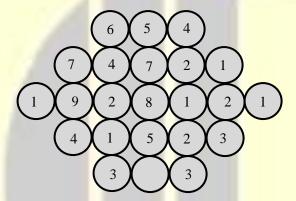


GENERAL APTITUDE

Q. No. 1 – 5 Carry One Mark Each

1.	Choo	ose the word most si	imilar	in meaning to the g	iven w	ord:		
	Educ	ce						
	(A)	Exert	(B)	Educate	(C)	Extract	(D)	Extend
Ans	wer:	(C)						
2.	If los	$g_x(5/7) = -1/3$, then						
	(A)			125/343	(C)	-25/49	(D)	-49/25
Ans	wer:	(A)						
3.	Oper	rators \Box , \Diamond and \rightarrow ar	e defin	$acd by: a \Box b = \frac{a - b}{a + b}$;a◊b=	$= \frac{a+b}{a-b}; a \to b = ab.$		
	Find	the value $(66 \square 6)$	→(66	5◊6).				
	(A)	-2	(B)	-1	(C)	1	(D)	2
Ans	wer:	(C)						
4.	Cho	ose the most approp	riate u					
7.		principal presented						
	(A)	momento	(B)			momentum	(D)	moment
Ans	wer:	(B)	(-)					
5.	Choo	• • •	word	/phrase, out of the	four	options given belo	w, to	complete the following
	Frog	s		_,				
	(A)	Croak	(B)	Roar	(C)	Hiss	(D)	Patter
Ans	wer:	(A)						


Q. No. 6 – 10 Carry Two Marks Each

- A cube of side 3 units is formed using a set of smaller cubes of side 1 unit. Find the proportion of the number of faces of the smaller cubes visible to those which are NOT visible.
 - (A) 1:4
- (B) 1:3 (C) 1:2 (D) 2:3

Answer:

(C)

7. Fill in the missing value

(3) Answer:

Humpty Dumpty sits on a wall every day while having lunch. The wall sometimes breaks. A person sitting 8. on the wall falls if the wall breaks.

Which one of the statements below is logically valid and can be inferred from the above sentences?

- Humpty Dumpty always falls while having lunch (A)
- Humpty Dumpty does not fall sometimes while having lunch (B)
- Humpty Dumpty never falls during dinner (C)
- (D) When Humpty Dumpty does not sit on the wall, the wall does not break

Answer:

(B)

9. The following question presents a sentence, part of which is underlined. Beneath the sentence you find four ways of phrasing the underline part. Following the requirements of the standard written English, select the answer that produces the most effective sentence.

Tuberculosis, together with its effects, <u>ranks one of the leading causes of death</u> in India.

- (A) ranks as one of the leading causes of death
- (B) rank as one of the leading causes of death
- (C) has the rank of one of the leading causes of death
- (D) are one of the leading causes of death

Answer: (A)

10. Read the following paragraph and choose the correct statement.

Climate change has reduced human security and threatened human well being. An ignored reality of human progress is that human security largely depends upon environmental security. But on the contrary, human progress seems contradictory to environmental security. To keep up both at the required level is a challenge to be addressed by one and all. One of the ways to curb the climate change may be suitable scientific innovations, while the other may be the Gandhian perspective on small scale progress with focus on sustainability.

- (A) Human progress and security are positively associated with environmental security.
- (B) Human progress is contradictory to environmental security.
- (C) Human security is contradictory to environmental security.
- (D) Human progress depends upon environmental security.

Answer: (B)

BIOTECHNOLOGY

Q. No. 1 - 25 Carry One Mark Each

1. $2x_1 + x_2 = 3$

$$5x_1 + bx_2 = 7.5$$

The system is linear equations in two variables shown above will have infinite solutions, if and only if, b is equal to _____.

Answer: (2.5)

Production of monoclonal antibodies by hybridoma technology requires.

- (A) Splenocytes
- (B) Osteocytes (C) Hepatocytes (D) Thymocytes

Answer: (A)

The determinant of the matrix $\begin{bmatrix} 3 & 0 & 0 \\ 2 & 5 & 0 \\ 6 & -8 & -4 \end{bmatrix}$ is _____.

