

GENERAL APTITUDE

Q. No. 1 – 5 Carry One Mark Each

1.	The	volume of a sphere of diameter 1 unit is than the volume of a cube of side 1 unit.						
	(A)	least	(B)	less	(C)	lesser	(D)	low
An	swer:	(B)						
2.	The	unruly crowd dema	anded tl	nat the accused be	without	t trial.		
	(A)	hanged	(B)	hanging	(C)	hankering	(D)	hung
An	swer:	(A)						-
2	Cl		1	41414		1		
3.		ose the statement(s			ora is us	sed correctly:		
	(i)	A prone is a drie	d plum.					
	(ii)	He was lying pro	one on t	he floor.				
	(iii)	People who eat a	a lot of	fat are prone to he	art dise	ase.		
	(A)	(i) and (iii) only	(B)	(iii) only	(C)	(i) and (ii) only	(D)	(ii) and (iii) only
An	swer:	(D)						
4.	Fact	: If it rains, then th	e field	is wet.				
	Reac	the following stat	ements	:				
	(i)	It rains						
	(ii)	The field is not w	vet					
	(iii)	The field is wet						
	(iv)	It did not rain						
	Whi	ch one of the option	ns give	n below is NOT lo	gically	possible, based on t	the give	en fact?
	(A)	If (iii), then (iv)			(B)	If (i), then (iii)		
	(C)	If (i), then (ii)			(D)	If (ii), then (iv)		
An	swer:	(C)						

5.	A window is made up of a square portion and an equilateral triangle portion above it. The base of the
	triangular portion coincides with the upper side of the square. If the perimeter of the window is 6 m, the
	area of the window in m ² is

(A) 1.43

(B) 2.06

(C) 2.68

(D) 2.88

Answer: (B)

Q. No. 6 – 10 Carry Two Marks Each

- Students taking an exam are divided into two groups, P and Q such that each group has the same number 6. of students. The performance of each of the students in a test was evaluated out of 200 marks. It was observed that the mean of group P was 105, while that of group Q was 85. The standard deviation of group P was 25, while that of group Q was 5. Assuming that the marks were distributed on a normal distribution, which of the following statements will have the highest probability of being TRUE?
 - No student in group Q scored less marks than any student in group P.
 - (B) No student in group P scored less marks than any student in group Q.
 - Most students of group Q scored marks in a narrower range than students in group P. (C)
 - The median of the marks of group P is 100. (D)

Answer:

(C)

7. A smart city integrates all modes of transport, uses clean energy and promotes sustainable use of resources. It also uses technology to ensure safety and security of the city, something which critics argue, will lead to a surveillance state.

Which of the following can be logically inferred from the above paragraph?

All smart cities encourage the formation of surveillance states.

- (ii) Surveillance is an integral part of a smart city.
- Sustainability and surveillance go hand in hand in a smart city. (iii)
- There is a perception that smart cities promote surveillance. (iv)
- (A) (i) and (iv) only

(B) (iii) only

(iv) only (C)

(D) (i) only

Answer: (C)

8. Find the missing sequence in the letter series.

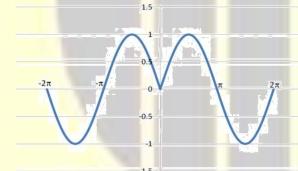
B, FH, LNP, _ _ _ _.

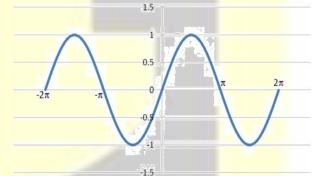
- (A) SUWY
- (B) TUVW
- (C) TVXZ

(D) TWXZ

Answer: (C)

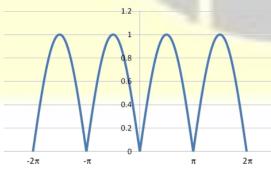
- 9. The binary operation \Box is defined as a \Box b = ab+(a+b), where a and b are any two real numbers. The value of the identity element of this operation, defined as the number x such that a \Box x = a, for any a, is _____.
 - (A) 0
- (B) 1
- (C) 2
- (D) 10

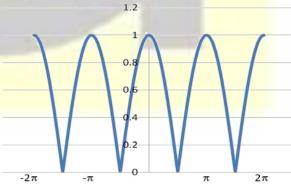

Answer: (A)


10. Which of the following curves represents the function $y = In(|e^{[|\sin(|x|)|]}|)$ for $|x| < 2\pi$?

Here, x represents the abscissa and y represents the ordinate.

