$ $(\vec{\nabla} \cdot \nabla) \times \vec{\nabla} = 0$ |                              | $ (B) \nabla \times \vec{v} = 0 $ $ (D) \frac{\partial V}{\partial t} + (\vec{V} \cdot \nabla) \vec{V} = 0 $ |                                                      |
|             | (C) (               | $(\vec{\mathbf{v}} \cdot \nabla) \times \vec{\mathbf{v}} = 0$                               |                              | $ (D) \frac{\partial V}{\partial t} + (\vec{V} \cdot \nabla) \vec{V} = 0 $                                   |                                                      |
|             |                     |                                                                                             |                              |                                                                                                              |                                                      |
| Ansv        | ver:                | (A)                                                                                         |                              |                                                                                                              |                                                      |
|             |                     |                                                                                             |                              |                                                                                                              |                                                      |
| 5.          | A pu                | re substance at 8 MI                                                                        | Pa and 400 °C is have        | ing a specific internal energy                                                                               | of 2864 kJ/kg and a specif                           |
|             | volur               | me of 0.03432 $m^3 / k$                                                                     | g. Its specific enthal       | py (in kJ/kg) is                                                                                             |                                                      |
|             |                     | (3135 to 3140)                                                                              |                              |                                                                                                              |                                                      |
| Ansv        | ver.                |                                                                                             |                              |                                                                                                              |                                                      |

| G          | GATEFORUM<br>Engineering Success                                                                                                  | ME-GA                                  | ATE-2014, SET-2                      | www.gateforumonline.com              |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|
| 16.        | In a heat exchanger, it is observed that $\Delta T_1 = \Delta T_2$ , where $\Delta T_1$ is the temperature difference between the |                                        |                                      |                                      |  |  |  |  |  |
|            | two single phase                                                                                                                  | fluid streams at one end an            | ad $\Delta T_2$ is the temperature d | ifference at the other end. This hea |  |  |  |  |  |
|            | exchanger is                                                                                                                      |                                        |                                      |                                      |  |  |  |  |  |
|            | (A) a condense                                                                                                                    | er                                     | (B) an evaporato                     | r                                    |  |  |  |  |  |
|            | (C) a counter f                                                                                                                   | low heat exchanger                     | (D) a parallel flor                  | w heat exchanger                     |  |  |  |  |  |
| Ansv       |                                                                                                                                   |                                        |                                      |                                      |  |  |  |  |  |
|            |                                                                                                                                   |                                        |                                      |                                      |  |  |  |  |  |
| 17.        | The difference in                                                                                                                 | pressure (in N/m <sup>2</sup> ) across | an air bubble of diameter (          | 0.001 m immersed in water (surface   |  |  |  |  |  |
|            | tension = $0.072$ N                                                                                                               | √m) is                                 |                                      |                                      |  |  |  |  |  |
| Ansv       | ver: (287 to 28                                                                                                                   | 9)                                     |                                      |                                      |  |  |  |  |  |
|            |                                                                                                                                   |                                        |                                      |                                      |  |  |  |  |  |
|            |                                                                                                                                   |                                        |                                      |                                      |  |  |  |  |  |
| <b>18.</b> | If there are m sou                                                                                                                | rces and <i>n</i> destinations in a    | a transportation matrix, the         | total number of basic                |  |  |  |  |  |
|            | variables in a bas                                                                                                                | ic feasible solution is                |                                      |                                      |  |  |  |  |  |
|            | (A) m + n                                                                                                                         | (B) $m + n + 1$                        | (C) m + n - 1                        | (D) m                                |  |  |  |  |  |
| Ansv       | ver: (C)                                                                                                                          |                                        |                                      |                                      |  |  |  |  |  |
|            |                                                                                                                                   |                                        |                                      |                                      |  |  |  |  |  |
| <b>19.</b> | A component ca                                                                                                                    | n be produced by any of                | the four processes I, II, I          | II and IV. The fixed cost and the    |  |  |  |  |  |
|            | variable cost for                                                                                                                 | each of the processes are              | listed below. The most e             | conomical process for producing      |  |  |  |  |  |
|            | batch of 100 piec                                                                                                                 | es is                                  |                                      |                                      |  |  |  |  |  |
|            | Process                                                                                                                           | Fixed cost(in Rs.)                     | Variable cost per pi                 | ece (in Rs.)                         |  |  |  |  |  |
|            | Ι                                                                                                                                 | 20                                     | 3                                    |                                      |  |  |  |  |  |
|            | II                                                                                                                                | 50                                     | 1                                    |                                      |  |  |  |  |  |
|            | III                                                                                                                               | 40                                     | 2                                    |                                      |  |  |  |  |  |
|            | IV                                                                                                                                | 10                                     | 4                                    |                                      |  |  |  |  |  |
|            | (A) I                                                                                                                             | (B) II                                 | (C) III                              | (D) IV                               |  |  |  |  |  |
|            | vor ( <b>P</b> )                                                                                                                  |                                        |                                      |                                      |  |  |  |  |  |
| Ansv       | ver: (B)                                                                                                                          |                                        |                                      |                                      |  |  |  |  |  |

