G	GATEF Engineerin	ORUM ng Success	BT-GA	ATE-20)19		www.gateforumonline.com	
			GENERAL	APT	TUDE			
	GENERAL APTITUDE							
			<u>Q. No. 1 – 5 Car</u>	<u>ry One</u>	Mark Each			
1.	Until	l Iran come along. India	had never been	in	kabaddi.			
	(A)	defeated		(B)	defeating			
	(C)	defeat		(D)	defeatist			
Ans	wer:	(A)						
2	The	fishermon the f	lood vistims awad th	ain live		lad by the a		
2.	(A)	fishermen,the f) to which			(D)	that	
Ans	wer:) to which	(C)	to whom	(D)	that	
3.		radius as well as the hei	ght of a <mark>circu</mark> lar cone	e is <mark>incr</mark>	eases by 10%.	The perce	ntage increase in its	
		me is				_	-	
		17.1 (B) 21.0	(C)	33.1	(D)	72.8	
Ans	wer:				·····			
4.	Five	numbers 10, 7, 5, 4, 2 a	re arranged in a sequ	en <mark>ce fr</mark>	om left to righ	<mark>t follow</mark> ing	the directions given	
	belov	w:						
	(1)	No two odd or even n	umbers are next to ea	ich othe	er.			
	(2)	The second number fr	om left is exactly hal	f of the	e left -most nur	nber.		
	(3)	The middle number is	exactly twice the rig	tht mos	t number.			
	Whie	ch is the second number	from the right ?					
	(A)	2 (B) 4	(C)	7	(D)	10	
Ans	wer:	(C)						
	© A	Il rights reserved by Thinkcell Learning	Solutions Pvt I td No part of this	booklet may	v be reproduced or utilize	ed in any form with	out the written permission	

C	GATE Engineerii	ORUM ng Success		BT-GATE-20)19		www.gateforumonline.com
5.		ne students were no lusions is/are logic			above statem	nent is true, w	hich of the following
	1.	Some who were i	nvolved in stril	ke were students.			
	2.	No student was in	nvolved in the s	strike.			
	3.	At least one stude	ent was involve	d in the strike.			
	4.	Some who were	not involved in	the strike were st	udents.		
	(A)	1 and 2	(B) 3	(C)	4	(D)	2 and 3
Ans	wer:	(C)					
		. 1	<u>Q. No. 6</u>	5 - 10 Carry Two	Marks Eac	<u>:h</u>	
6.	that				-	-	pon the number of taxes head -hunter in his own
	Base	d on the paragraph	above, the pres	stige of a head- h	inter depend	led upon	
	(A)	the prestige of the	e kingdom				
	(B)	the prestige of the	e heads				
	(C)	the number of tax	tes he could lev	уу			
	(D)	the number of he	ad she could ga	ther			
Ans	wer:	(D)					
7.	km/h apart	and the second tr	ain travelled so	buth at a speed o	f 100 km/h.	The time at	ds north at a speed of 80 which they were 540 km
	(A)	9	(B) 10	(C)	11	(D)	11:30
Ans	wer:	(B)					
8.	294	-	e internet. Am	ong these Intern	et users, on	-	obile phone owners only goods from e-commerce
	(A)	10.5	(B) 14.70	(C)	15.00	(D)	50.003
Ans	wer:	(A)					
	© A	Il rights reserved by Thinkcell L	earning Solutions Pvt. Ltd	A No part of this booklet ma	/ be reproduced or u	utilized in any form with	nout the written permission.

2

GATEFORUM Engineering Success

BT-GATE-2019

- **9.** The nomenclature of Hindustani music has changed over centuries. Since the medieval period *dhrupad* styles were identified as *baanis*. Terms like *gayaki* and *baaj* were used to refer to vocal and instrumental styles, respectively. With institutionalization of music education the term *gharana* became acceptable. *Gharana* originally referred to hereditary musicians from a particular lineage, including disciples and ground disciples. Which one of the following pairings is NOT CORRECT ?
 - (A) Dhrupad, baani (B) Gayaki, Vocal
 - (C) Baaj, institution (D) Gharana, lineage

Answer: (C)

10. Since the last one year, after a 125 basis point reduction in reportate by the Reserve Bank of India, banking institutions have been making a demand to reduce interest rates on small savings schemes. Finally, the government announced yesterday a reduction in interest rates on small saving schemes to bring them on par with fixed deposit interest rates.

