

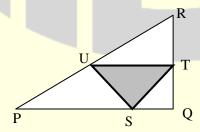
GENERAL APTITUDE

Q. No. 1 - 5 Carry One Mark Each

1.	Five teams have to compete in a league, with every team playing every other team exactly once, before									
	going to the next round. How many matches will have to be held complete the league round of matches?									
	(A)	20	(B)	10		(C)	8		(D)	5
Answ	ver:	(B)								
			1							
2.	Tany	a is older than Enc.								
	Cliff	is older than Tanya								
	Eric i	is older than Cliff.								
	If the	first two statement	s are tr	ue, then tl	he third st	tatemen	it is			
	(A)	True	(B)	False		(C)	Uncert	ain	(D)	Data insufficient
Answ	ver:	(B)								
3.	Choo	se the appropriate	word/j	phrase, o	ut of the	four c	ptions g	given belo	w, to o	complete the following
	sente	nce:								
	Appa	arent lifelessness _		dor	mant life	e .				
	(A)	harbours	(B)	lead to		(C)	suppor	ts	(D)	affects
Answ	ver:	(A)	١.							
4.	Choo	se the statement wh	nere und	derlined v	vord is us	ed corr	ectly.			
	(A)	When the teacher	eludes	to differe	ent author	s, he is	being <u>el</u>	usive		
	(B)									
	(C)	Matters that are d	ifficult	to unders	stand, ide	ntify or	rememb	er are <u>allu</u>	<u>sive</u>	
	(D)	Mirages can be al	<u>llusive</u> ,	but a bett	ter way to	expres	s them i	s illusory		
Answer: (B)										

5.	Fill in the blank with the correct idiom/phrase.										
	That boy from the town was a in the sleepy village.										
	(A)	Dog out of herd		(B)	Sheep from the he	eap					
	(C)	Fish out of water		(D)	Bird from the floo	ck					
An	swer:	(C)									
		9	Q. No. 6 – 10 Car	ry Two	Marks Each						
6.	Righ	t triangle PQR is to be co	onstructed in the	xy – pla	ne so that the righ	nt angle	e is at P and line PR is				
	_	lel to the-axis. The x and y				_					
	$4 \le x$	$a \le 5$ and $6 \le y \le 16$. How	many different tria	angles co	ould be constructed	with the	hese properties?				
	(A)	110 (B)	1,100	(C)	9,900	(D)	10,000				
An	swer:	(C)									
7.	Selec	et the appropriate option in	place of underlin	ed part o	of the sentence.						
		ased productivity necessar		-		ees.					
	(A)	Increase in productivity	necessary								
	(B)	Increase productivity is	necessary								
	(C)	Increase in productivity	necessarily								
	(D)	No improvement require	ed								
An	swer:	(C)									
8.	Give	n below are two stateme	nts followed by t	wo con	clusions. Assuming	g these	e statements to be true,				
	decid	le which one logically foll	ows:								
	State	ements:									
	I.	No manager is a leader									
	II. All leaders are executive										

Conclusions:


- I. No manager is an executive
- **II.** All executive is a manager
- (A) Only conclusion I follows
- (B) Only conclusion II follows
- (C) Neither conclusion I nor II follows
- (D) Both conclusion I and II follow

Answer: (C)

- 9. A coin is tossed thrice. Let X be the event that head occurs in each of the first two tosses. Let Y be the event that a tail occurs on the third toss. Let Z be the event that two tails occurs in three tosses. Based on the above information, which one of the following statements is TRUE?
 - (A) X and Y are not independent
 - (B) Y and Z are dependent
 - (C) Y and Z are independent
 - (D) X and Z independent

Answer: (B)

10. In the given figure angle Q is a right angle, PS:QS = 3:1, RT:QT = 5:2 and PU:UR = 1:1.

If area of triangle QTS is 20 cm², then the area of triangle PQR in cm² is _____.