|         |                    |                                                 | IMD-GAT                                                                                                                                                            | E-2014, SET-2   <u>www.gateforumonlin</u>                                                                                                                                |
|---------|--------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20.     | The                | flatness of a machine                           | bed can be measured                                                                                                                                                | lusing                                                                                                                                                                   |
|         | (A)                | Vernier calipers                                |                                                                                                                                                                    | (B) Auto collimator                                                                                                                                                      |
|         | (C)                | Height gauge                                    |                                                                                                                                                                    | (D) Tool maker's microscope                                                                                                                                              |
| Ans     | wer:               | <b>(B)</b>                                      |                                                                                                                                                                    |                                                                                                                                                                          |
|         |                    |                                                 |                                                                                                                                                                    |                                                                                                                                                                          |
| 21.     | A rol              | bot arm PQ with end                             | coordinates P(0,0) as                                                                                                                                              | nd Q(2,5) rotates counter clockwise about P in the XY j                                                                                                                  |
|         | by 90              | )°. The new coordina                            | te pair of the end poi                                                                                                                                             | nt Q is                                                                                                                                                                  |
|         | (A)                | (-2, 5)                                         | (B) (-5, 2)                                                                                                                                                        | (C) (-5, -2) (D) (2, -5)                                                                                                                                                 |
| Ans     | wer:               | <b>(B)</b>                                      |                                                                                                                                                                    |                                                                                                                                                                          |
| • • • • |                    | ·····                                           |                                                                                                                                                                    |                                                                                                                                                                          |
|         |                    |                                                 |                                                                                                                                                                    |                                                                                                                                                                          |
| 2.      | Matc               | the Machine Tools                               | (Group A) with the                                                                                                                                                 | probable Operations (Group B):                                                                                                                                           |
