

www.gateforumonline.com

GATEFORUM Engineering Success

E PREVIOUS YEAR SOLVED PAPERS Chemical Engineering Previous Year Solved Papers

GATEFORUM Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.

For more details visit gateforumonline.com

					H-GATE-	40 <i>4</i> 0		<u>www.gateforumonline.</u>
				GENE	RAL ABI	LITY		
				<u>Q. No. 1 – 5 (</u>	Carry One	e Mark Each		
D	Desp	ite a string of po	or perfor	mances, the cha	nces of K.	L. Rahul's selec	ction in the	e team are
(4	A)	slim	(B)	bright	(C)	uncertain	(D)	obvious
iswei	r:	(B)						
Т	The c	difference betwee	en the su	m of the first 2n	natural nu	mbers and sum	of first n	odd natural numbers i
_								
(1	A)	$2n^2 - n$	(B)	$n^2 - n$	(C)	$2n^2 - n$	(D)	$n^2 + n$
,	ĺ						, , ,	
iswei	r:	(D)						
Н	Iit b	by floods, the K	Charif (sı	ummer sown) c	rops in v	arious parts of	the coun	try have been affect
					-	-		try have been affect in the output of the r
С	Offic	vials believe that	the loss	in production o	f the khari	f crops can be	recovered	-
C (1	Offic wint	tials believe that ter sown) crops s	the loss o that the	in production o e country can ac	f the khari hieve its f	if crops can be	recovered action targ	in the output of the r
C (v tł	Offic wint he cr	tials believe that ter sown) crops s rop year 2019-20	the loss o that the) (July-Ju	in production o e country can ac ine). They are ho	f the khari hieve its f opeful that	if crops can be food-grain product good rains in Ju	recovered action targ uly-Augus	in the output of the r get of 291 million tons
C (v th m	Offic wint he cr noist	tials believe that ter sown) crops s rop year 2019-20	the loss o that the) (July-Ju	in production o e country can ac ine). They are ho	f the khari hieve its f opeful that	if crops can be food-grain product good rains in Ju	recovered action targ uly-Augus	in the output of the r get of 291 million ton st will help the soil ret
C (v th m F	Offic wint he cr noist Febru	tials believe that ter sown) crops s rop year 2019-20 ture for a longer	the loss o that the) (July-Ju period, 1	in production o e country can ac ine). They are ho helping winter s	f the khari hieve its f opeful that own crops	if crops can be a food-grain product good rains in Ju s such as wheat	recovered action targ uly-Augus and pulse	in the output of the r get of 291 million tons st will help the soil ret
C (v tł m F	Offic wint he cr noist Febru	tials believe that ter sown) crops s rop year 2019-20 ture for a longer uary period. th of the followin	the loss o that the) (July-Ju period, 1 ng statem	in production o e country can ac ine). They are ho helping winter s ents can be infe	f the khari hieve its f opeful that own crops	if crops can be a food-grain product good rains in Ju s such as wheat the given passag	recovered action targ uly-Augus and pulse ge?	in the output of the r get of 291 million tons st will help the soil ret
C (v th F V (/	Dffic wint he cr noist Febru Whic	tials believe that ter sown) crops s rop year 2019-20 ture for a longer uary period. th of the followin Officials want	the loss o that the) (July-Ju period, 1 ng statem the food-	in production o e country can ac ine). They are ho helping winter s ents can be infe	f the khari chieve its f opeful that sown crops rred from n target to	if crops can be a food-grain produ- good rains in Ju s such as wheat the given passag be met by the N	recovered action targ uly-Augus and pulse ge? ovember-	in the output of the r get of 291 million tons at will help the soil ref es during the Novemb February period.
C (v th F V (1	Offic wint he cr noist Sebru Vhic A)	tials believe that ter sown) crops s rop year 2019-20 ture for a longer uary period. th of the followin Officials want to Officials feel th	the loss o that the) (July-Ju period, 1 ng statem the food- nat the fo	in production o e country can ac ine). They are ho helping winter s ents can be infe grain production	f the khari chieve its f opeful that sown crops rred from h target to tion target	if crops can be a food-grain produ- good rains in Ju s such as wheat the given passag be met by the N	recovered action targ uly-Augus and pulse ge? ovember- due to floo	in the output of the r get of 291 million tons at will help the soil ref es during the Novemb February period.
C (* th F V (1 (1) (*	Offic wint he cr noist Febru Vhic A) B)	ials believe that er sown) crops s rop year 2019-20 ture for a longer uary period. ch of the followin Officials want to Officials feel th Officials declar	the loss o that the) (July-Ju period, 1 ng statem the food- nat the fo red that th	in production o e country can ac ine). They are he helping winter s ents can be infe grain production od-grain produc	f the khari chieve its f opeful that sown crops rred from h target to tion target oduction t	if crops can be a food-grain produ- good rains in Ju s such as wheat the given passag be met by the N c cannot be met o arget will be me	recovered action targ uly-Augus and pulse ge? lovember- due to floc et due to g	in the output of the r get of 291 million tons at will help the soil ref es during the Novemb February period. ods. ood rains.
C (\(th F V () () () () () ()	Offic wint he cr noist Gebru Vhic A) B) C) D)	ials believe that er sown) crops s rop year 2019-20 ture for a longer uary period. ch of the followin Officials want to Officials feel th Officials declar Officials hope	the loss o that the) (July-Ju period, 1 ng statem the food- nat the fo red that th	in production o e country can ac une). They are he helping winter s ents can be infe grain production od-grain produc he food-grain pr	f the khari chieve its f opeful that sown crops rred from h target to tion target oduction t	if crops can be a food-grain produ- good rains in Ju s such as wheat the given passag be met by the N c cannot be met o arget will be me	recovered action targ uly-Augus and pulse ge? lovember- due to floc et due to g	in the output of the r get of 291 million tons at will help the soil ref es during the Novemb February period. ods. ood rains.
C (* th F V (1 (1) (*	Offic wint he cr noist Gebru Vhic A) B) C) D)	ials believe that er sown) crops s rop year 2019-20 ture for a longer uary period. ch of the followin Officials want Officials feel th Officials declar Officials hope	the loss o that the) (July-Ju period, I ng statem the food- nat the fo red that the that the fo	in production o e country can ac une). They are he helping winter s ents can be infe grain production od-grain produc he food-grain pr	f the khari chieve its f opeful that sown crops rred from a target to tion target oduction t ction targe	If crops can be a food-grain produ- good rains in Ju- s such as wheat the given passag- be met by the N c cannot be met of arget will be met du	recovered action targ uly-Augus and pulse ge? lovember- due to floc et due to good	in the output of the r get of 291 million tons at will help the soil ref es during the Novemb February period. ods. ood rains.
C (\(th m F \(() () () () () () () ()) () () () ()	Offic wint he cr noist Febru Vhic A) B) C) D) r:	ials believe that er sown) crops s rop year 2019-20 ture for a longer uary period. ch of the followin Officials want to Officials feel th Officials declar Officials hope to (D)	the loss o that the) (July-Ju period, J ng statem the food- nat the fo red that the that the fo	in production o e country can ac une). They are he helping winter s tents can be infe grain production od-grain production he food-grain produc food-grain produ	f the khari chieve its f opeful that sown crops rred from a target to tion target oduction t ction targe	If crops can be a food-grain produ- good rains in Ju- s such as wheat the given passag- be met by the N c cannot be met of arget will be met du	recovered action targ uly-Augus and pulse ge? lovember- due to floc et due to good	in the output of the reget of 291 million ton st will help the soil referses during the November February period. ods.
C (' tł m F V (1 (1) (1) (1) Swei	Offic wint he cr noist Gebru Vhic A) B) C) D) r:	ials believe that er sown) crops s rop year 2019-20 ture for a longer uary period. ch of the followin Officials want to Officials declar Officials hope to (D)	the loss o that the) (July-Ju period, 1 ng statem the food- nat the fo red that the that the fo	in production o e country can ac une). They are he helping winter s eents can be infe grain production od-grain production he food-grain produc he food-grain produ	f the khari chieve its f opeful that sown crops rred from a target to tion target oduction t ction targe	If crops can be a food-grain produ- good rains in Ju- s such as wheat the given passag- be met by the N c cannot be met of arget will be met du	recovered action targ uly-Augus and pulse ge? lovember- due to floc et due to good	in the output of the r get of 291 million tons at will help the soil ref es during the Novemb February period. ods. ood rains.
C (\(th F () () () () () () () () () () () () ()	Offic wint he cr noist Gebru Vhic A) B) C) D) r:	ials believe that er sown) crops s rop year 2019-20 ture for a longer uary period. ch of the followin Officials want to Officials feel th Officials declar Officials hope to (D)	the loss o that the) (July-Ju period, 1 ng statem the food- nat the fo red that the that the fo	in production o e country can ac une). They are he helping winter s eents can be infe grain production od-grain production he food-grain produc he food-grain produ	f the khari chieve its f opeful that sown crops rred from a target to tion target oduction t ction targe	If crops can be a food-grain produ- good rains in Ju- s such as wheat the given passag- be met by the N c cannot be met of arget will be met du	recovered action targ uly-Augus and pulse ge? lovember- due to floc et due to good	in the output of the reget of 291 million ton st will help the soil referses during the November February period. ods.