Answer: (60)

4. Choose the appropriate pair of primers to amplify the following DNA fragment by the polymerase chain reaction (PCR).

5' - GACCTGTGG ------ ATACGGGAT - 3'

3-CTGGACACC ------TATGCCCTA-5'

Primers

Ρ. 5' - GACCTGTGG-3'

Q. 5'-CCACAGGTC-3'

R. 5' - TAGGGCATA - 3'

5' – ATCCCGTAT – 3'

(A) P and R

(B)

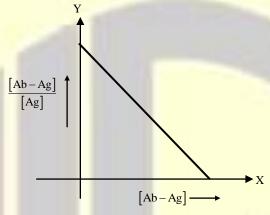
P and S (C) Q and R (D)

Q and S

Answer: **(B)**

5.	The o	The cytokinetic organelle in plant cells is								
	(A)	Centroide	(B)	Phramoplast	(C)	Proplastid	(D)	Chromoplastid		
Ans	wer:	(B)								
6.			ing fea	tures in NOT requi	red in	a prokaryotic expre	ssion v	vector?		
	(A)	oriC			(B)	Selection marker				
	(C)	CMV promoter			(D)	Ribsome binding	site			
Ans	wer:	(C)								
_	XX71- : .	1 C. (1 C. 11			h - 1-4-		1 <i>C</i> (
7.			ing org	ganism is used for the		Escherichia coli	1 соеп	ficient of a disinfectant?		
	(A)	Salmonella typhi			(B)		L:1			
	(C)	Candida albicans			(D)	Bacillus psychrop	niius			
Ans	wer:	(A)								
8.	Whic	ch one of the follow	ing is	NCORRECT abou	t a typ	ical apoptic cell?				
	(A)	Phosphatidylserin	e is pro	esented on the outer	r cell si	urface				
	(B)	Cytochrome c is r	eleased	l from mitochondri	a					
	(C)	Mitochondrial me	mbran	ce potential does no	ot chan	ge				
	(D)	Annexin-V binds	to the	cell surface						
Ans	wer:	(C)								
9.	Levii	nthal's paradox is re	elatd to							
	(A)	protein secretion			(B)	protein degradatio	n			
	(C)	protein folding			(D)	protein trafficking				
Ans	wer:	(C)								

10.	In D	NA sequencing react	tions u	sing the chain termin	nation	method, the ratio of	ddNT	Ps to dNTPs should be
	(A)	0	(B)	<1	(C)	1	(D)	>1
Ansv	ver:	(B)						
11.	How	many 3-tuples are p	ossibl	e for the following	amino	acid sequence?		
	(A)	4	(B)	5	(C)	11	(D)	12
Ansv	ver:	(C)						
12.	Aner	gy refers to						
	(A)	mitochondrial dys	functio	on	(B)	allergy to environ	mental	lantigens
	(C)	unresponsiveness	to anti	gens	(D)	a state of no energ	У	
Ansv	ver:	(C)						
13.		ch one of the follow	ing is a	a second generation				
	(A)	Bt brinjal			(B)	Roundup soyabear	n	
	(C)	Golden rice			(D)	Bt rice		
Ansv	ver:	(C)						
1.4	T 1							
14.		tify the file format g	iven b	elow.				
		JMFD						
		ein X-Homo sapiens						
		ALTARQQEVFDLI						
	(A)	GDE	(B)	FASTA	(C)	NBRF	(D)	GCG
Ansv	ver:	(C)						


15.	A sir	ngle submit enz	zyme conve	erts 420 µmo	les of substa	rate to prod	duct in one min	nute. The activity of the
	enzy	me is	_×10 ⁻⁶ Kata	ıl.				
Ansv	ver:	(7)						
16.		ch one of the for ular protein in a	_		the highest	probability	to be found or	the surface of a typical
	(A)	Ala	(B)	Val	(C)	Arg	(D)	Ile
Ansv	ver:	(C)						
17.	ABO	blood group a	ntig <mark>ens i</mark> n h	numans are di	fferentiated t	From each of	other on the bas	sis of
	(A)	Sialic acid	(B)	lipids	(C)	spectrin	(D)	glycoproteins
Ansv	ver:	(D)						
18.	How	many different	t protein se	guences of 10	0 residues ca	an be gener	ated using 20 s	tandard amino acids?
200	(A)	100 ²⁰	(B)	100×20	(C)	20 ¹⁰⁰	(D)	100! × 20!
Angr			(D)	100 × 20	(C)	20	(D)	100: × 20:
Ansv	ver:	(C)						
10	Whi	sh one of the fo	llovvina is l	NOT a madua	at of donituif	action in D	lean damanas ?	
19.		ch one of the fo	. 7					
	(A)	N_2	(B)	N ₂ O	(C)	NO_2^-	(D)	NH_4^+
Ansv	ver:	(D)						
20.	Whic	ch one of the fo	ollowing co	mplement pro	teins is the i	nitiator of t	the membrane a	attack complex?
	(A)	C3a	(B)	C3b	(C)	C5a	(D)	C5b
Ansv	ver:	(D)						