(A)





(C)

Answer:

(C)

BIOTECHNOLOGY

Q. No. 1 - 25 Carry One Mark Each

1.	Bac	cteria with two or mo	ore flag	gella at one or both	n ends a	re called		
	(A)	amphitrichous	(B)	peritrichous	(C)	lophotrichous	(D)	atrichous
Ar	nswer:	(C)						
2.	Wh	ch family of viruses	has si	ngle stranded DN	A ?			
	(A)	Herpesviridae	(B)	Poxviridae	(C)	Retroviridae	(D)	Parvoviridae
Ar	nswer:	(D)						
3.								
	(A)	Only the represso	r rema	ins b <mark>ound</mark> to the o	perator			
	(B)	Only the cyclic A CAP binding site	MP-C	atabolic Activator	Protein	(cAMP-CAP) com	ıplex re	emains bound to the
	(C)	Neither the repres	sor no	r cA <mark>MP-C</mark> AP com	ıplex rei	nain bound to thei	r respec	ctive binding sites
	(D)	Both the repressor	r and c	AMP-CAP compl	ex rema	in bound to their re	espectiv	ve binding sites
Ar	nswer:	(C)						
4.	Wh	ch of the following	are TR	UE f <mark>or Trepone</mark> m	a pallidı	ım?		
	P.	It is the causative	agent	of sy <mark>philis</mark>				
	Q.	It is a spirochete						
	R.	It is a non-motile	bacter	ium				
	S.	It is generally sus	ceptibl	e to penicillin				
	Cho	ose the correct comb	oinatio	n.				
	(A)	P, Q and R only			(B)	P, Q and S only		
	(C)	P, R and S only			(D)	Q, R and S only		
Ar	nswer:	(B)						
				·				

•	In a	typical mitotic co	ell divisio	on cycle in euka	ryotes, M	phase occurs in	mmediately	after the
	(A)	G ₀ phase	(B)	S phase	(C)	G ₁ phase	(D)	G ₂ phase
nsv	ver:	(D)						
•		ch one of the foll ders?	owing is	NOT a therape	utic agent	based on nucle	eic acid for	the treatment of geneti
	(A)	Antisense oligo	nucleotic	le	(B)	Ribozyme		
	(C)	Aptamer			(D)	Avidin		
nsv	ver:	(D)						
		•	_		H ⁺ gradien	t in mitochon	dria and cl	hloroplasts. Identify th
		ect sites of H ⁺ gra						
	(A) A	Across the outer r	nembran	e of mitochondr	ia and acro	oss the inner m	embrane of	chloroplast
	(B) A	Across the inner r	nembran	e of mitochondr	ia and acro	ss the thylako	id membrai	ne of chloroplast
	(C) V	Within the matrix	of mitoc	hond <mark>ria an</mark> d acr	oss the inn	er membrane o	of chloropla	ast
	(D) V	Within the matrix	of mitoc	hond <mark>ri</mark> a and wit	thin the str	oma of chlorop	olast	
nsv	ver:	(B)						
	Whic	ch one of the follo	owing is	NOT an algorit	hm fo <mark>r bui</mark>	lding phylogen	etic trees?	
	(A) N	Maximum parsim	ony		(B)	Neighbour jo	ining	
	(C) N	Maximum likelih	ood		(D)	Bootstrap		
nsv	ver:	(D)						
•	Cesi	um chloride dens	ity gradi	ent centrifugation	on is comr	nonly used for	the separa	tion of DNA molecules
	The l	buoyant density,	ρ, of a do	uble stranded C	Cs ⁺ DNA is	given by the e	quation	
	$\rho = 1$	1.66 + 0.098 X _{G+}	_C where Σ	K _{G+C} denotes				