Which one of the following statements can be inferred from the given passage ?

- (A) Whenever the Reserve Bank of India reduces the repo rate, the interest rates on small saving schemes are also reduced.
- (B) Interest rates on small saving schemes are always maintained on par with fixeddeposit interest rates.
- (C) The government sometimes takes into consideration the demands of banking institutions before reducing the interest rates on small saving schemes.
- (D) A reduction in interest rates on small saving schemes follow only after a reduction in repo rate by the Reserve Bank of India.

Answer: (D)

GATEFORUM Engineering Success

|BT-GATE-2019|

BIOTECHNOLOGY

Q. No. 1 – 25 Carry One Mark Each

1.	The mass of 1 kmol of oxygen molecules is g (rounded off to the nearest integer).						
Ans	wer:	(32000)					
2.	Whic	th one of the following is a database of protei	n sequ	ence motifs?			
	(A)	PROSITE (B) TrEMBL	(C)	SWISSPROT (D) PDB			
Ans	wer:	(A)					
3.	The	nedian value for the dataset (12, 10, 16, 8, 90), <mark>50, 3</mark>	0, 24) is			
Ans	wer:	(20)					
4.	Whic	ch one of the following enzymes is encoded b	y <mark>hum</mark>	an immunodeficiency virus (HIV) genome?			
	(A)	Reverse transcriptase	(B)	Phospholipase			
	(C)	Phosphatase	(D)	ATP synthase			
Ans	Answer: (A)						

5. Match the human diseases in Group I with the causative agents in Group II:

	Group-I			Group-II			
	P Amoebiasis		1.	Leishmania donovani			
	Q. African sleeping sickness		2.	Trypanosoma cruzi			
	R. Kala azar		3.	Entamoeba histolytica			
	S.	Chagas' disease	4.	Trypanosoma gambiense			
(/	A) P-	-3, Q-4, R-2, S-1		(B) $P-3, Q-2, R-1, S-4$			
(C) $P-3, Q-4, R-1, S-2$				(D) $P-4, Q-3, R-1, S-2$			

Answer: (C)

© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

G	GATEF Engineerin	EFORUM pering Success BT-GATE-2019 <u>www.g</u>	ateforumonline.com
6.	Whie	hich one of the following need NOT be conserved in a biochemical reaction?	
	(A)	.) Total mass (B) Total moles	
	(C)) Number of atoms of each element (D) Total energy	
Ans	wer:	(B)	
7.		hich of the following are geometric series?	
	Р.		
	Q.		
	R.		
	S.	4, -8, 16, -32, 64,	
	(A)	.) P and Q only (B) R and S only (C) Q and S only (D) P, Q	and R only
Ans	wer:	(B)	
0	DNA		
8.		NA synthesis in eukaryotes occurs during which phase of the mitotic cell cycle?	
	(A)	$(B) G_1 \qquad (C) S \qquad (D) G_0$	
Ans	wer:	(C)	
9.		the degree of reduction for acetic acid $(C_2H_4O_2)$ is	
Ans	wer:	(4)	···· <mark>······</mark> ····
10.	Whie	hich one of the following is used as a pH indicator in animal cell culture medium?	
	(A)		
	(C)		
Ans	wer:		
11.	Whie	hich one of the following is NOT a part of the human nonspecific defense system?	
	(A)	.) Interferon (B) Mucous (C) Saliva (D) Anti	body
Ans	wer:		
	© A	© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the wr	tten permission.