- 21. Based on the heavy chain, which one of the following antibodies has multiple subtypes?
 - (A) IgM
- (B) IgD
- (C) IgE
- (D) IgG

Answer: (D)

22. The interaction between an antigen (Ag) and a single-chain antibody (Ab) was studies using Scatchard analysis. The result is shown below.

The affinity of interaction and the total concentration of antibody, respectively, can be determined from

(A) Slope and Y-intercept

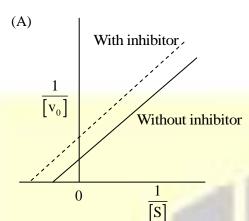
(B) Y-intercept and slope

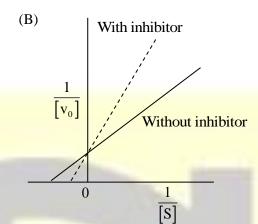
(C) X-intercept and slope

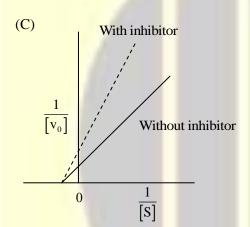
(D) Slope and X-intercept

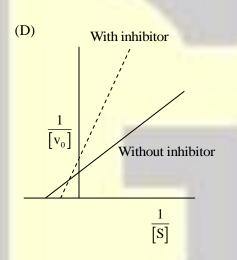
Answer: (D)

23. Consider the following infinite series:


$$1+r+r^2+r^3+\cdots \infty$$


If r = 0.3, then the sum of this infinite series is _____.


Answer: (1.43)



24. Which one of the following graphs represents uncompetitive inhibition?

Answer: (A)

25. Which one of the following relations holds true for the specific growth rate (μ) of a microorganism in the death phase?

(A)
$$\mu = 0$$

(B)
$$\mu < 0$$

(C)
$$\mu = \mu_{max}$$

(D)
$$0 < \mu < \mu_{\text{max}}$$

Answer: (B)

Q.No. 26-55 Carry Two Marks Each

- **26.** If $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$, then $A^2 + 3A$ will be
- $\begin{bmatrix} 30 & 20 \\ 10 & 20 \end{bmatrix}$ (B) $\begin{bmatrix} 28 & 10 \\ 4 & 18 \end{bmatrix}$ (C) $\begin{bmatrix} 31 & 13 \\ 7 & 21 \end{bmatrix}$ (D)

Answer:

27. Match the compounds in Group I with the correct entries in Group II

Group I

- Cyanide P.
- Antimycin A Q.
- R. Valinomycin
- S. Aurovertin
- (A) P-5, Q-2, R-3, S-1
- (C) P-4, Q-2, R-1, S-3

Group II

- K⁺ ionophore 1.
- 2. Electron transfer from cytochrome b to cytochrome c₁
- 3. F₁ subunit of ATP synthase
- 4. Cytochrome oxidase
- 5. Adenine nucleotide translocate
- P-5, Q-2, R-1, S-3 (B)
- (D) P-4, Q-5, R-3, S-1

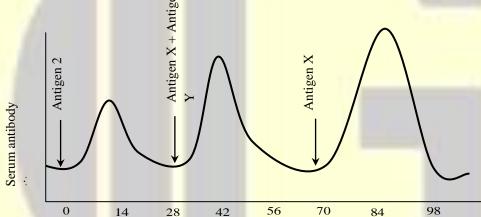
Answer: **(C)**

For a discrete random variable X, $ran(X) = \{0, 1, 2, 3\}$ and the cumulative probability F(X) is shown 28. below.