|         |                    |                                                 |                                                                                                                                                                    |                                                                                                                                                                          |
|         |                    |                                                 | Group A                                                                                                                                                            | Group B                                                                                                                                                                  |
|         |                    |                                                 | Group A (p) Centre lathe                                                                                                                                           | Group B (1) Slotting                                                                                                                                                     |
|         |                    |                                                 |                                                                                                                                                                    |                                                                                                                                                                          |
|         |                    |                                                 | (p) Centre lathe                                                                                                                                                   | (1) Slotting                                                                                                                                                             |
|         |                    |                                                 | (p) Centre lathe<br>(q) Milling                                                                                                                                    | <ul><li>(1) Slotting</li><li>(2) Counter-boring</li></ul>                                                                                                                |
|         | (A)                | P-1, Q-2, R-4, S-3                              | <ul><li>(p) Centre lathe</li><li>(q) Milling</li><li>(r) Grinding</li></ul>                                                                                        | <ul> <li>(1) Slotting</li> <li>(2) Counter-boring</li> <li>(3) Knurling</li> </ul>                                                                                       |
|         | (A)<br>(C)         | P-1, Q-2, R-4, S-3<br>P-3, Q-1, R-4, S-2        | <ul><li>(p) Centre lathe</li><li>(q) Milling</li><li>(r) Grinding</li></ul>                                                                                        | <ul> <li>(1) Slotting</li> <li>(2) Counter-boring</li> <li>(3) Knurling</li> <li>(4) Dressing</li> </ul>                                                                 |
| Ans     | (C)                | P-3, Q-1, R-4, S-2                              | <ul><li>(p) Centre lathe</li><li>(q) Milling</li><li>(r) Grinding</li></ul>                                                                                        | <ul> <li>(1) Slotting</li> <li>(2) Counter-boring</li> <li>(3) Knurling</li> <li>(4) Dressing</li> <li>(B) P-2, Q-1, R-4, S-3</li> </ul>                                 |
| Ans     |                    |                                                 | <ul><li>(p) Centre lathe</li><li>(q) Milling</li><li>(r) Grinding</li></ul>                                                                                        | <ul> <li>(1) Slotting</li> <li>(2) Counter-boring</li> <li>(3) Knurling</li> <li>(4) Dressing</li> <li>(B) P-2, Q-1, R-4, S-3</li> </ul>                                 |
|         | (C)<br>wer:        | P-3, Q-1, R-4, S-2<br>(C)                       | <ul> <li>(p) Centre lathe</li> <li>(q) Milling</li> <li>(r) Grinding</li> <li>(s) Drilling</li> </ul>                                                              | <ul> <li>(1) Slotting</li> <li>(2) Counter-boring</li> <li>(3) Knurling</li> <li>(4) Dressing</li> <li>(B) P-2, Q-1, R-4, S-3</li> <li>(D) P-3, Q-4, R-2, S-1</li> </ul> |
|         | (C)<br>wer:<br>The | P-3, Q-1, R-4, S-2<br>(C)<br>following four unc | <ul> <li>(p) Centre lathe</li> <li>(q) Milling</li> <li>(r) Grinding</li> <li>(s) Drilling</li> </ul>                                                              | <ul> <li>(1) Slotting</li> <li>(2) Counter-boring</li> <li>(3) Knurling</li> <li>(4) Dressing</li> <li>(B) P-2, Q-1, R-4, S-3</li> <li>(D) P-3, Q-4, R-2, S-1</li> </ul> |
| Ans:    | (C)<br>wer:<br>The | P-3, Q-1, R-4, S-2<br>(C)<br>following four unc | <ul> <li>(p) Centre lathe</li> <li>(q) Milling</li> <li>(r) Grinding</li> <li>(s) Drilling</li> <li>onventional machine</li> <li>oole of square cross s</li> </ul> | <ul> <li>(1) Slotting</li> <li>(2) Counter-boring</li> <li>(3) Knurling</li> <li>(4) Dressing</li> <li>(B) P-2, Q-1, R-4, S-3</li> <li>(D) P-3, Q-4, R-2, S-1</li> </ul> |
|         | (C)<br>wer:<br>The | P-3, Q-1, R-4, S-2<br>(C)<br>following four unc | <ul> <li>(p) Centre lathe</li> <li>(q) Milling</li> <li>(r) Grinding</li> <li>(s) Drilling</li> <li>onventional machine</li> <li>oole of square cross s</li> </ul> | <ul> <li>(1) Slotting</li> <li>(2) Counter-boring</li> <li>(3) Knurling</li> <li>(4) Dressing</li> <li>(B) P-2, Q-1, R-4, S-3</li> <li>(D) P-3, Q-4, R-2, S-1</li> </ul> |