	(A)	total number of G and C	(B)	mole fraction of G+C				
	(C)	number of GC repeats	(D)	ratio of G+C to A+T content				
Ansv	wer:	(B)						
10.	Disa	ccharide molecules that contain $\beta(1 \rightarrow 4)$ glyc	cosidio	e linkage are				
	(A)	sucrose and maltose	(B)	sucrose and isomaltose				
	(C)	maltose and isomaltose	(D)	lactose and cellobiose				
Ansv	wer:	(D)						
11.	Junc	ctional diversity of antibody molecules results	from					
	(A)	the addition of switch region nucleotides						
	(B)	the addition of N and P nucleotides						
	(C)	the joining of V, D and J segments						
	(D)	mutations in complementary-determining reg	gions					
Ansv	wer:	(B)						
12.		ch one of the following is NOT used for the mo	easure	ement of cell viability in animal cell culture?				
	(A)	Trypan blue dye exclusion						
	(B)	Tetrazolium (MTT) assay						
	(C)	LDH activity in the culture medium						
	(D)	Coulter counter						
Ansv	wer:	(D)						
4.0								
13.		ch one of the following techniques relies on the	-					
	(A)	CD spectroscopy	(B)	Fluorescence spectroscopy				
	(C)	IR spectroscopy	(D)	Raman spectroscopy				
Ansv	wer:	(A)						

14.	Which one	e of the	following	statements i	is NOT true?

- In competitive inhibition, substrate and inhibitor compete for the same active site of an (A) enzyme
- Addition of a large amount of substrate to an enzyme cannot overcome uncompetitive (B) inhibition
- A transition state analogue in enzyme catalyzed reaction increases the rate of product (C) formation
- (D) In non-competitive inhibition, K_m of an enzyme for its substrate remains constant as the concentration of the inhibitor increases

Answer:

(C)

Based on their function, find the **ODD** one out.

(A) miRNA

(B) siRNA (C) shRNA (D) snRNA

Answer: **(D)**

Prandtl number is the ratio of

- (A) thermal diffusivity to momentum diffusivity
- mass diffusivity to momentum diffusivity (B)
- momentum diffusivity to thermal diffusivity (C)
- (D) thermal diffusivity to mass diffusivity

Answer:

(C)

Fed batch cultivation is suitable for which of the following?

- Ρ. Processes with substrate inhibition
- Q. Processes with product inhibition
- R. High cell density cultivation
- P and Q only
- (B) P and R only (C) Q and R only (D) P, Q and R

Answer:

(B)

18.	A biological process is involved in the treatment of industrial effluent.

Primary (A)

(B) secondary (C) tertiary

(D) quaternary

Answer: (B)

In dead-end filtration, rate of filtration is

- directly proportional to the square root of pressure drop across the filter medium
- inversely proportional to the pressure drop across the filter medium (B)
- (C) inversely proportional to the viscosity of the solution
- (D) inversely proportional to the square of viscosity of the solution

(C) Answer:

20. The power required for agitation of non-aerated medium in fermentation is kW.

Operating conditions are as follows:

Fermentor diameter = 3 m

Number of impellers = 1

Mixing speed = 300 rpm

Diameter of the Rushton turbine = 1 m

Viscosity of the broth = 0.001 Pa.s

Density of the broth = 1000 kg.m^{-3}

Power number = 5

 $P = 5 (5^3.1^5.1) \text{ kW}$

P= 625KW

(625)Answer:

21.

Which one of the following is the most suitable type of impeller for mixing high viscosity (viscosity $> 10^5$ cP) fluids?

Propeller

(B) Helicalribbon

(C) Paddle

Flatbladeturbine (D)

Answer:

(B)

Runs scored by a batsman in five one-day matches are 55, 75, 67, 88 and 15. The standard deviation

Answer: (27.87)

The positive eigen value of the following matrix is ______.

Answer: (3)

- 24. The Laplace transform F(s) of the function $f(t) = \cos(at)$, where a is constant, is _____
 - (A) $\frac{s^2}{s^2 + a^2}$ (B) $\frac{a}{s^2 + a^2}$ (C) $\frac{s}{s^2 + a^2}$ (D) $\frac{s}{s^2 a^2}$

Answer:

The value of the integral $\int_0^{0.9} \frac{dx}{(1-x)(2-x)}$ is _____.