Answer:	(B)

		ICCESS		CH-GATE-	2020	www.gateforumonline.
•						a six-time world champion in esident's official residence) in New
	Delhi.					
	(A) to	o, at	(B) on, at	(C)	On, in	(D) With, at
nsv	wer: (A	A)				
			<u>Q. No. 6 –</u>	10 Carry Two) Marks Each	L
	For a m	atrix M –	m]: i i = 1 2 3 4 the	diagonal elem	ents are all zei	to and $m_{ij} = -m_{ji}$. The minimum
		·	[1, 1, 2, 3, 4, u] ts required to fully spec			$m_{ij} - m_{ji}$. The minimum
		2	(B)		(C) 6	(D) 0
nsv	wer: ((C)				
		Profit percentage	70 60 Company P Company Q 50 40 30 20 10 0 2013 2014	4 2015 2016 Year	2017 2018	
	(A) 15		Company P Company Q Company Q Compan	Year	2017 2018	(D) 17 : 16
Ansv			Company P Company Q Company Q Compan	Year		

CH-GATE-2020

www.gateforumonline.com

- 8. P,Q,R,S,T,U,V, and W are seated around a circular table.
 - (i) S is seated opposite to W.
 - (ii) U is seated at the second place to the right of R.
 - (iii) T is seated at the third place to the left of R.
 - (iv) V is a neighbor of S.

Which of the following must be true?

- (A) P is not seated opposite to Q
- (B) R is the left neighbor of S

(C) Q is a neighbor of R.

(D) P is a neighbor of R

Answer: (A)

GATEFORUM

9. Repo rate is the rate at which Reserve Bank of India (RBI) lends commercial banks, and reverse repo rate is the rate at which RBI borrows money from commercial banks.

Which of the following statements can be inferred from the above passage?

- (A) Decrease in reportate will decrease cost of borrowing and increase lending by commercial banks.
- (B) Decrease in reportate will increase cost of borrowing and decrease lending by commercial banks.
- (C) Increase in reportate will decrease cost of borrowing and decrease lending by commercial banks.
- (D) Increase in reportate will increase cost of borrowing and Increase lending by commercial banks.

Answer: (A)

10. The distance between Delhi and Agra is 233km. A car P started travelling from Delhi to Agra and another car Q started from Agra to Delhi along the same road 1 hour after the car P started. The two cars crossed each other 75 minutes after the car Q started. Both cars were travelling at constant speed The speed of car P was 10km/hr more than the speed of car Q. How many kilometers the car Q had travelled when the cars crossed each other?

(A) 116.5	(B) 88.2	(C) 66.6	(D) 75.2
-----------	----------	----------	----------

Answer: (D)

CHEMICAL ENGINEERING

Q. No. 1 – 25 Carry One Mark Each

The square of Thiele modulus, M_T , is given by $M_T^2 = \frac{L^2 k}{D_{res}}$, where L is the characteristic length of the 1. catalyst pellet, k is the rate constant of a first order reaction, and D_{eff} is the effective diffusivity of the species in the pores. M_T^2 is a measure of rate of pore diffusion time scale of reaction (A) (B) rate of reaction time scale of pore diffusion rate of reaction time scale of pore diffusion (C) (D) time scale of reaction rate of external mass trasfer Answer: **(D)** Consider the following unit step function. 2. f(t) (0,0)3 The Laplace transform of this function is (A) $\frac{e^{-6s}}{1}$ (B) $\frac{e^{-3s}}{s}$ (C) $\frac{e^{-3s}}{s^2}$ (D) $\frac{e^{-3s}}{3s}$ **(B)** Answer: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