Answer: (D)



www.gateforumonline.com



# GATE REFRESHER COURSE Mechanical Engineering

**GATEFORUM** Pioneers in Digital courses for GATE since 2008 offers **GATE refresher course** giving you access to video solutions for previous 11 years GATE questions and Topic-wise formula Compendium (Handbook).

Enroll now and get 20% discount use Promo Code GATEPAPERS

# For more details visit gateforumonline.com

G GATEFORUM Engineering Success

24. The relationship between true strain  $(\epsilon_{T})$  and engineering strain  $(\epsilon_{E})$  in a uniaxial tension test is given as

Answer: (C)

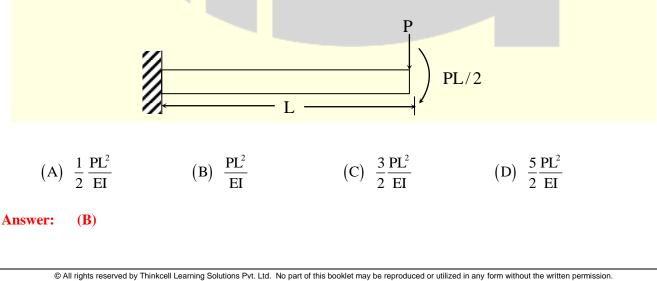
**25.** With respect to metal working, match Group A with Group B:

| Group A                                        | Group B                                    |  |  |  |
|------------------------------------------------|--------------------------------------------|--|--|--|
| (p) Defect in extrusion                        | I: Alligatoring                            |  |  |  |
| (q) Defect in rolling                          | II: Scab                                   |  |  |  |
| (r) Product of skew rolling                    | III: Fish tail                             |  |  |  |
| (s) Product of rolling through cluster<br>mill | IV: Seamless tube                          |  |  |  |
|                                                | V: Thin sheet with tight tolerance         |  |  |  |
|                                                | VI: Semi-finished balls of ball<br>bearing |  |  |  |
| (A) P-II, Q-III, R-VI, S-V                     | (B) P-III, Q-I, R-VI, S-V                  |  |  |  |
| (C) P-III, Q-I, R-IV, S-VI                     | (D) P-I, Q-II, R-V, S-VI                   |  |  |  |

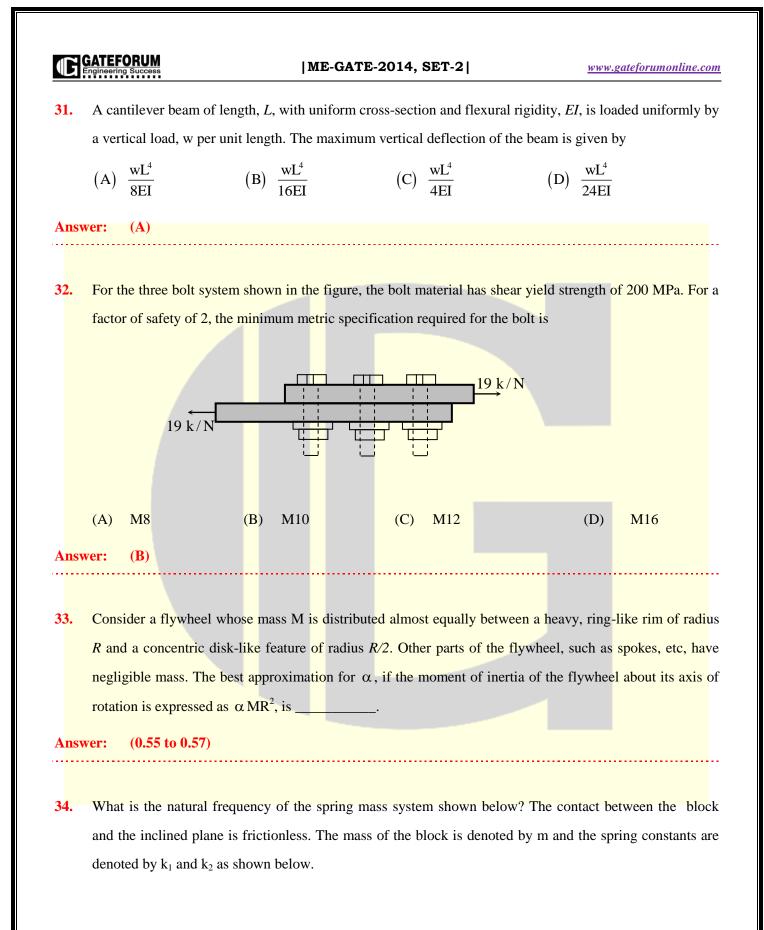
Answer: (B)