Answer: (1.7)

Q.No. 26 – 55 Carry Two Marks Each

- Which combination of the following statements is **CORRECT** for cyanobacteria? 26.
 - P. They can perform oxygenic photosynthesis
 - Q. Usually filamentous forms are involved in nitrogen fixation
 - R. Nitrogen fixation occurs in heterocysts
 - S. They cannot grow in a mineral medium exposed to light and air
 - (A) P, Q and R
- (B) P, S and R
- (C) Q, R and S
- P, Q and S

Answer: (A)

27.	Whic	ch set of the follow	ving eve	ents occurs during	the elon	gation step of trai	nslation	?	
	P.	Attachment of n	nRNA w	ith the smaller su	bunit of	ribosome			
	Q. Loading of correct aminoacyl-tRNA into the A site								
	R. Formation of a peptide bond between the amino acyl-tRNA in the A site and the peptide ch								
		that is attached t	o the pe	ptidyl-tRNA in th	e P site				
	S.	Dissociation of	the ribos	somal subunits					
	T.	Translocation of	peptidy	1-tRNA from the	A site to	the P site of the 1	ribosome	e	
	(A)	P, Q and R	(B)	P, Q and T	(C)	Q, R and T	(D)	R, S and T	
Ans	wer:	(C)							
28.	A Dì	NA sequence. 5'-A	ATGGA	CGTGCTTCCCA	AAGC	ATCGGGC-3'. is	mutated	l to obtain	
	P.	1		CaCAAAGCATC					
	Q.			CCCgAAAGCAT					
	R.			CC-AAAGCATC					
	S.	5'-ATGGACGT	GCTTO	CCCAAtGCATC	GGGC-3	,			
	T.	5'-ATGGACGa	GCTTC	CCAAAGCATC	GGGC-:	3,			
	[Poir	nt mutations are sh	own in	the lower case or	'-' with	in the sequences]			
	Whic	ch of the above m	ıtant sed	quences DO NOT	' have fra	ame-shift?			
	(A)	P,QandS	(B)	P,SandT	(C)	Q,RandS	(D)	Q,SandT	
Ans	wer:	(B)	81						
29.				occur during the	statıonar	y phase of bacteri	al grow	th?	
		se in cell number	•						
				ram-positive bacte					
				Gram-negative ba			ı coli		
				s nearly equals th	eir death	rate			
		ecrease in peptido	•	•					
	(A)	P,QandSonly	(B)	P,SandTonly	(C)	Q,RandSonly	(D)	P,RandTonly	
Ans	wer:	(A)							

- **30.** Select the **CORRECT** combination of genetic components that are essential for the transfer of T- DNA segment from *Agrobacterium tumefaciens* to plant cells.
 - (A) Border repeat sequences and oncogenes
 - (B) Border repeat sequences and vir genes
 - (C) Opine biosynthetic genes and *vir* genes
 - (D) Opine biosynthetic genes and oncogenes

Answer: (B)

31. Match the secondary metabolites (Column-I) with the corresponding plant species (Column-II).

			1 01 1
	Column-I		Column-II
P.	Morphine	1.	Datura stramonium
Q.	Pyrethrins	2.	Catharanthus roseus
R.	Scopolamine	3.	Papaver somniferum
S.	Vincristine	4.	Tagetes erecta
(A) P-4	, Q-3, R-1, S-2	(B)	P-3, Q-4, R-1, S-2
(C) P-2	, Q-3, R-4, S-1	(D)	P-4, Q-1, R-2, S-3

Answer: (B)

32. A variety of genetic elements are used in the transgenic plant research. Match the genetic elements (Column-I) with their corresponding source (Column-II).

		Column-I	(Column-II
	P.	Ubiquitin1 promoter	1.	Agrobacterium tumefaciens
	Q.	Nos transcriptional terminator	2.	Streptomyces hygroscopicus
	R.	Bar selection marker gene	3.	Escherichia coli
	S.	Gus reporter gene	4.	Zea mays
	(A)	P-2, Q-1, R-3, S-4	(B)	P-2,Q-3,R-4,S-1
	(C)	P-3,Q-4,R-1,S-2	(D)	P-4,Q-1,R-2,S-3
Ans	wer:	(D)		

33. Match the type of chromosomal in heritance (**Column-I**) with the corresponding genetic disease ortrait (**Column-II**).