3.	Leid	lenfrost p	ohenomenon re	efers to						
	(A)	-			n of liquid d	roplets fa	lling on a very	hot surface	2	
	(B)	The e	xchange of he	at betwee	en two solid	s	с .			
	(C)	The n	nelting of frost							
	(D)	The c	ondensation of	f vapour	on a cold su	rface				
Ans	wer:	(A)								
• • • • • •										••••
	G	• 1 .1	. ,		1.1					
4.	Cons	sider the	processes in C	froup - I	and the rea	ction in C	Broup - 2.			
		G	roup – 1			Group	-2			
		(P) S	olvay process	(I)	RCOOH +	· NaOH –	→RCOONa + H	I ₂ O		
		(Q) C	0xo process	(II)	$CH_2 = CH$	$L_2 + CO +$	$H_2 \rightarrow CH_3CH_2$	СНО		
	-	(R) S	aponification	(III)	$CaCO_3 + 2$	2NaC1 →	$Na_2CO_3 + CaC$	Cl ₂		
	The	correct c	combination is							
	(A)		Q–III, R–II			(B)	P–III, Q–II	, R – I		
	(C)	P−II,	Q–I, R–III			(D)	P−III, Q−I,	R–II		
Ans	wer:	(B)								
5.	A ri	igid sph	erical particle	underg	oes free se	ttling in	a liquid of c	lensity 750) kgm ⁻³ and visco	osity
	9.81	×10 ⁻³ P	as. Density of	the parti	icle is 3000	kgm⁻³ an	nd the particle of	liameter is	2×10^{-4} m. Accelera	ition
	due	to gravit	y s 9.81ms^{-2} .	Assumi	ng Stokes' l	aw to be	valid, the term	ninal settlin	ig velocity (in ms ^{-1}) of
	the r	particle is	s						Ň	
	(A)	2×10		B) 3×	10^{-3}	(\mathbf{C})	4×10 ⁻³	(D)	5×10 ⁻³	
			(1	b) 3×	10	(0)	4/10	(D)	5/10	
Ans		(D)								

www.gateforumonline.com

GATEFORUM Engineering Success

E Engineering Success

6. Consider the hyperbolic function in Group -1 and their definition in Group -2

Group -1	Group - 2
(P) tanh.x	(I) $\frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$
(Q) coth.x	$(\mathbf{II}) \frac{2}{\mathbf{e}^{\mathbf{x}} + \mathbf{e}^{-\mathbf{x}}}$
(R) sech.x	(III) $\frac{2}{e^{x}-e^{-x}}$
(S) cosech.x	(IV) $\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$

The correct combination is

(A) P-II, Q-III, R-I, S-IV

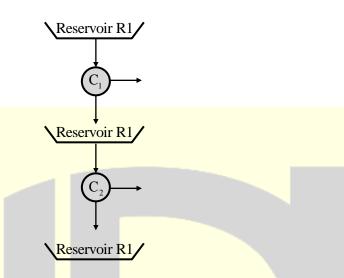
- $(B) \qquad P-IV, Q-I, R-II, S-III$
- (C) P-II, Q-III, R-I, S-IV
- (D) P-IV, Q-I, R-III, S-II

Answer: (B)

7. Consider a batch distillation process for an equimolar mixture of benzene and toluene at atmospheric pressure. The mole fraction of benzene in the distillate collected after 10 minutes si 0.6. The process is further continued for additional 10 minutes. The mole fraction of benzene in the total distillate collected after 20 minutes of operation is

- (A) exactly equal to 0.7
- (C) exactly equal to 0.6

- (B) greater than 0.7
- (D) less than 0.6



Answer: (D)

GATEFORUM Engineering Success

www.gateforumonline.com

8. Consider two Carnot engines C_1 and C_2 as shown in the figure.

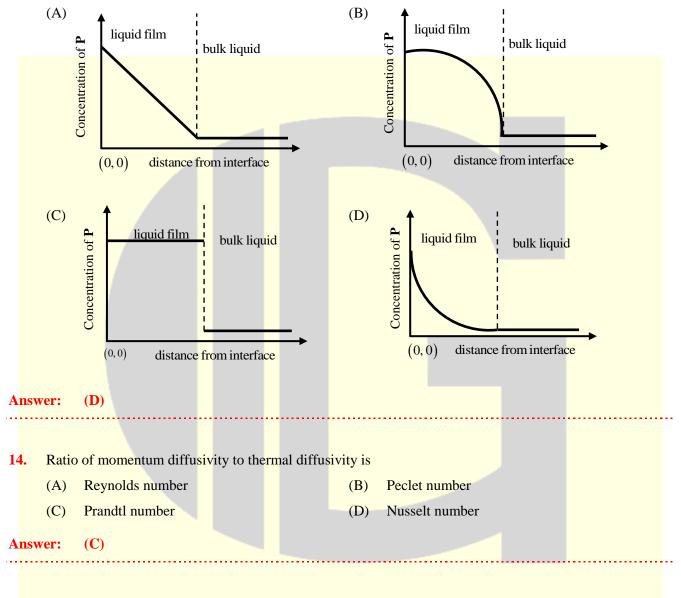
The efficiencies of the engines C_1 and C_2 are 0.40 and 0.35 respectively. If the temperature of Reservoir R1 is 800K, then the temperature (in K) of Reservoir R3 is _____(round off to nearest integer)

Answer: (312)

9. Consider the refinery processes in Group-1 and the catalysts in Group-2

	Group-1	Group-2
Р.	Hydrodesulfurization	I. Zeolites
Q.	Fluid catalytic cracking (FCC)	II. Pt/Al_2O_3
R.	Naphtha reforming	III. $Co - Mo/Al_2O_3$

The correct combination is


- $(A) \qquad P-II, Q-II, R-I$
- $(C) \qquad P-III, Q-I, R-II$

(B) P-II, Q-I, R-III(D) P-I, Q-III, R-II

Answer: (C)