X	0	1	2	3
F(X)	0.5	0.6	0.8	1.0

The mean value of X is _____

Answer: (1.1)


29. An isolated population on an island has the following genotypic frequencies.

Genotype	AA	Aa	aa
Frequency	0.3	0.4	0.3

Assuming that there are only two alleles (A and a) for the gene, the genotypic frequency of AA in the next generation will be _____.

Answer: **(25)**

30. Three distinct antigents X, Y and Z were used to raise antibodies. Antigen Z was injected in a mouse on day zero followed by the administration of antigens X and Y on day 28. A second injection of antigen X was administered on day 70. The antibody titers were monitored in the serum every day and the results are shown below:

Which one of the following statements regarding the antibody titers in the serum is INCORRECT?

- Z-specific IgG will be high on day 14
- (B) X-specific antibody titer will be high on day 84
- X-specific IgG will be high on day 42 (C)
- Y-specific IgG will be high on day 84 (D)

Answer: (D)

- The limit of the function $\left(1+\frac{x}{n}\right)^n$ as $n\to\infty$ is
 - (A) ℓnx
- (B) $\ell n \frac{1}{r}$ (C) e^{-r}
- (D)

Answer: **(D)**

32.	Matc	h the antibiotics in Group I with their modes	of action	on in Group II.
		Group I		Group II
	Р.	Chloramphenicol	1.	Inhibits protein synthesis by acting on
				30s ribosomal subunit
	Q.	Rifampicin	2.	Interferes with DNA replication by
				inhibiting DNA gyrase
	R.	Tetracycline	3.	Inhibits protein synthesis by acting on
				50S ribosomal subunit
	S.	Quniolone	4.	Interfers with RNA polymerase activity
	(A)	P-1, Q-2, R-3, S-5	(B)	P-3, Q-4, R-1, S-2
	(C)	P-3, Q-2, R-1, S-4	(D)	P-1, Q-4, R-3, S-2
Ans	swer:	(B)		
33.		many rooted and unrooted phylogenetic ences?	trees,	respectively, are possible with four different
	(A)	3 and 15 (B) 15 and 3	(C)	15 and 12 (D) 12 and 3
Ans	swer:	(B)		
34.	Saccl	haromyces cerevisiae produces ethanol by fe	ermenta	tion. The theoretical yield of ethanol from 2.5 of
		ose is g.		
Ans	swer:	(1.27)		
35.	Choo	ose of CORRECT sequence of steps involved	in cyto	oplast production
	(A)	Digestion of cell wall →protoplast viability	y →cyb	orid formation →osmotic stabilizer
	(B)	Osmotic stabilizer →digestion of cell wall-	→proto	pplast viability →cybrid formation
	(C)	Protoplast viability →osmotic stabilizer →	digestic	on of cell wall →cybrid formation
	(D)	Osmotic stabilizer →digestion of cell wall-	→cybr	id formation →protoplast viability
Ans	swer:	(B)		

36.	Match the cells in	Group I	with their	corresponding	entries in	Group II.

Group I **Group II** P. Mast cells 1. Activation of the complement pathway Q. Natural killer cells 2. Expression of CD56 R. Neutrophils 3. Contains azurophilic granules S. Dendritic cells 4. Defence against helminthic infection 5. Production of antibodies specific to Bacteria Contain long membranous projections **6.** (A) P-4, Q-2, R-3, S-5 (B) P-4, Q-2, R-3, S-6 (C) P-3, Q-1, R-2, S-5 (D) P-3, Q-1, R-2, S-6 Answer: **(B)** The K1 of a novel competitive inhibitor designed against an enzyme is 2.5 μM. The enzyme was assayed 37. in the absence or presence of the inhibitor 5(µM) under identical conditions. The K_m in the presence of the inhibitor was found to be 30 μ M. The Km in the absence of the inhibitor is _____ μ M. Answer: **(10)** A synchronous culture containing 1.8×10^5 monkey kidney cells was seeded into three identical flasks. 38. The doubling time of these cells is 24 h. After 24 h, the cells from all the three flasks were pooled and dispensed equally into each well of three 6-well plates. The number of cells in each well will be $\underline{} \times 10^4$. Answer: (2)

39. Match the drugs in Group I with their mechanism of action in Group II.

Group I

- P. Paclitaxel
- O. Colchicine
- R. Etoposide
- S. Methotrexate
- (A) P-1, Q-6, R-3, S-4
- (C) P-1, Q-3, R-6, S-5

Group II

- 1. Inhibits protein translation
- 2. Inhibits microtubule depolymerization
- 3. Alkylates DNA
- **4.** Alylates DNA
- 5. Inhibits dihydrofolate reductase
- **6.** Inhibits microtubule polymerization
- (B) P-2, Q-6, R-3, S-5
- (D) P-2, Q-3, R-6, S-4

Answer: (B)

40. The diameters of a large and a small vessel are 1.62 m and 16.2 cm, respectively. The vessels are geometrically similar and operated under similar volumetric agitated power input. The mixing time in the small vessel was found to be 15s. Determine the mixing time (in seconds) in the large vessel.