		Column-I		Column-II
	P.	Autosomalrecessiveinheritance		1. Huntingtondisease
	Q.	Autosomaldominantinheritance		2. Hairyears
	R.	X-linkedinheritance		3. Cysticfibrosis
	S.	Y-linkedinheritance		4. Hemophilia
	(A)	P-1,Q-4,R-3,S-2	(B)	P-4,Q-3,R-2,S-1
	(C)	P-3,Q-1,R-4,S-2	(D)	P-4,Q-2,R-3,S-1
Ans	wer:	(C)		

34. A crossing was performed between the genotypes *DdEeFfgg* and *ddEeFfGg*. Assuming that the allelic pairs of allgenesassortin dependently, the proportion of progeny having the genotype *ddeeffgg* is expected to be%.

Answer: (1.562)

35. The equilibrium potential of a biological membrane for Na+is55mV at 37°C. Concentration of Na⁺ inside the cell is 20mM. Assuming the membrane is permeable to Na⁺ only, the Na⁺ concentration outside the membrane will be mM. (Faraday constant: 23062cal.V-1.mol-1, Gas constant: 1.98cal.mol⁻¹.K⁻¹)

Answer: (155)

36. A1.2kb DNA fragment was cloned into *Bam*HI and *Eco*RI sites located on a 2.8kb cloning vector. The *Bam*HI and *Eco*RI sites are adjacent to each other on the vector back bone. The vector contains an *Xho*I site located 300bp upstream of the *Bam*HI site. An internal *Xho*I site is presenting the gene sequence as shown in the figure. The resultant recombinant plasmid is digested with *Eco*RI and *Xho*I and analyzed through 1% agarose gel electrophoresis. Assuming complete digestion with *Eco*RI and *Xho*I, the DNA fragments (in base pairs) visible on the agarose gel willcorrespond to:

(A) 2800,700and500

(B) 2800,700and800

(C) 2500,700and800

(D) 2500,1200and300

Answer: (C)

 $Find the {\bf INCORRECT} combination.\\$

37.

	(A)	Surfaceimmunoglobulins-Bcellantigenreceptor								
	(B)	Affinitymaturationisotypeswitching								
	(C)	Fcregionofantibodiesbindingtocomplementproteins								
	(D)	Spleen, the secondary lymphoid or gannoconnection with the lymphatic system								
Ans	wer:	(B)								
38.	Whic	chofthefollowingstatement(s)is/areCORRECTforantigenactivatedeffectorTcells?								
	P.	CD4+cellsmakecontactwithmacrophagesandstimulatetheirmicrobicidalactivity								
	Q.	CD4+cellsmakecontactwithBcellsandstimulatethemtodifferentiateintoplasmacells								
	R.	CD8+cellsmakecontactwithBcellsandstimulatethemtodifferentiateintoplasmacells								
	S.	CD8+cellsmakecontactwithvirusinfectedcellsandkillthem								
	(A)	Qonly (B) QandSonly (C) P,QandSonly (D) P,Q,RandS								
Ans	wer:	(C)								
39.	Whic	choneofthefollowingstatementsregardingGproteinsisINCORRECT?								
	(A)	GDPisboundtoGproteinintherestingstage								
	(B)	GTPboundαsubunitcannotreassemblewithβγdimer								
	(C)	AllGproteinsaretrimeric								
	(D)	ActivationofGproteinmayresultinactivationorinhibitionofthetargetenzymes								
Ans	wer:	(C)								
40.		imal cell culture, a CO2 enriched atmosphere in the incubator chamber is used to maintain the culture								
		etween 6.9 and 7.4. Whichoneofthefollowingstatements is CORRECT?								
	(A)	$Higher the bicarbonate concentration in the medium, higher should be the requirement of gaseous CO_2\\$								
	(B)	Lowerthebicarbonateconcentrationinthemedium,highershouldbetherequirementofgaseousCO ₂								
	(C)	Higherthebicarbonateconcentrationinthemedium,lowershouldbetherequirementofgaseousCO ₂								
	(D)	CO_2 requirement is independent of bicarbonate concentration in the medium								
Ans	wer:	(A)								