		g Success		CH-	GATE-20	20		<u>www.gateforun</u>	nonline.com
10.	Cons	ider an inco	mpressible f	low of a constant p	property flu	uid over a si	mooth, thin	and wide flat	plate. The
	free s	stream flow	parallel to th	ne surface of the pl	late along	its length a	nd its veloc	ity is constant.	. Value o
	the R	eynolds nun	nber at a dist	ance of 2.0 m form	the leadir	ng edge of th	e plate is 80	000. The flow	within th
	boun	dary layer at	a distance o	f 1.0 m from the le	ading edge	e of the plate	e is		
	(A)	laminar			(B) i	nviscid			
	(C)	transitionin	ng from lami	nar to turbulent	(D) t	urbulent			
Ansv	wer:	(A)							
11	Mala	fuention	and addinin		· · · · · · · · · · · · · · · · · · ·		a hinam	. 1::	
11.				ty coefficient of	-			<u> </u>	
				excess molar Gibbs				Ç	tant and
	is abs	solute tempe		mixture. Which on		-			
	(A)	$\lim_{x_1\to 1}\gamma_1=0.5$	5 (B)	$\lim_{x_1 \to 1} \frac{\mathbf{G}^{\mathrm{E}}}{\mathbf{RT}} = 0$	(C) 1	$\operatorname{im} \gamma_1 = 0$	(D)	$\lim \frac{G^{E}}{DT} = 0.5$	
		$x_1 \rightarrow 1$		$x_1 \rightarrow 1 RT$:	i₁→I		$x_1 \rightarrow 1 RT$	
Ansv	wer:	(B)							
12.	In a	constant-pre			meompres		ayer, volun	the of the fifth	ate (V) 1
12.	meas 10 ⁴ sr	ured as a fu n ⁻³ . Area of	nction of tir	ne t. The plot of t/ 0.05m ² , viscosity ne value of the filte	V versus of the filt	rate is 10^{-3}	a straight l pa s, and t	ine with an in	itercept o
12.	meas 10 ⁴ sr acros	ured as a fu m ⁻³ . Area of s the filter is	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tir	0.05m ² , viscosity	V versus of the filt er-medium	rate is 10^{-3}	a straight l pa s, and t	ine with an in	itercept o
12. Ansv	meas 10 ⁴ sr acros	ured as a fu m ⁻³ . Area of s the filter is	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o
	meas 10 ⁴ sr acros (A)	ured as a fu m ⁻³ . Area of as the filter is 1×10^{11}	nction of tin the filter is 200 kPa. Th	$0.05m^2$, viscosity ne value of the filte	V versus of the filt er-medium	rate is 10 ⁻³ resistance	a straight l pa s, and t (in m ⁻¹) is	ine with an in	itercept o

13. Pure gas P is being absorbed into a liquid. The dissolved P undergoes an irreversible reaction in the liquid film. The reaction is first order with respect to P. Which one of the following represents the concentration profile of P in the liquid film at steady state?

15. An irreversible gas phase reaction 2P→4Q+R is conducted in an isothermal and isobaric batch reactor. Assume ideal gas behavior. The feed is an equimolar mixture of the reactant P and inert gas. After complete conversion of P, the fraction change in volume is _____(round off to 2 decimal places).

Answer: (0.75)

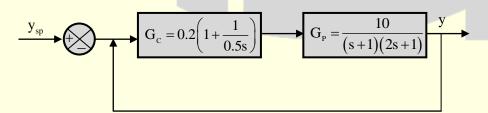
			www.gateforumonline.con
d for the measureme	ent of		
) temperature	(C) pressure	(D)	composition
er kg. The sum of an payable at 18% on is sold, the annual n	nnual fixed charge gross profit. Assu thet profit of the pla	s, overhead cost ming the plant nt (in INR) is	INR 200 per kg, and its t and general expenses it runs at full capacity and
) 1,39,40,000	(C) 1,20,00,	000 (D)	98,40,000
nuquely differential	ale function		
nuously differentiat xyz k	Sie function		
	vectors along th	a vu and z dir	ections in the Cartesiar
of this function is	vectors along th	e x,y and z un	ections in the Cartesian
	(B) 6xyi-1	буz j+5xy k	
$3x^2 k$		$\cdot 8y^2 j + 5z(x + y)$	/)k
	(2)	-, , , , ,)
			flow reactor operating at
t four pulses observ	-		acer at the outlet of the
t tour puises observ	ou ut t ₁ , t ₂ , t ₃ , und		10
Plug flow reactor R = 1			$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	Plug flow reactor R =1		$E(t),s^{-1}$

www.gateforumonline.com

In addition, use the following data and assumptions

- R is defined as ratio of the volume of fluid returned to the entrance of the reactor to the volume leaving the system
- No reaction occurs in the reactor
- Ignore any dead volume in the recycle loop

If the space time of the plug flow reactor is τ seconds, which one of the following is correct?


(A)
$$t_1 = \frac{\tau}{3}, t_2 = \frac{2\tau}{3}, t_3 = \tau, t_4 = \frac{4\tau}{3}$$

(B) $t_1 = \tau, t_2 = 2\tau, t_3 = 3\tau, t_4 = 4\tau$
(C) $t_1 = \frac{\tau}{2}, t_2 = \frac{\tau}{4}, t_3 = \frac{\tau}{8}, t_4 = \frac{\tau}{16}$
(D) $t_1 = \frac{\tau}{2}, t_2 = \tau, t_3 = \frac{3\tau}{2}, t_4 = 2\tau$

Answer: (D)

- **20.** The operating temperature range for the Haber process is 350-500°C. It is used for the production of ammonia at
 - (A) 20 MPa using zeolite catalyst in an endothermic reaction
 - (B) 0.1 MPa using Fe catalyst in an exothermic reaction
 - (C) 20 MPa using Fe catalyst in an exothermic reaction
 - (D) 20 MPa using Fe catalyst in an endothermic reaction

Answer: (C)

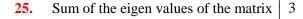
21. Consider the following closed loop system with G_{P} and G_{C} as the transfer functions of the process and the controllers, respectively.

For a unit step change in the set point (y_{sp}) , the change in the value of the response (y) at steady state is _____(round off to 1 decimal place).

Answer: (1)

C	EFORUM eering Success	CH-GATE-2020	www.gateforumonline.com
22. W	which one of the following method	ls requires specifying an initial inte	rval containing the root (i.e.
bı	racketing) to obtain the solution of f	f(x)=0, where $f(x)$ is a continuous nor	n-linear algebraic function?
(4	A) Newton-Raphson method	(B) Secant method	
(0	C) Regula falsi method	(D) Fixed point iterati	on method
Answer 23. W	: (C) Which one of the following is NOT C	ORRECT?	
(A	A) high density polyethylene (HDI	PE) is produced by condensation polyr	merization
(E	B) poly (ethylene terephthalate) (P	ET) is a polyester	
(0	C) phenol-formaldehyde resin is a	thermosetting polymer	