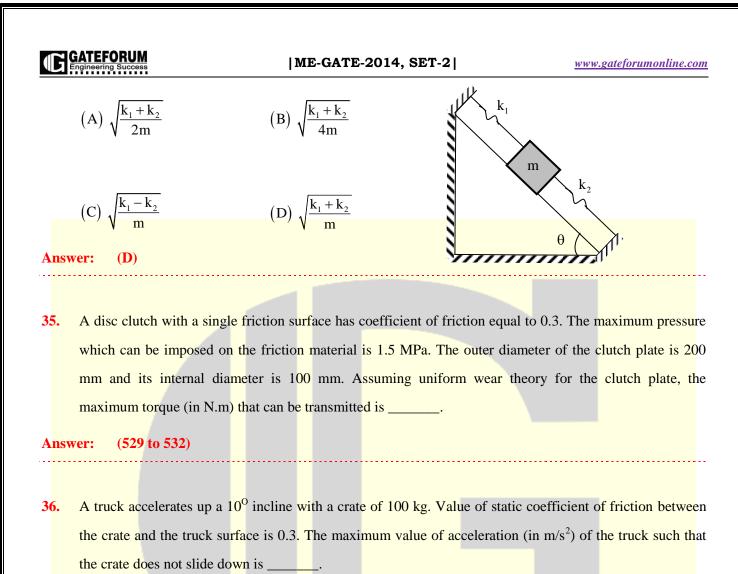
# Q. No. 26 - 55 Carry Two Marks Each

.....


26. An analytic function of a complex variable z = x + i y is expressed as f(z) = u(x, y) + i v(x, y), where

 $i = \sqrt{-1}$ . If u(x, y) = 2 x y, then v(x, y) must be


| (A) | $x^2 + y^2 + constant$  | (B) | $x^2 - y^2 + constant$  |
|-----|-------------------------|-----|-------------------------|
| (C) | $-x^2 + y^2 + constant$ | (D) | $-x^2 - y^2 + constant$ |


Answer: (C)

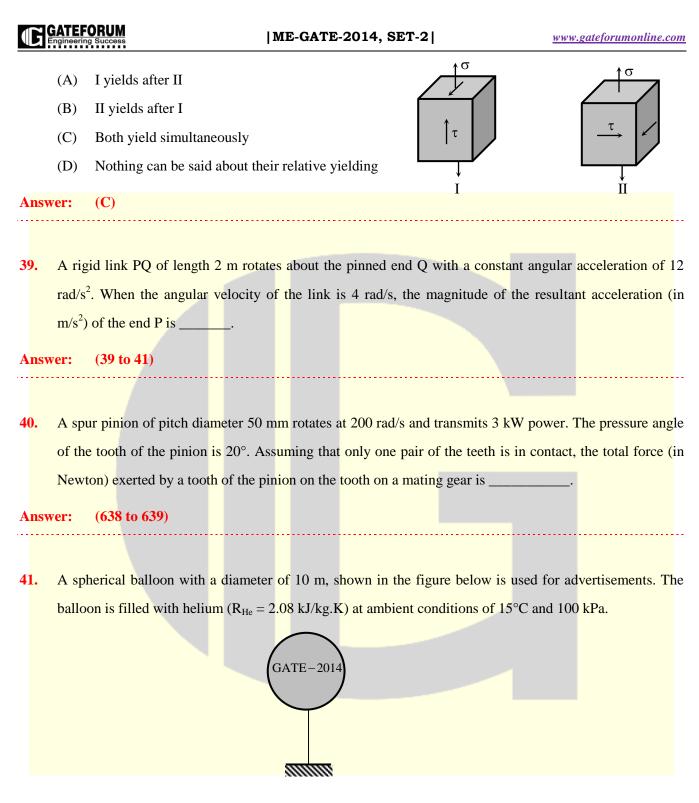
ATEFORUM |ME-GATE-2014, SET-2| www.gateforumonline.com The general solution of the differential equation  $\frac{dy}{dx} = \cos(x + y)$ , with c as a constant, is 27. (B)  $\tan\left(\frac{x+y}{2}\right) = y+c$ (A)  $y + \sin(x+y) = x + c$ (C)  $\cos\left(\frac{x+y}{2}\right) = x + c$ (D)  $\tan\left(\frac{x+y}{2}\right) = x + c$ Answer: **(D)** \_\_\_\_\_ 28. Consider an unbiased cubic dice with opposite faces coloured identically and each face coloured red, blue or green such that each colour appears only two times on the dice. If the dice is thrown thrice, the probability of obtaining red colour on top face of the dice at least twice is \_\_\_\_\_. Answer: (0.25 to 0.27)The value of  $\int \ln(x) dx$  calculated using the Trapezoidal rule with five subintervals is \_\_\_\_\_. 29. (1.74 to 1.76) Answer: **30.** The flexural rigidity (EI) of a cantilever beam is assumed to be constant over the length of the beam shown in figure. If a load P and bending moment PL/2 are applied at the free end of the beam then the value of the slope at the free end is