Answer: (280)

MECHANICAL ENGINEERING

Q. No. 1 – 25 Carry One Mark Each

1. Three parallel pipes connected at the two ends have flow-rates Q_1 , Q_2 and Q_3 respectively, and the corresponding frictional head losses are hL_1 , h_{L2} and h_{L3} respectively. The correct expressions for total flow rate (Q) and frictional head loss across the two ends (h_L) are

(A)
$$Q = Q_1 + Q_2 + Q_3$$
; $h_L = h_{L1} + h_{L2} + h_{L3}$

(B)
$$Q = Q_1 + Q_2 + Q_3$$
; $h_L = h_{L1} = h_{L2} = h_{L3}$

(C)
$$Q = Q_1 = Q_2 = Q_3$$
; $h_L = h_{L1} + h_{L2} + h_{L3}$

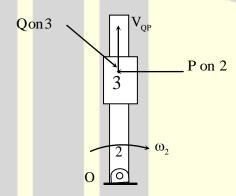
(D)
$$Q = Q_1 = Q_2 = Q_3$$
; $h_L = h_{L1} = h_{L2} = h_{L3}$

Answer: (B)

2. The lowest eigen value of the 2×2 matrix $\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$ is _____.

Answer: (2)

- 3. Which two of the following joining processes are autogenous?
 - i. Diffusion welding
 - ii. Electroslag welding
 - iii. Tungsten inert gas welding
 - iv. Friction welding
 - (A) i and iv
- (B) ii and iii
- (C) ii and iv
- (D) i and iii


Answer: (A)

- **4.** The strain hardening exponent n of stainless steel SS 304 with distinct yield and UTS values undergoing plastic deformation is
 - (A) n < 0
- (B) n=0
- (C) 0 < n < 1
- (D) n = 1

Answer: (C)

5. In the figure, link 2 rotates with constant angular velocity ω_2 . A slider link 3 moves outwards with a constant relative velocity $V_{Q/P}$, where Q is a point on slider 3 and P is a point on link 2. The magnitude and direction of Coriolis component of acceleration is given by

- (A) $2\omega_2 V_{Q/P}$; direction of $V_{Q/P}$ rotated by 90° in the direction ω_2
- (B) $\omega_2 V_{Q/P}$; direction of $V_{Q/P}$ rotated by 90° in the direction ω_2
- (C) $2\omega_2 V_{Q/P}$; direction of $V_{Q/P}$ rotated by 90° opposite to the direction of ω_2
- (D) $\omega_2 \, V_{Q/P}$; direction of $V_{Q/P}$ rotated by 90° opposite to the direction ω_2

Answer: (A)

- **6.** Couette flow is characterized by
 - (A) steady, incompressible, laminar flow through a straight circular pipe
 - (B) fully developed turbulent flow through a straight circular pipe
 - (C) steady, incompressible, laminar flow between two fixed parallel plates
 - (D) steady, incompressible, laminar flow between one fixed plate and the other moving with a constant velocity

Answer: (D)

7.	If $P(X) = 1/4, P(X)$	$(\mathbf{Y}) = 1$	/3, and P	$(X \cap Y)$	=1/12	the value	of P	(Y)	/X)is

- (A) $\frac{1}{4}$
- (B) $\frac{4}{25}$ (C) $\frac{1}{3}$

(C) Answer:

- 8. In a machining operation, if the generatrix and directix both are straight lines, the surface obtained
 - (A) cylindrical

(B) helical

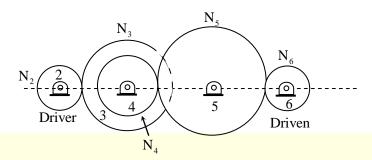
(C) plane (D) surface of revolution

Answer: **(C)**

- A rigid container of volume 0.5 m³ contains 1.0 kg of water at 120° C ($v_f = 0.00106 \text{ m}^3/\text{kg}$, $v_g = 0.8908$ m³/kg). The state of water is
 - Compressed liquid (A)
 - (B) Saturated liquid
 - A mixture of saturated liquid and saturated vapor (C)
 - Superheated vapor (D)

Answer: **(C)**

- In full mould (cavity-less) casting process, the pattern is made of 10.
 - expanded polystyrene (A)


(B) wax

(C) epoxy (D) plaster of Paris

Answer:

11. A gear train is made up of five spur gears as shown in the figure. Gear 2 is driver and gear 6 is driven member. N_2 , N_3 , N_4 , N_5 and N_6 represent number of teeth on gears 2, 3, 5 and 6 respectively. The gear(s) which act(s) as idler(s) is/are

- (A) only 3
- (B) only 4
- (C) only 5
- (D) Both 3 and 5

Answer: (C)

12. Let ϕ be an arbitrary smooth real valued scalar function and V be an arbitrary smooth vector valued function in a three-dimensional space. Which one of the following is an identity?