(D) nylon-6,6 is produced by condensation polymerization

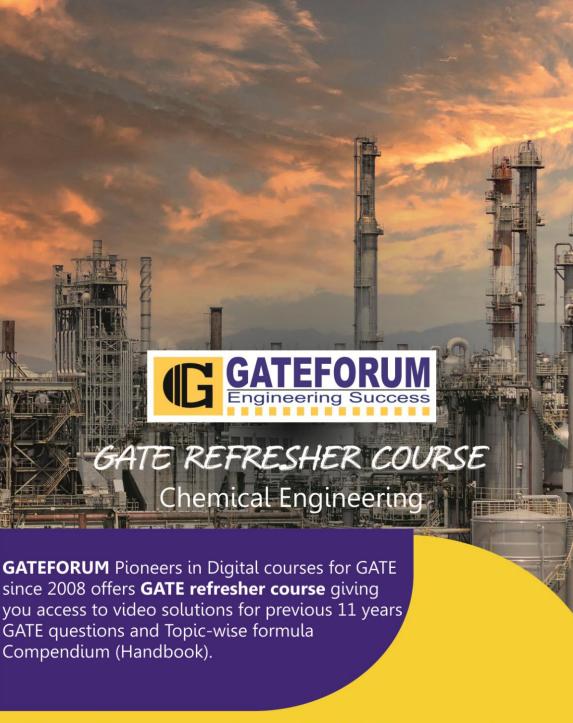

Answer: **(A)**

The decomposition of acetaldehyde (x) to methane and carbon monoxide follows four-step free radical 24. mechanism. The overall rate of decomposition of X is

$$-\mathbf{r}_{x} = \mathbf{k}_{2} \left(\frac{\mathbf{k}_{2}}{2\mathbf{k}_{3}}\right)^{\frac{1}{2}} \mathbf{C}_{x}^{3/2} = \mathbf{k}_{\text{overall}} \mathbf{C}_{x}^{3/2}$$

Where, k_1, k_2 , and k_3 denote the rate constants of the elementary steps, with corresponding activation energies (in kJ mol⁻¹) of 320, 40, and 0, respectively. The temperature dependency of the rate constants is described by Arrhenius equation. C_x denotes the concentration of acetaldehyde. The rate constant for the overall reaction is $k_{overall}$. The activation energy for the overall reaction (in kJ mol⁻¹) is _____(round off to nearest integer).

(200)Answer:

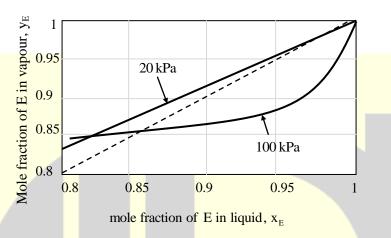


2 4 6 Sum of the eigen values of the matrix 3 5 9 is _____(round off to nearest integer). 12 1 7

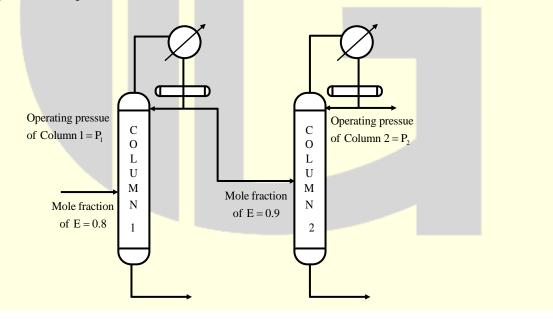
Answer: (14)

www.gateforumonline.com

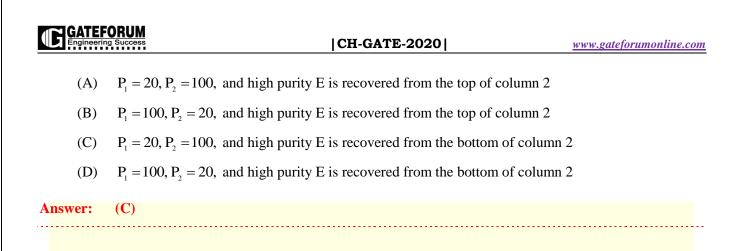
Enroll now and get 20% discount use Promo Code GATEPAPERS

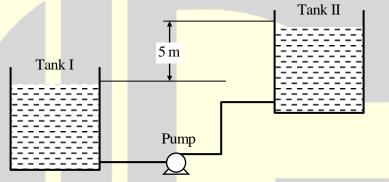

For more details visit gateforumonline.com

GAILFORUM Engineering Success


|CH-GATE-2020|

Q. No. 26 - 55 Carry Two Marks Each


26. Equilibrium data for a binary mixture of E and F at two different pressures is shown in the figure.


It is desired to process a feed containing 80 mol% E and 20 mol% F, and obtain a product with a purity of 99.5 mol% E. A sequence of two distillation columns, one operating at pressure P_1 and another at P_2 , is employed for this operation, as shown below.

Mole fraction of E in the distillate obtained from column 1 is 0.9. If the column pressures P_1 and P_2 are in kPa, which one of the following is correct?

27. Liquid water is pumped at a volumetric flow rate of $0.02 \text{ m}^3 \text{s}^{-1}$ from tank I to tank II, as shown in the figure.

Both the tanks are open to the atmosphere. The total frictional head loss for the pipe system is 1.0 m of water.

In addition, use the following data and assumptions

- Density of water is 1000 kg m⁻³
- Acceleration due to gravity is 9.81 m s⁻²
- Efficiency of the pump is 100%
- The liquid surfaces in the tanks have negligible velocities

The power supplied (in W) by the pump to lift the water is _____(round of to 1 decimal place).

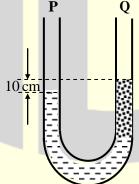
Answer: (1177.2)

28. An exothermic, aqueous phase, irreversible, first order reaction, $Y \rightarrow Z$ is carried out in an ideal continuous stirred tank reactor (CSTR) operated adiabatically at steady state. Rate of consumption of Y (in mol liter⁻¹ minute⁻¹) is given by

$$-r_{_{\rm Y}} = 10^9 e^{-\frac{6500}{T}} C_{_{\rm Y}}$$

Where C_{y} is the concentration of Y (in mol liter⁻¹), and T is the temperature of the reaction mixture

(in K). Reactant Y is fed at 50°C. Its inlet concentration is 1.0 mol liter⁻¹, and its volumetric flow rate is 1.0 liter minute⁻¹.

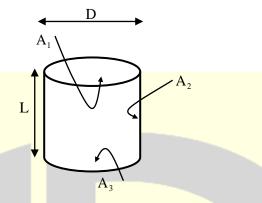

In addition, use the following data and assumptions

- Heat of the reaction $= -42000 \text{ J mol}^{-1}$
- Specific heat capacity of the reaction mixture = $4.2J g^{-1}K^{-1}$
- Density of the reaction mixture = $1000 \text{ g liter}^{-1}$
- Heat of the reaction, specific heat capacity and density of the reaction mixture do not vary with temperature
- Shaft work is negligible

If the conversion of Y at the exit of the reactor is 90%, the volume of the CSTR (in liter) is _____ (round off to 2 decimal places).

Answer: (2.86)

29. A U-tube manometer contains two manometric fluids of densities 1000 kg m^{-3} and 600 kg m^{-3} . When both the limbs are open to atmosphere, the difference between the two levels is 10 cm at equilibrium, as shown in the figure.