- **41.** Choose the **CORRECT** combination of True(T) and False(F) statements about micro carriers used in animal cell culture.
 - P. Highercelldensitiescanbeachievedusingmicrocarriers
 - Q. Microcarriersincreasethesurfaceareaforcellgrowth
 - R. Microcarriersareusedforbothanchorage-andnonanchorage-dependentcells
 - S. Absenceofsurfacechargeonmicrocarriersenhancesattachmentofcells
 - (A) P-T,Q-F,R-TandS-F

(B) P-T,Q-T,R-FandS-F

(C) P-F,Q-F,R-TandS-T

(D) P-F,Q-T,R-FandS-T

Answer: (B)

42. In an assay of the typeII dehydroquinase of molecular mass 18 kDa, it is found that the Vmax of the enzyme is $0.0134\mu\text{mol.min}^{-1}$ when 1.8μ genzyme is added to the assay mixture. If the Km for the substrate is $25\mu\text{M}$, the k_{cat}/K_m ratio will be \times 10^4M^{-1} .S⁻¹.

Answer: (9.1)

43. ThemolarextinctioncoefficientsofTrpandTyrat280nmare5690and1280M⁻¹.cm⁻¹

¹,respectively.Thepolypeptidechainofyeastalcoholdehydrogenase(37kDa)contains5Trpand14.Tyrresidues. Theabsorbanceat280nmofa0.32mg.mL

¹solutionofyeastalcoholdehydrogenasemeasuredinacuvetteof1cmpathlengthwillbe.(Assumethatthemolarext inctioncoefficientvaluesforTrpandTyrapplytotheseaminoacidsintheyeastalcoholdehydrogenase).

Answer: (0.41)

44. Theactivityoflactatedehydrogenasecanbemeasuredbymonitoringthefollowingreaction:

 $Pyruvate+NADH \longrightarrow Lactate+NAD^+$

ThemolarextinctioncoefficientofNADHat340nmis6220M⁻¹.cm⁻

¹.NAD+doesnotabsorbatthiswavelength.Inanassay,25μLofasampleofenzyme(containing5μgproteinpermL) wasaddedtoamixtureofpyruvateandNADHtogiveatotalvolumeof3mLinacuvetteof1cmpathlength.Therateof decreaseinabsorbanceat340nmwas0.14min⁻¹.Thespecificactivityoftheenzymewillbe μmol.min⁻¹.mg⁻¹.

Answer: (540)

- **45.** Analysisofahexapeptideusingenzymaticcleavagerevealsthefollowingresult:
 - Aminoacidcompositionofthepeptideis:2R,A,V,S,Y
 - Trypsindigestionyieldstwofragmentsandthecompositionsare:(R,A,V)and(R,S,Y)
 - Chymotrypsindigestionyieldstwofragmentsandthecompositionsare:

(A,R,V,Y) and (R,S)

• DigestionwithcarboxypeptidaseAyieldsnocleavageproduct.

Given: TrypsincleavesatcarboxylsideofR.

ChymotrypsincleavesatcarboxylsideofY.

CarboxypeptidaseAcleavesataminosideoftheC-terminalaminoacid(exceptRandK)ofthepeptide.

Thecorrectaminoacidsequenceofthepeptideis

(A) RSYRVA

(B) AVRYSR

(C) SRYVAR

(D) SVRRYA

Answer: (B)

46.

 $\label{eq:continuous} The empirical formula for biomass of an unknown organism is CH_{1.8}O_{0.5}N_{0.2}. To grow this organism, ethanol (C_2H_5OH) and ammonia are used as carbon and nitrogen sources, respectively. Assume no product formation other than biomass. To produce 1 mole of biomass from 1 mole of ethanol, the number of mole so foxygen required will be _____$

Answer: (1.98)

47. Saccharomycescerevisiae isculturedinachemostat (continuous fermentation) atadilution rate of 0.5h⁻¹. The feeds ubstrate concentration is 10g. L⁻¹. The biomass concentration in the chemostatat steady state will be g. L⁻¹.

Assumptions: Feedissterile, maintenance is negligible and maximum biomassy ield with respect to substrate is 0.4 (gbiomass pergethanol).