(A) $\operatorname{Curl}(\phi \overline{V}) = \nabla(\phi \operatorname{Div} \overline{V})$

(B) $\text{Div } \overline{V} = 0$

(C) Div Curl $\overline{V} = 0$

 $(D) \quad Div(\phi \overline{V}) = \phi Div \overline{V}$

Answer: (C)

13. Which of the following statements are TRUE for damped vibrations?

- **P.** For a system having critical damping, the value of damping ratio is unity and system does not undergo a vibratory motion.
- **Q.** Logarithmic decrement method is used to determine the amount do damping in a physical system.
- **R.** In case of damping due to dry friction between moving surfaces resisting force of constant magnitude acts opposite to the relative motion.
- **S.** For the case of viscous damping, drag force is directly proportional to the square of relative velocity.
- (A) P and Q only

(B) P and S only

(C) P, Q and R only

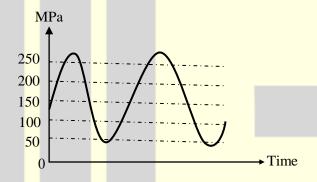
(D) Q and S only

Answer: (C)

14. The value of $\lim_{x\to 0} \left(\frac{-\sin x}{2\sin x + x\cos x} \right)$ is _____.

Answer: (-0.333)

- 15. The ratio of momentum diffusivity (v) to thermal diffusivity (α) , is called
 - (A) Prandtl number


(B) Nusselt number

(C) Biot number

(D) Lewis number

Answer: (A)

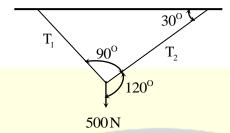
16. For the given fluctuating fatigue load, the values of stress amplitude and stress ratio are respectively

(A) 100 MPa and 5

(B) 250 MPa and 5

(C) 100 MPa and 0.20

(D) 250 MPa and 0.20


Answer: (C)

17. Using a unit step size, the value of integral $\int_{1}^{2} x \ln x \, dx$ by trapezoidal rule is ______.

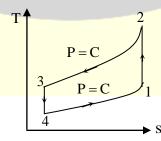
Answer: (0.69)

18. A weight of 500 N is supported by two metallic ropes as shown in the figure. The values of tensions T_1 and T_2 are respectively

(A) 433 N and 250 N

(B) 250 N and 433 N

(C) 353.5 N and 250 N


(D) 250 N and 353.5 N

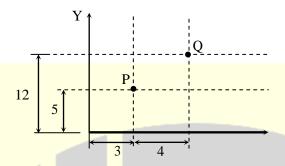
Answer: (A)

- 19. In the notation (a/b/c): (d/e/f) for summarizing the characteristics of queueing situation, the letters 'b' and 'd' stand respectively for
 - (A) service time distribution and queue discipline
 - (B) number of servers and size of calling source
 - (C) number of servers and queue discipline
 - (D) service time distribution and maximum number allowed in system

Answer: (A)

- 20. The thermodynamic cycle shown in figure (T/s diagram) indicates
 - (A) Reversed Cannot cycle
 - (B) Reversed Brayton cycle
 - (C) Vapor compression cycle
 - (D) Vapor absorption cycle

Answer: (B)



Enroll now and get 20% discount use Promo Code GATEPAPERS

For more details visit gateforumonline.com

21. A drill is positioned at point P and its has to proceed to point Q. The coordinates of point Q in the incremental system of defining position of a point in CNC part program will be

- (A) (3, 12)
- (B) (5,7)
- (C) (7, 12)

(D) (4, 7)

Answer: (D)

22. A cylindrical tank with closed ends is filled with compressed air at a pressure of 500 kPa. The inner radius of the tank is 2m, and it has wall thickness of 10 mm. The magnitude of maximum in-plane shear stress (in MPa) is ______.

Answer: (25)

- 23. An air-standard Diesel cycle consists of the following processes:
 - 1-2: Air is compressed is entropically.
 - 2-3: Heat is added at cosntant pressure.
 - 3-4: Air expands is entropically to the original volume.
 - 4-1: Heat is rejected at constant volume.

If γ and T denotes the specific heat ratio and temperature, respectively the efficiency of the cycle is

(A)
$$1 - \frac{T_4 - T_1}{T_3 - T_2}$$

(B)
$$1 - \frac{T_4 - T_1}{\gamma (T_3 - T_2)}$$

(C)
$$1 - \frac{\gamma (T_4 - T_1)}{T_3 - T_2}$$

(D)
$$1 - \frac{T_4 - T_1}{(\gamma - 1)(T_3 - T_2)}$$

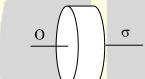
Answer: (B)

Saturated vapor is condensed to saturated liquid in condenser. The heat capacity ratio is $C_r = \frac{c_{min}}{c_{max}}$.