The rest of the manometer if filled with air of negligible density. The acceleration due to gravity is 9.81 m s⁻² and the atmospheric pressure is 10 kPa. How much absolute pressure (in kPa) has to be applied on the limb 'P' to raise the fluid in the limb 'Q' by another 20 cm?

(A) 547.231 (B) 103.924 (C) 833.206 (D) 100.175

Answer: (B)

30. A hollow cylinder of equal length an inner diameter (i.e., L=D) is sealed at both ends with flat plate, as shown in the figure. Its inner surfaces, A_1 , A_2 , and A_3 radiate energy.

 F_{ij} denotes the fraction of radiation energy leaving the surface A_i which reaches the surface A_j . It is also known that $F_{i3} = 3 - 2\sqrt{2}$. which one of the following is correct?

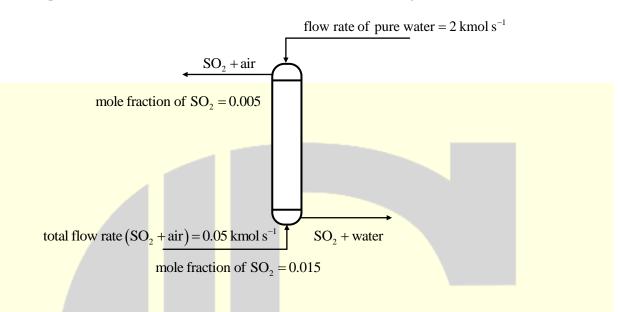
(A) $F_{21} = \frac{\sqrt{2}-1}{8}$ (B) $F_{21} = \frac{\sqrt{2}-1}{4}$ (C) $F_{21} = \sqrt{2}-1$ (D) $F_{21} = \frac{\sqrt{2}-1}{2}$

Answer: (D)

31. A fluid is heated from 40°C to 60°C in a countercurrent, double pipe heat exchanger. Hot fluid enters at 100°C and exits at 70°C. The log mean temperature difference, i.e. LMTD (in °C), is _____(round off to 2 decimal places).

Answer: (34.76)

- 32. A catalytic gas phase reaction $P \rightarrow Q$ is conducted in an isothermal packed bed reactor operated at steady state. The reaction is irreversible and second order with respect to the reactant P. The feed is pure P with a volumetric flow rate of 1.0 liter minute⁻¹ and concentration of 2.0 mol liter⁻¹.
 - In addition, use the following assumptions
 - The reactant and product area ideal gases
 - There is no volume change associated with the reaction
 - Ideal plug flow conditions prevail in the packed bed


When the mass of catalyst in the reactor is 4 g, the concentration of P measured at the exit is 0.4 mol
liter ⁻¹ . The second order rate constant (in liter ² $g_{catalyst}^{-1}$ mol ⁻¹ minute ⁻¹) is(correct up to one
decimal place).

Answer: (0.5)

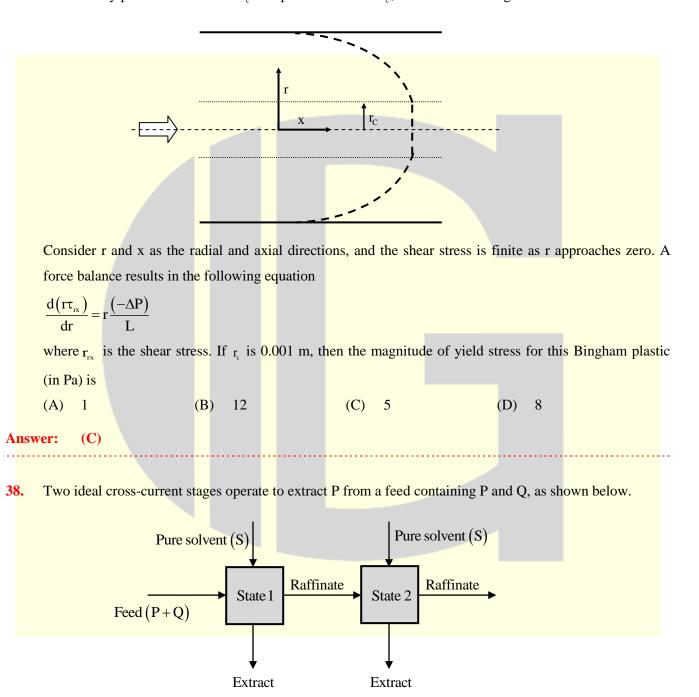
<u>GATEFORUM</u> Engineering Success

33.		ider steady, lan ontal straight pir		•	-			pressible 1	Newto	nian flu	uid through two
		volumetric flow						ameter of r	vine II	is twice	e the diameter of
		I, i.e., $d_{II} = 2d_1$.									
		$u_{\rm II} - 2u_{\rm I}$		or the sh	ical sucs	s at the	wan or p	ipe i to the	snear	suess a	t the wan of pipe
	II is	0		2			4			0.5	
	(A)	8	(B)	2		(C)	4		(D)	0.5	
Ans	wer:	(A)									
34.	A tai	nk initially contai	ins a gas :	mixture v	with 21 1	nol % oz	kygen an	d 79 mol%	nitrog	gen. Pur	e nitrogen enters
	the ta	ank, and a gas mi	xture of 1	nitrogen a	and oxyg	en exits	the tank.	The mola	flow	rate of t	ooth the inlet and
	exit s	streams is 8 mol s	S^{-1} .								
	In ad	dition, use the fo	llowing d	lata and a	assumpti	ons					
	•	Assume the tan	k content	s to be w	ell mixe	d					
	•	Assume ideal g	as behavi	or							
	•	The temperatur	e and pre	ssure ins	ide the ta	ank are h	eld cons	tant			
	•	Molar density of									
	If the	e volume of the							OXVO	en conte	ent in the tank to
		eases to 1 mol %		o m , the	ii the tin			equirea for	UNYE	in conte	
	(A)	10	(B)	445		(C)	304.45		(D)	100.45	τ.
	(A)	10	(D)	445		(C)	504.45		(D)	100.4.)
Ans	wer:	(C)									
35.	The	maximum value	of the fun	ction f ($\left(x\right) = -\frac{5}{3}$	$x^{3}10x^{2} -$	15x +16	in the inte	erval (().5, 3.5)	is
	(A)	48	(B)	0	5	(C)	8		(D)	16	
		40	(D)	0		(C)	0		(D)	10	
Ans	wer:	(D)									
	© A	Il rights reserved by Thinkce	ell Learning Solu	utions Pvt. Ltd.	No part of thi	s booklet may	be reproduced	d or utilized in any	form witho	out the writter	n permission.