 $\mu = \frac{\mu_{m}s}{K_{s} + s}$ Microbialgrowthkineticsisgiven by where μ is specific growth rate (h⁻¹), μ m=0.7h⁻¹, Ks=0.3g.L⁻¹ and s is substrate concentration (g.L⁻¹).

Answer: (3.7)

48.

Decimal reduction time of bacterial spores is 23 min at 121 °C and the death kinetics follow first order. One literature of the control ofmediumcontaining 10⁵ sporespermLwassterilized for 10 min at 121°C in a batch sterilizer. The number of sporesint hemediumaftersterilization(assumingdestructionofsporesinheatingandcoolingperiodisnegligible)willbe×10

(3.68)**Answer:**

49.

Abioreactorisscaledupbasedonequalimpellertipspeed. Consider the following parameters for small and la rgebioreactors:

Smallbioreactor	Largebioreactor
N_1	N_2
D_1	D_2
\mathbf{P}_{1}	P_2
	N ₁

Assuminggeometricalsimilarityandthebioreactorsareoperatedinturbulentregime, what will be P₂/P₁?

 $(A) (D_1/D_2)^2$

(B) $(D_2/D_1)^2$ (C) $(D_1/D_2)^5$

(D) $(D_2/D_1)^5$

(B) Answer:

50. AnenzymeconvertssubstrateAtoproductB.Atagivenliquidfeedstreamofflowrate25L.min

¹andfeedsubstrateconcentrationof2mol.L

$$-r_{A} = \frac{0.1C_{A}}{1+0.5C_{A}}$$

Giventherateequation

 $-\mathbf{r}_{A} = \frac{0.1\mathbf{C}_{A}}{1 + 0.5\mathbf{C}_{A}}$ Where-- r_{A} is the rate of reaction in mol. L^{-1} . min

 1 and C_{A} isthesubstrateconcentrationinmol. L^{-1}

Assumptions: Enzymeconcentrationis constant and does not undergo any deactivation during the reaction.

(4988)Answer:

¹,thevolumeofcontinuousstirredtankreactorneededfor95%conversionwillbeL.

51. Aproteinistobepurifiedusingion-

exchange column chromatography. The relationship between HETP (Height Equivalent to Theoretical Plate) and the linear liquid velocity of mobile phase is given by:

$$H = \frac{A}{u} + Bu + C$$

where *H* is HETP(m) and *u* is linear liquid velocity of mobile phase (m.s⁻¹). The values of *A*, *B* and *C* are 3×10⁻⁸ m².s⁻¹

¹,3sand6×10⁻

⁵m,respectively.Thenumberoftheoreticalplatesbasedon**minimum**HETPforacolumnof66cmlengthwillbe____

Answer: (1000)

52. Anenzymeisimmobilizedonthesurfaceofanon-

poroussphericalparticleof2mmdiameter.Theimmobilizedenzymeissuspendedinasolutionhavingbulksubstra teconcentrationof10mM.Theenzymefollowsfirstorderkineticswithrateconstant10s⁻

¹andtheexternalmasstransfercoefficientis1cm.s

¹.Assumesteadystateconditionwhereinrateofenzymereaction(mmol.L⁻¹.s⁻¹

1) atthesurface is equal to mass transferrate (mmol. L⁻¹.s⁻¹

1). The substrate concentration at the surface of the immobilized particle will be ______ mM.

Answer: (7.5)

 $\frac{d^2y}{dx^2} - y = 0$ The initial conditions for this second order homogeneous differential equation are y(0) = 1 and

$$\frac{dy}{dx} = 3$$
 at $x = 0$.

Thevalueofywhenx=2is_____

Answer: (14.64)

54. The value of determinant Agiven below is ______

$$A = \begin{pmatrix} 5 & 16 & 81 \\ 0 & 2 & 2 \\ 0 & 0 & 16 \end{pmatrix}$$

Answer: (160)

55. Considertheequation

$$V = \frac{aS}{b + S + \frac{S^2}{c}}$$

Given*a*=4,*b*=1and*c*=9,the**positive**valueof*S*atwhich*V*ismaximum,willbe______.

Answer: (3)