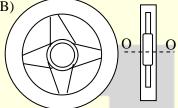
The effectiveness (ϵ) of the condenser is

(A)
$$\frac{1 - \exp[-NTU(1 + C_r)]}{1 + C_r}$$

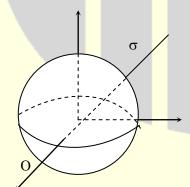
(B)
$$\frac{1 - \exp[-NTU(1 - C_r)]}{1 - C_r \exp[-NTU(1 - C_r)]}$$

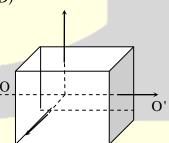

(C)
$$\frac{\text{NTU}}{1 + \text{NTU}}$$

(D)
$$1-\exp(-NTU)$$


(D) Answer:

For the same material and the mass, which of the following configurations of flywheel will have 25. maximum mass moment of inertia about the axis of rotation OO' passing through the center of gravity


(A)


(B)

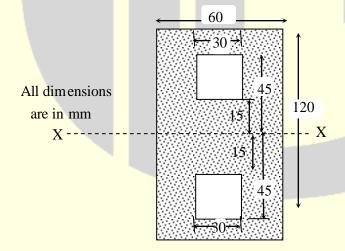
(C)

(D)

Answer: (B)

Q. No. 26 – 55 Carry Two Marks Each

26. For ball bearings, the fatigue life L measured in number of revolutions and the radial load F are related by $FL^{1/3} = K$, where K is a constant. It withstands a radial load of 2 kN for a life of 540 million revolutions.


The load (in kN) for a life of one million revolutions is ______.

Answer: (16.286)

27. The torque (in N-m) exerted on the crank shaft of a two stroke engine can be described as $T = 10000 + 1000 \sin 10 - 1200 \cos 20$, where θ is the crank angle as measured from inner dead center position. Assuming the resisting torque to be constant, the power (in kW) developed by the engine at 100 rpm is

Answer: (104)

28. The value of moment of inertia of the section shown in the figure about the ais-XX is

(A) $8.5050 \times 10^6 \,\mathrm{mm}^4$

(B) $6.88.50 \times 10^5 \,\text{mm}^4$

(C) $7.7625 \times 10^6 \,\mathrm{mm}^4$

(D) $8.5725 \times 10^6 \, \text{mm}^4$

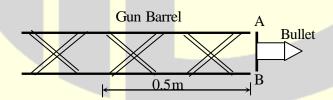
Answer: (B)

The value of

$$\int_{C} \left[\left(3x - 8y^2 \right) dx + \left(4y - 6xy \right) dy \right],$$

(where C is boundary of th region bounded by x = 0, y = 0 and x + y = 1 is) is _____

Answer: (1.66)


A brick wall $\left(k = 0.9 \frac{W}{m \, k}\right)$ of thickness 0.18 m separates the warm air in a room from the cold ambient air. On a particular winter day, the outside air temperature is -5° C and the room needs to be maintained at 27°C. The heat transfer coefficient associated with outside air is $20 \frac{W}{m^2 K'}$. Neglecting the convective resistance of the air inside the room, the heat loss, in $\left(\frac{W}{m^2}\right)$ is

88 (A)

- (B) 110
- (C) 128
- (D) 160

Answer:

A bullet spins as the shot is fired from a gun. For this purpose, two helical slots as shown in the figure are 31. cut in the barrel. Projections A and B on the bullet engage in each of the slots

Helical slots are such that one turn of helix is completed over a distance of 0.5 m. If velocity of bullet when it exits the barrel is 20 m/s, its spinning speed in rad/s is _____.