36. SO_2 from air is absorbed by pure water in a counter current packed column operating at constant pressure. The compositions and the flow rates of the streams are shown in the figure.

In addition, use the following data and assumptions

- Column operates under isothermal conditions
- At the operating temperature of the column y = 40x, y is the mole fraction of SO₂ in the gas that is in equilibrium with water containing SO₂ at a mole fraction of x
- Solution is dilute and the operating line is linear
- Negligible amount of water evaporates


The number of transfer unit (NTU) for this column is

(A) 1.0	(B) 1.5	(C) 2.0	(D) 0.5
---------	---------	---------	---------

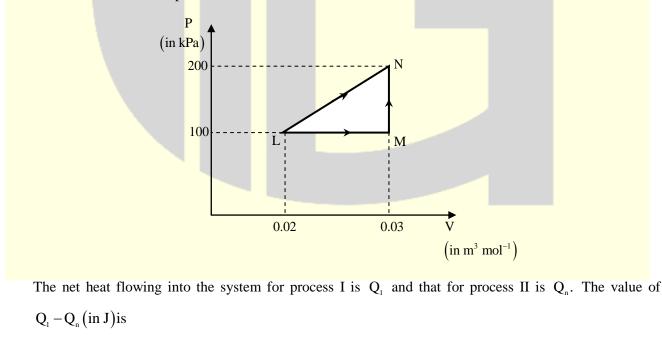
Answer: (C)

GATEFORUM Engineering Success

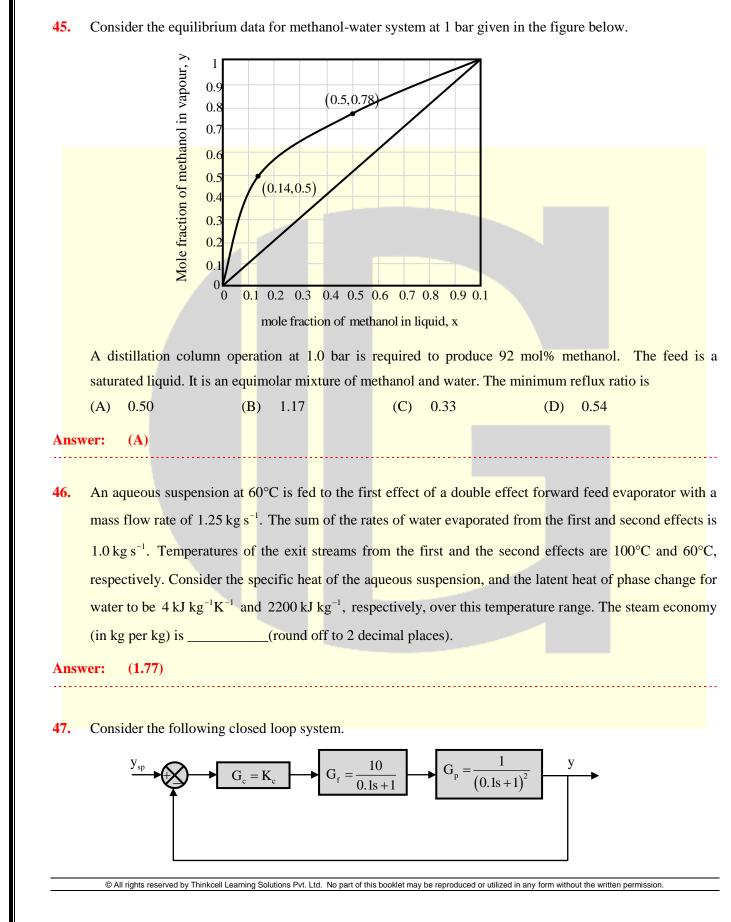
37. A student performs a flow experiment with Bingham plastic under fully developed laminar flow conditions in a tube of radius 0.01 m with a pressure drop (ΔP) of 10 kPa over tube length (L) of 1.0m. The velocity profile is flat for r < r_c and parabolic for r ≥ r_c, as shown in the figure.

The mass flow rates of P and Q fed to stage 1 are 1,000 kg h⁻¹ and 10,000 kg h⁻¹, respectively. Pure solvent (S) is injected at mass flow rates of 5,000 kg h⁻¹ and 15,000 kg h⁻¹ to stages 1 and 2, respectively.

E Engineering Success	CH-GATE-2020	<u>www.gateforumonline.com</u>			
The components Q and S are	immiscible. The equilibrium relation	is given by $Y = 1.5X$, where X is the			
mass of P per unit mass of C	mass of P per unit mass of Q in the raffinate, and Y is the mass of P per unit mass of S in the extract,				
which is in equilibrium with	the raffinate. The mass flow rate of P	$(in kg h^{-1})$ in the raffinate from stage 2			
is(round off to near	est integer).				
nswer: (175.82)					
 A feed steam containing pure the figure. 	species L flows into a reactor, where Recycle Stream	L is partly converged to M as shown in			
Feed street	Reactor	uct stream			
		1			
	ycle stream is 20% of theat of the proc based on mass units) in the process in				
	on, the one-pass conversion of L (base				
(A) 30% (B)	26.3% (C) 34.2%	(D) 23.8%			
nswer: (B)					
Two film theory applies for a	bsorption of a solute form a gas mixt	ure into a liquid solvent. The interfacial			
mass transfer coefficient (in	mol $m^{-2}s^{-1}$ for the gas side is 0.1 and	for the liquid side is 3. The equilibrium			
relationship is $y^* = 2x$. when	The x and y^* are mole fractions of the	ne solute in the liquid and gas phases,			
respectively. The ratio of the	mass transfer resistance in the liquid	film to the overall resistance is			
(A) 0.0625 (B)	0.0645 (C) 0.0161	(D) 0.0322			
nswer: (A)					
(A) 0.0625 (B)	-				
1. Given $\frac{dy}{dx} = y - 20$, and $y _{x=0} =$	=40, the value of y at x=2is	(round off to nearest integer).			
nswer: (167.78)					


(CH-GATE-2020) www.gateforumonline.com
Flow of water through an equal percentage valve is 900 liter h⁻¹ at 30% opening, and 1080 liter h⁻¹ at 35% opening. Assume that the pressure drop across the valve remains constant. The flow rate (in liter h⁻¹) through the valve at 45% opening is _____ (round off to nearest integer).
Answer: (1555)

43. Ina box, there are 5 green balls and 10 blue balls. A person picks 6 balls randomly. The probability that the person has picked 4 green balls and 2 blue balls is


44. Consider one mole of an ideal gas in a closed system. It undergoes a change in state form L to N through two different non-isothermal processes, as shown in the P-V diagram (where P is the pressure and V is the molar volume of the gas).