13






**Answer:** (1.0 to 1.3)

37. Maximum fluctuation of kinetic energy in an engine has been calculated to be 2600 J. Assuming that the engine runs at an average speed of 200 rpm, the polar mass moment of inertia (in kg.m<sup>2</sup>) of a flywheel to keep the speed fluctuation within  $\pm 0.5\%$  of the average speed is \_\_\_\_\_

\_\_\_\_\_

**Answer:** (590 to 595)

**38.** Consider the two states of stress as shown in configurations I and II in the figure below. From the standpoint of distortion energy (von-Mises) criterion, which one of the following statements is true?

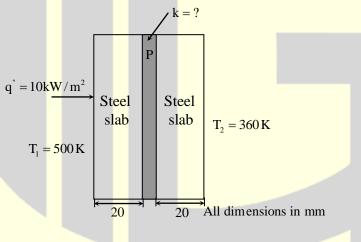


Assuming no disturbances due to wind, the maximum allowable weight (in newton) of balloon material and rope required to avoid the fall of the balloon ( $R_{air} = 0.289 \text{ kJ/kg.K}$ ) is \_\_\_\_\_.

### Answer: (5300 to 5330)

#### **G** Engineering Success

42. A hemispherical furnace of 1 m radius has the inner surface (emissivity,  $\epsilon = 1$ ) of its roof maintained at 800 K, while its floor ( $\epsilon = 0.5$ ) is kept at 600 K. Stefan-Boltzmann constant is  $5.668 \times 10^{-8} \text{ W/m}^2$ .K<sup>4</sup>. The net radiative heat transfer (in kW) from the roof to the floor is \_\_\_\_\_\_.


\_\_\_\_\_

Answer: (24.0 to 25.2)

43. Water flows through a 10 mm diameter and 250 m long smooth pipe at an average velocity of 0.1 m/s. The density and the viscosity of water are 997 kg/m<sup>3</sup> and 855×10<sup>-6</sup> N.s/m<sup>2</sup>, respectively. Assuming fully-developed flow, the pressure drop (in Pa) in the pipe is \_\_\_\_\_\_.

**Answer:** (6800 to 6900)

44. A material P of thickness 1 mm is sandwiched between two steel slabs, as shown in the figure below. A heat flux 10 kW/m<sup>2</sup> is supplied to one of the steel slabs as shown.



The boundary temperatures of the slabs are indicated in the figure. Assume thermal conductivity of this steel is 10 W/m.K. considering one-dimensional steady state heat conduction for the configuration, the thermal conductivity (k, in W/m.K) of material P is \_\_\_\_\_\_.