Answer: (251.3)

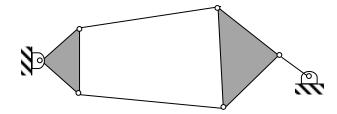
- 32. Which of the following statements are TRUE, when the cavitation parameter $\sigma = 0$?
 - i. the local pressure is reduced to vapor pressure
 - ii. cavitation starts
 - iii. boiling of liquid starts
 - iv. cavitation stops
 - (A) i, ii and iv

(B) only ii and iii

(C) only i and iii

(D) i, ii and iii

Answer: (D)

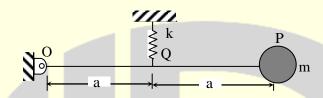

- 33. In a CNC milling operation, the tool has to machine the circular arc from point (20, 20) to (10, 10) at sequence number 5 of the CNC part program. If the center of the arc is at (20, 10) and the machine has incremental mode of defining position coordinates, the correct tool path command is
 - (A) N 05 G 90 G01 X-10 Y-10 R10
 - (B) N 05 G91 G03 X-10 Y-10 R10
 - (C) N 05 G90 G03 X20 Y20 R10
 - (D) N 05 G91 G02 X20 Y20 R10

Answer: (B)

34. Ratio of solidification time of a cylindrical casting (height =radius) to the cubic casting of side two times the height of cylindrical casting is ______.

Answer: (0.5625)

35. The number of degrees of freedom of the linage shown in the figure is



- (A) -3
- (B) –0
- (C) 1

(D) 2

Answer: (C)

- **36.** Figure shows a single degree of freedom system. The system consists of a massless rigid bar OP hinged at O and a mass m at end P. The natural frequency of vibration of the system i

$$(A) f_n = \frac{1}{2\pi} \sqrt{\frac{k}{4m}}$$

(B)
$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{2m}}$$

(C)
$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

(D)
$$f_n = \frac{1}{2\pi} \sqrt{\frac{2k}{m}}$$

Answer: (A)

37. For the linear programming problem:

Maximize
$$Z = 3X_1 + 2X_2$$

Subject to

$$-2X_1 + 3X_2 \le 9$$

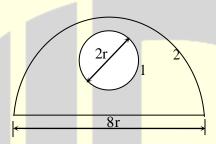
$$X_1 - 5X_2 \ge -20$$

$$X_1, X_2 \ge 0$$

The above problem has

- (A) unbounded solution
- (B) infeasible solution
- (C) alternative optimum solution
- (D) degenerate solution

Answer: (A)



38. Air in a room is at 35° and 60% relative humidity (RH). The pressure in the room is 0.1 MPa. The saturation pressure of water at 35°C is 5.63 kPa. The humidity ratio of the air (in gram/kg of dry air) is

Answer: (21.74)

shape factor F₂₋₁ is

39. A solid sphere 1 of radius 'r' is placed inside a hollow, closed hemispherical surface 2 of radius '4r'. The

(A) $\frac{1}{12}$

(B) $\frac{1}{2}$

(C) 2

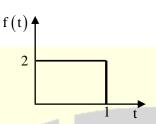
......

(D) 12

Answer: (A)

40. Newton-Raphson method is used to find the roots of the equation, $x^3 + 2x^2 + 3x - 1 = 0$. If the initial guess is $x_0 = 1$, then the value of x after 2nd iteration is _______.

Answer: (0.30)


41. The annual requirement of rivets at a ship manufacturing company is 2000 kg. The rivets are supplied in units of 1 kg costing Rs. 25 each. If the costs Rs. 100 to place an order and the annual cost of carrying one unit is 9% of its purchase cost, the cycle length of the order (in days) will be_____

Answer: (76.94)

42. Laplace transform of the function f(t) is given by $F(s) = L\{f(t)\} = \int_0^\infty f(t) e^{-st} dt$.

Laplace transform of the function shown below is given by

- (A) $\frac{1 e^{-2s}}{s}$
- $(B) \frac{1-e^{-s}}{2s}$
- (C) $\frac{2-2e^{-s}}{s}$
- (D) $\frac{1-2e^{-s}}{s}$

Answer: (C)

- 43. Orthogonal turning of a mild steel tube with a tool of rake angle 10° carried out at a feed of 0.14 mm/rev. If the thickness of the chip produced is 0.28 mm, the values of shear angle and shear strain will be respectively
 - (A) 28°20′ and 2.19

(B) 22°20′ and 3.53

(C) 24°30′ and 3.53

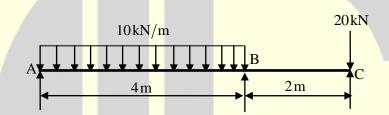
(D) 37°20′ and 5.19

Answer: (A)

44. Steam enters a turbine at 30 bar, 300°C (u = 2750 kJ/kg, h = 2993 kJ/kg) and exits the turbine as saturated liquid at 15 kPa (u = 225 kJ/kg, h = 226 kJ/kg). Heat loss to the surrounding is 50 kJ/kg of steam flowing through the turbine. Neglecting changes in kinetic energy and potential energy, the work output of the turbine (in kJ/kg of steam) is _____.