- (A) 15
- (B) 30
- (C) 61
- (D) 122

Answer: (C)

41. Match the reagents in Group I with their preferred cleavage sites in Group II.

Group I

- P. Cyanogen bromide
- O. o-Iodosobenzoate
- **R.** Hydroxylamine
- **S.** 2-Nitro-5-thiocyanobenzoate

Group II

- 1. Carboxyl side of methionite
- 2. Amino side of methionine
- 3. Carboxyl side of tryptophan
- **4.** Amino side of cysteine
- **5.** Asparagine-glycine bonds

- (A) P-1, Q-3, R-5, S-4
- (C) P-1, Q-2, R-5, S-4

- (B) P-2, Q-3, R-1, S-4
- (D) P-4, Q-2, R-5, S-3

Answer: (A)

42.	Oxygen transfer was measured in a stirred tank bioreactor using dynamic method. The dissolve oxygen
	tension was found to be 80% air saturation under steady state conditions. The measured oxygen tensions at
	7 s and 17s were 55% and 68% air saturation, respectively. The volumetric mass transfer coefficients K_{La}
	is s^{-1} .

Answer: (0.073)

43. Match the microorganisms in Group I with their fermentation products in Group II.

	Group I		Group II
P.	Leuconostacmesenteroides	1.	Cobalamin
Q.	Rhizopus oryzae	2.	Sorbose
R.	Gluconobactersuboxydaus	3.	Dextran
S.	Streptomyces olivaceus	4.	Lactic acid
		5.	Butanol
(A)	P-5, Q-4, R-2, S-1	(B)	P-5, Q-3, R-2, S-4
(C)	P-3, Q-4, R-1, S-2	(D)	P-3, Q-4, R-2, S-1
	(D)		

Answer: (D)

44. The standard free energy change (ΔG^{to}) for ATP hyrdrolysis is -30 kJmole⁻¹. The in vivo concentrations of ATP, ADP and P₁ in E. coli are 7.90, 1.04 and 7.90 mM, respectively. When E. coli cells are cultured at 37°C, the free energy change (ΔG) for ATP hydrolysis in vivo is _____ kJ.mole⁻¹.

Answer: (29.72)

45. Consider the following multiple sequence alignment of four DNA sequences.

 $A \quad C \quad T \quad A$

A C T G

A G T C

A G C T

Shannon's entropy of the above alignment is ______.

Answer: (3.81)

46. Plasmid DNA $(0.5\,\mu g)$ containing an ampicillin resistance marker was added to 200 $\mu\ell$ of competent cells. The transformed competent cells were diluted 10,000 times, out of which 50 $\mu\ell$ was plated on agar plates containing ampicillin. A total of 35 colonies were obtained. The transformation efficiency is ______×106 cfu. μg^{-1} .

Answer: (2.8)

47. Cytoplasmic extract from the wild type strain of a bacterium has the ability to convert a colorless substrate (S) to a colored product (P) via three colorlessintermidiates X, Y and Z, in that order. Each step of the pathway involves a specific enzyme coded by distinct gene. Four mutant strains (a⁻,b⁻,c⁻,d⁻) were isolated, whose extracts are incapable of producing the colored product in the presence of S.