**Answer:** (0.09 to 0.11)

#### **GATEFORUM** Engineering Success

**45.** Consider laminar flow of water over a flat plate of length 1 m. If the boundary layer thickness at a distance of 0.25 m from the leading edge of the plate is 8 mm, the boundary layer thickness (in mm), at a distance of 0.75 m, is \_\_\_\_\_.

Answer: (13.5 to 14.2)

46. In an ideal Brayton cycle, atmospheric air (ratio of specific heats,  $c_p/c_v = 1.4$ , specific heat at constant pressure = 1.005 kJ/kg.K) at 1 bar and 300 K is compressed to 8 bar. The maximum temperature in the cycle is limited to 1280 K. If the heat is supplied at the rate of 80 MW, the mass flow rate (in kg/s) of air required in the cycle is \_\_\_\_\_\_.

**Answer:** (105 to 112)

**47.** Steam at a velocity of 10 m/s enters the impulse turbine stage with symmetrical blading having blade angle 30°. The enthalpy drop in the stage is 100 kJ. The nozzle angle is 20°. The maximum blade efficiency (in percent) is \_\_\_\_\_\_.

-----

**Answer:** (85.1 to 89.9)

**48.** In a concentric counter flow heat exchanger, water flows through the inner tube at 25°C and leaves at 42°C. The engine oil enters at 100°C and flows in the annular flow passage. The exit temperature of the engine oil is 50°C. Mass flow rate of water and the engine oil are 1.5 kg/s and 1 kg/s, respectively. The specific heat of water and oil are 4178 J/kg.K and 2130 J/kg.K, respectively. The effectiveness of this heat exchanger is \_\_\_\_\_\_.

Answer: (0.65 to 0.67)

49. A heat pump with refrigerant R22 is used for space heating between temperature limits of -20°C and 25°C. The heat required is 200 MJ/h. Assume specific heat of vapour at the time of discharge as 0.98 kJ/kg.K. Other relevant properties are given below. The enthalpy (in kJ/kg) of the refrigerant at isentropic compressor discharge is \_\_\_\_\_\_.



## |ME-GATE-2014, SET-2|

www.gateforumonline.com

| Saturation<br>temperature | Pressure              | Specific               | enthalpy  | Specific                | entropy                  |
|---------------------------|-----------------------|------------------------|-----------|-------------------------|--------------------------|
| $T_{sat}(^{\circ}C)$      | P(MN/m <sup>2</sup> ) | h <sub>f</sub> (kJ/kg) | hg(kJ/kg) | S <sub>f</sub> (kJ/kg/K | S <sub>g</sub> (kJ/kg.K) |
| -20                       | 0.2448                | 177.21                 | 397.53    | 0.9139                  | 1.7841                   |
| 25                        | 1.048                 | 230.07                 | 413.02    | 1.1047                  | 1.7183                   |

### **Answer:** (430 to 440)

**50.** A project has four activities P, Q, R and S as shown below.

| Activity | Normal duration (days) | Predecessor | Cost slope (Rs./day) |
|----------|------------------------|-------------|----------------------|
| Р        | 3                      | -           | 500                  |
| Q        | 7                      | Р           | 100                  |
| R        | 4                      | Р           | 400                  |
| S        | 5                      | R           | 200                  |

The normal cost of the project is Rs. 10,000/- and the overhead cost is Rs. 200/- per day. If the project duration has to be crashed down to 9 days, the total cost (in Rupees) of the project is \_\_\_\_\_\_.

.....

Answer: (12490 to 12510)

51. Consider the following data with reference to elementary deterministic economic order quantity model

| Annual demand of an item                           | 100000 |
|----------------------------------------------------|--------|
| Unit price of the item (in Rs.)                    | 10     |
| Inventory carrying cost per unit per year (in Rs.) | 1.5    |
| Unit order cost (in Rs.)                           | 30     |

The total number of economic orders per year to meet the annual demand is \_\_\_\_\_\_.