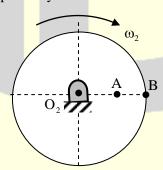
Answer: (2717)

- **45.** For a given matrix $\begin{bmatrix} 4-3i & i \\ -i & 4+3i \end{bmatrix}$, where is $i = \sqrt{-1}$, the inverse of matrix P is
 - $(A) \frac{1}{24} \begin{bmatrix} 4-3i & i \\ -i & 4+3i \end{bmatrix}$


(B)
$$\frac{1}{25}\begin{bmatrix} i & 4-3i\\ 4+3i & -i \end{bmatrix}$$

$$(C) \frac{1}{24} \begin{bmatrix} 4+3i & -i \\ i & 4-3i \end{bmatrix}$$

$$(D) \frac{1}{25} \begin{bmatrix} 4+3i & -i \\ i & 4-3i \end{bmatrix}$$


Answer: (A)

46. For the overhanging beam shown in figure, the magnitude of maximum bending moment (in kN-m) is

Answer: (40)

47. Figure shows a wheel rotating about O₂. Two points A and B located along the radius of wheel have speeds of 80 m/s and 140 m/s respectively.

The distance between the points A and B is 300 mm. The diameter of the wheel (in mm) is ______

Answer: (1400)

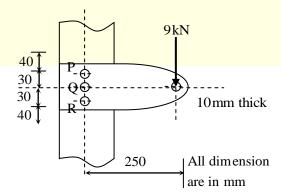
48. The dimensions of a cylindrical side riser (height = diameter) for a $25 \text{ cm} \times 15 \text{ cm} \times 5 \text{ cm}$ steel casting are to be determined. For the tabulated shape factor values given below, diameter of the riser (in cm) is _____.

Shape Factor	2	4	6	8	10	12
Riser Volume / Casting Volume	1.0	0.70	0.55	0.50	0.40	0.35

Answer: (10.61)

49. A Prandtl tube (Pitot-static tube with C = 1) is used to measure the velocity of water. The differential manometer reading is 10 mm of liquid column with a relative density of 10. Assuming $g = 9.8 \text{ m/s}^2$, the velocity of water (in m/s) is _____.

Answer: (1.32)


50. In a rolling operation using rolls of diameter 500 mm if a 25 mm thick plate cannot be reduced to less than 20 mm in one pass, the coefficient of friction between the roll and the plate is ______.

Answer: (0.1414)

51. Refrigerant vapor enters into the compressor of a standard vapor compression cycle at - 10°C (h = 402 kJ/kg) and leaves the compression at 50°C(h = 432 kJ/kg). It leaves the condenser at 30°C (h = 237 kJ/kg). The COP of the cycle is ______.

Answer: (5.5)

52. A cantilever bracket is bolted to a column using three M12 \times 1.75 bolts, P, Q and R.

	The	value of maximum shear stress developed	in the bol	lt P (in N	/IPa) is	·		
Ansv	ver:	(341)						
53.	A mi	ixture of ideal gases has the following comp	position b	y mass:				
		N2 O2 CO2 60% 30% 10%						
	If the	e Universal gas constant is 8314 J/mol-K,	the chara	cteristic	gas constan	t of the mi	xture (inJ/kg.K)	is
Answ	ver:	(274.99)						
								•
54.	A sh	aft of length 90 mm has a tapered portion of	f length 5	55 mm. '	The diamete	r of the tap	er is 80 mm at or	ıe
		and 65 mm at the other. If the taper is mad respectively are	le by tails	stock set	t over metho	d, the tape	r angle and the s	et
	(A)	15°32′ and 12.16 mm	(B)	15°32′	and 15.66 r	nm		
	(C)	11°22′ and 10.26 mm	(D)	10°32′	and 14.46 r	nm		
Answ	ver:	(A)						
55.	One	side of a wall is maintained at 400 K and the	ne other a	t 300 K.	The rate of	heat transf	er through the wa	ıll
	is 10	000 W and the surrounding temperature is 2	25°C. Ass	suming	no generatio	n of heat w	vithin the wall, th	ne
	irrev	ersibility (in W) due to heat transfer throug	h the wal	l is				
Answ	ver:	(248.33)						