Compounds

Antants

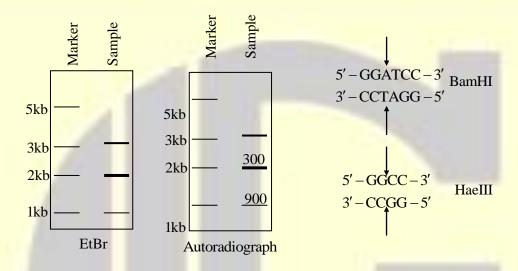
	X	Y	Z
a	No	No	No
b ⁻	No	Yes	Yes
c ⁻	Yes	Yes	Yes
\mathbf{d}^{-}	No	No	Yes

In a series of experiments, extracts from the individual mutants were incubated with X, Y, or Z and scored for color development. The data are summarized in the table below. (Yes: color developed, No: no color developed)

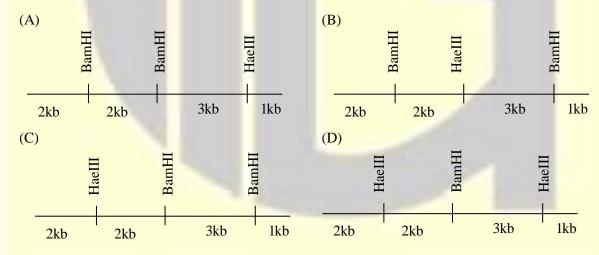
Based on the data, which one of the following is the correct of enzymes involved in the pathway?

(A)
$$S \xrightarrow{d} X \xrightarrow{c} Y \xrightarrow{b} Z \xrightarrow{a} P$$

(B)
$$S \xrightarrow{a} X \xrightarrow{d} Y \xrightarrow{b} Z \xrightarrow{c} P$$


(C)
$$S \xrightarrow{b} X \xrightarrow{a} Y \xrightarrow{c} Z \xrightarrow{d} P$$

(D)
$$S \xrightarrow{c} X \xrightarrow{b} Y \xrightarrow{d} Z \xrightarrow{a} P$$


Answer: (D)

48. A linear double stranded DNA of length 8 kbp has three restriction sites. Each of these can either be a BamHI or a HaeIII site. The DNA was digested completely with both enzymes. The products were purified and subjected to an end-filling reaction using the Klenow fragment and $\left[\alpha^{-32}P\right]$ -dCTP. The products of the engine-filling reaction were purified, resolved by electrophoresis, stained with ethidium bromide (EtBr) and then subjected to autoradiography. The corresponding images are shown below.

The numbers below each band in the sample lane in the autoradiograph represent their mean signal intensity in arbitrary units. Which one of the following options is the correct restriction map of the DNA?

Answer: (A)

49.	Biomass is being produced in a continuous stirred tank bioreactor of 750 L capacity. The sterile feed containing 8 g. L ⁻¹ glucose as substrate was fed at a flow rate of 150 L. h ⁻¹ . The microbial system follows									
										Determine the
	cell	productivity	(g. L ⁻¹ . h ⁻¹) a	t steady state	e.					
	(A)	0.85	(B)	0.65	((C) 0.45		(D)	0.25	
Ansv	ver:	(B)								
50.	colle	ected. If five		osen at rand						nt seeds were of these seeds
Ansv	ver:	(31.25)								
51.	of a		om distributio A of siz <mark>e</mark> 4.3	$\times 10^5$ bp with	n AluI (<mark>5'-A</mark>	G↓-CT-:	3') is	×10 ³ .		pon digestion
52.	volu yield	<mark>me (</mark> at quas	i steady state) and the ini	tial cel <mark>l cor</mark>	ncentratio	n are 600 L	and 20	g. L ⁻¹ resp	initial culture pectively. The si steady state
	(A)	40	(B)	52	(0	c) 60		(D)	68	
Ansv	ver:	(B)								
53.	Whe system 5'-C 33.3	en 5'-UCUCU em, the CCUCCUCC % each of so	UCUC(UC synthesized CU(CCU) _n erine, leucine	peptidesCCUCCU , and proline	JCUC-3' was contained -3' was use	s used a 50% of d as the to e codon f	each of emplate, the or proline.	late in t serine e synthes	his in viti and leud	NA template. ro translation cine. When des contained
Ansv	(A)	UCU (C)	(B)	CUC	(0	C) CCU	J	(D)	UCC	
MIIS	v C1 .	(0)								

54.	Samples of bacterial culture taken at 5 PM and then the next day at 5 AM were found to have 10 ⁴ and 10 ⁷
	cells. mL ⁻¹ . Assuming that both the samples were taken during the log phase of cell growth, the generation
	time of this bacterium will be h.

Answer: (1.212)

What are the eigenvalues of the following matrix?

(A) 2 and 3 (B) -2 and 3 (C) 2 and -3

(C) -2 and -3

Answer: **(A)**