Process I is carried out in a single step, namely LN, whereas process II is carried out in two steps, namely LM and MN. All the steps are reversible.

(A) 500 (B) 1000 (C) 250 (D) 1500

 G_c , G_f , and G_p are the transfer functions of the controller, the final control element and the process, respectively. y and y_{sp} are the response and its set point, respectively. For a gain margin of 1.6, the design value of K_c is _____ (correct up to one decimal place).

Answer: (0.5)

48. A vertically held packed bed has a height of 1m, and a void fraction of 0.1, when there is no flow through the bed. The incipient (minimum) fluidization is set in by injection of a fluid of density 1kg m^{-3} . The particle density (ρ_p) of the solids is 3000 kg m⁻³. Acceleration due to gravity is 9.81 m s⁻². The pressure drop (in Pa) across the height of the bed is ______ (round off to nearest integer).

Answer: (26478.17)

49. A pure gas has obeys the equation of state given

$$\frac{PV}{RT} = 1 + \frac{BP}{RT}$$

Where P is the pressure, T is the absolute temperature, V is the molar volume of the gas, R is the universal gas constant, and B is a parameter independent of T and P. The residual molar Gibbs energy, G^{R} , of the gas is given by the relation.

$$\frac{\mathbf{G}^{\mathsf{R}}}{\mathbf{R}\mathbf{T}} = \int_{0}^{\mathsf{P}} (\mathbf{Z} - 1) \frac{\mathrm{d}\mathbf{P}}{\mathbf{P}}$$

Where Z is the compressibility factor and the integral is evaluated at constant T. If the value of B is $1 \times 10^{-4} \text{ m}^3 \text{mol}^{-1}$, the residual molar enthalpy (in J mol⁻¹) of the gas at 1000 kPa and 300K is

(A) 300 (B) 2494 (C) 100 (D) 30000

Answer:	(C)	
	$\langle - \rangle$	

50. An elementary liquid phase reversible reaction $P \rightleftharpoons Q$ is carried out in an ideal continuous stirred tank reactor (CSTR) operated at steady state. The rate of consumption of P, $-r_p$ (in mol litre⁻¹ minute⁻¹), is given by

$$-r_{p} = C_{p} - 0.5C_{Q}$$

Where C_P and C_Q are the concentration (in mol liter⁻¹) of P and Q, respectively.

The feed contains only the reactant P at a concentration of 1 mol liter⁻¹, and the conversion of P at the exist of the CSTR is 75% of the equilibrium conversion. Assume that there is no volume change associated with the reaction, and the temperature of the reaction mixture is constant throughout the operation. The space time (in minutes) of the CSTR is _____(round off to 1 decimal place).

Answer: (2)

<u>GATEFORUM</u>

51. Consider the following dataset.

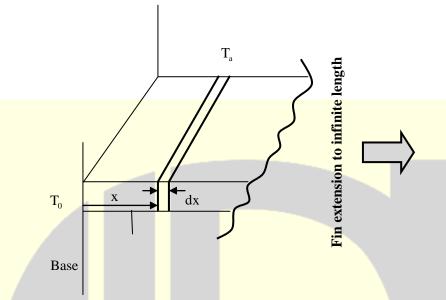
x	1	3	5	15	25
f(x)	6	8	10	12	5

The value of the integral $\int f(x) dx$ using Simpson's $1/3^{rd}$ rule is _____. (round off to 1 decimal place).

Answer: (241.6)

52. Consider a vertically falling film of water over an impermeable wall. The film is in contact with a static pool of non –reactive pure gas. The gas diffuses into the water film over the entire height of the falling film. The height of the film is 1.0m and its thickness is 10^{-4} m. The velocity of water, average over the film thickness, is 0.01ms⁻¹. The gas concentration (in kg m⁻³), averaged over the film thickness is

 $\overline{\mathbf{C}_{\mathbf{A}_{\mathbf{y}}}} = \mathbf{C}_{\mathbf{A}_{\mathbf{i}}} \left(1 - \mathbf{e}^{-30\mathbf{y}} \right)$


Where y is the vertical position in meters measured from the top of the wall. In addition, use the following data and assumptions.

- The flow is fully developed
- The width of the film is much larger than the thickness of the film, and the dissolved gas concentration is invariant over the width.
- The solubility of the gas in water, C_A , is constant
- Pure water enters at y=0
- The evaporation of water is negligible.

The mass transfer coefficient on the liquid side (in $mm s^{-1}$), averaged over the entire height of the falling film is _____ (round off to 3 decimal places).

Answer: (0.03)

53. Consider the infinitely long rectangular fin exposed to a surrounding fluid at a constant temperature $T_a = 27^{\circ}C$

The steady state one dimensional energy balance on an element of the fin of thickness dx at a distance x from its base yields.

$$\frac{d^2\theta}{dx^2} = m^2\theta$$

Where $\theta = T_x - T_a$, T_x is the temperature of the fin at the distance x from its base in °C. The value of m is 0.04 cm⁻¹ and the temperature at the base is $T_0 = 227$ °C. The temperature (in °C) at x= 25 cm is ______ round off to 1 decimal place).

Answer: (100.5)

54. Consider the gas phase reaction $N_2O_4 \rightleftharpoons 2NO_2$ occurring in an isothermal and isobaric reactor maintained at 298 K and 1.0 bar. The standard Gibbs energy change of the reaction at 298 K is $\Delta G_{298}^{\circ} = 5253 \text{Jmol}^{-1}$. The standard states are those of pure ideal gases at 1.0 bar. The equilibrium mixture in the reactor behaves as an ideal gas. The value of the universal gas constant is 8.314 J mol}{-1}K^{-1}. If one mole of pure N_2O_4 is initially charged to the reactor the fraction of N_2O_4 that decomposes into NO_2 at equilibrium is

(A) 0.17 (B) 0.38 (C) 0 (D) 1

Answer: (A)

G	GATEFORUM Engineering Success	CH-GATE-2020	www.gateforumonline.com
S5.	stirred tank reactor (CSTF minute. Both the reactions constants of the two reac selectivity of Q with respe	$ CH-GATE-2020 $ The reactions, $P \xrightarrow{k_1} Q$ and $P \xrightarrow{k_2} R$, are called a point of the reactant P , are first order with respect to the reactant P , tions. At the exit of reactor, the conversion of the R is 50%. The value of the first order reaction one decimal place).	rried out in an ideal continuous e space time of the CSTR is 1 , and k_1 and k_2 demote the rate of reactant P is 60% and the
	© All rights reserved by Thinkcell Learnin	g Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in a	iny form without the written permission.