## **Answer:** (49 to 51)

GATEFORUM Engineering Success

52. For the CNC part programming, match Group A with Group B:

|     | Group A                               |      |      | Group B             |
|-----|---------------------------------------|------|------|---------------------|
| (p) | circular interpolation, counter clock | wise | I:   | G02                 |
| (q) | dwell                                 |      | II:  | G03                 |
| (r) | circular interpolation, clock wise    |      | III: | G04                 |
| (s) | point to point countering             |      | IV:  | G00                 |
| (A) | P-II, Q-III, R-I, S-IV                | (B)  | P-I  | , Q-III, R-II, S-IV |
| (C) | P-I, Q-IV, R-II, S-III                | (D)  | P-I  | I, Q-I, R-III, S-IV |
|     |                                       |      |      |                     |

- Answer: (A)
- 53. A mild steel plate has to be rolled in one pass such that the final plate thickness is 2/3<sup>rd</sup> of the initial thickness, with the entrance speed of 10 m/min and roll diameter of 500 mm. If the plate widens by 2% during rolling, the exit velocity (in m/min) is \_\_\_\_\_.

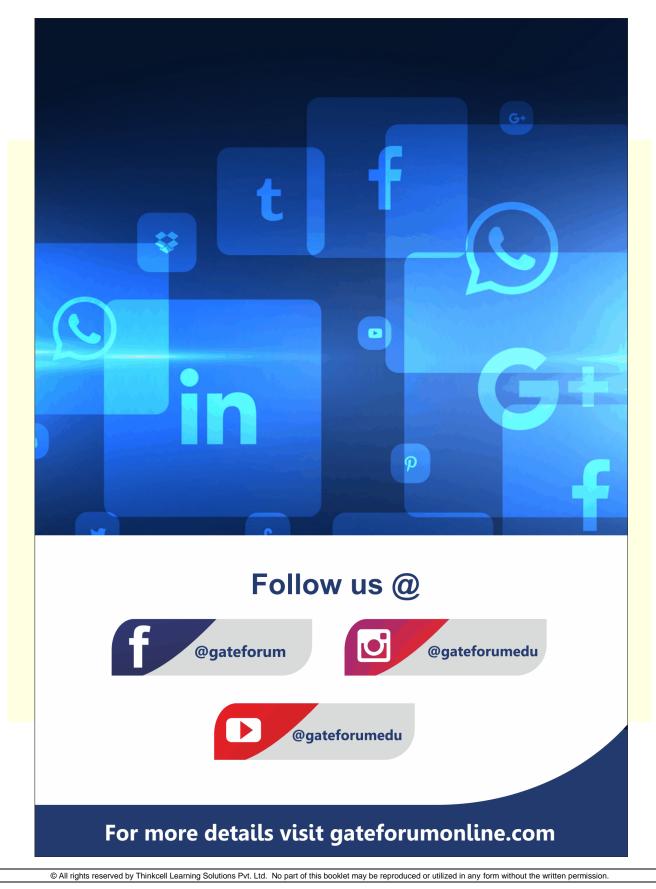
.....

### **Answer:** (14.6 to 14.8)

54. A hole of 20 mm diameter is to be drilled in a steel block of 40 mm thickness. The drilling is performed at rotational speed of 400 rpm and feed rate of 0.1 mm/rev. The required approach and over run of the drill together is equal to the radius of drill. The drilling time (in minute) is

| (A) 1.00 | (B) 1.25 | (C) 1.50 | (D) 1.75 |
|----------|----------|----------|----------|
|----------|----------|----------|----------|

Answer: (B)


- 55. A rectangular hole of size 100 mm × 50 mm is to be made on a 5 mm thick sheet of steel having ultimate tensile strength and shear strength of 500 MPa and 300 MPa, respectively. The hole is made by punching process. Neglecting the effect of clearance, the punching force (in kN) is
  - (A) 300 (B) 450 (C) 600 (D) 750

Answer: (B)



## |ME-GATE-2014, SET-2|

www.gateforumonline.com