G	GATEF Engineerin	ORUM g Success	BT-GATE-20	19 <u>www.gateforumonline.com</u>
12.	The s	solution of $\lim_{x \to 8} \left(\frac{x^2 - 64}{x - 8} \right)$ is		
Ansv	ver:	(16)		
13.	Whi	ch one of the following is the unit o	f heat transfer c	oefficient?
	(A)	$W m^2 K^{-1}$ (B) $W m^{-2} K$	(C)	$W m^{-2}K^{-1}$ (D) $W m^{2}K$
Ansv	ver:	(C)		
14.		itation in a gene that codes for a po o acids. What type of mutation is th		ts in a variant polypeptide that lacks the last three
	(A)	Synonymous mutation	(B)	Nonsense mutation
	(C)	Missense mutation	(D)	Silent mutation
Ansv	ver:	(B)		
15.	energ	gy change, K_{eq} is equilibrium const	ant)	or enzyme catalyzed reactions? (ΔG is Gibbs free
	(A) (C)	Enzymes affect ΔG , but not K_{eq} Enzymes affect ΔG and K_{eq}	(B) (D)	Enzymes affect K_{eq} , but not ΔG Enzymes do not affect ΔG or K_{eq}
Anev		(D)	(- /	y
16.	activ		d assay condit	was 10 mg mL^{-1} . $10 \mu \text{L}$ of this sample gave an ons. The specific activity of this crude enzyme
Ansv		(50)	2	
17.	Whic	h one of the following is catabolize	d during endog	enous metabolism in a batch bacterial cultivation?
	(A)	Internal reserves	(B)	Extracellular substrates
	(C)	Extracellular products	(D)	Toxic substrates
Ansv	ver:	(A)		

G	GATEF Engineerin	ORUM ng Success			BT-GA	ATE-20	19		www.gateforumonline.com
18.	The	Bt toxin gene fro	m Bacillı	is thuri	ngiensis use	d to ge	nerate genetical	ly modifi	ed crops is
	(A)	cry	(B)	cro		(C)	cdc	(D)	cre
Ans	wer:	(A)							
19.	Whic	ch one of the foll	owing ca	n NOT	be a limiting	g subst	rate if Monod's	growth k	inetics is applicable?
	(A)	Extracellular ca	arbon sou	rce		(B)	Extracellular r	nitrogen s	ource
	(C)	Dissolved oxyg	gen			(D)	Intracellular ca	arbon sou	rce
Ans	wer:	(C)							
20.	Whic	ch one of the foll	owing eq	uations	represents a	a o <mark>ne-d</mark>	imensional wav	e equatio	n?
	(A)	$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{C}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$				(B)	$\frac{\partial^2 \mathbf{u}}{\partial t^2} = \mathbf{C}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$		
	(C)	$\frac{\partial^2 \mathbf{u}}{\partial t^2} = \mathbf{C}^2 \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$				(D)	$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = 0$)	
Ans	wer:	(B)							
21.	Whic	<mark>ch of</mark> the followin	ng proces	ses can	increase ger	netic d	iversity of bacte	ria in nat	ure?
	Р.	Conjugation				Q.	Transformatio	n	
	R.	Transduction				S.	Transfection		
	(A)	P only				(B)	P and Q only		
	(C)	P, Q and R only	у			(D)	P,Q,R and S		
Ans	wer:	(B)							
22.	22. Matrix $A = \begin{bmatrix} 0 & 6 \\ p & 0 \end{bmatrix}$ will be skew-symmetric when $p = _$.								
Ans	wer:	(-6)							

C	GATEF Engineerir	ORUM ng Success	BT-0	GATE-20	19	<u>www.gateforumor</u>	<u>ıline.com</u>
23.	. Tetracycline inhibits the						
	(A)	Interaction between	tRNA and mRNA				
	(B)	Translocation of mF	RNA through ribosom	ne			
	(C)	Peptidyl transferase	activity				
	(D)	Binding of amino-ad	cyl tRNA to ribosome	e			
Ans	wer:	(D)					
24.		number of possible ro	oted trees in a phylog	geny of th	nree species is	-	
Ans	wer:	(D)					
25.		ch one of the followin o biological samples	• ·		ompare the expres	ssion of a large number	of genes
	(A)	Polymerase chain re	eaction	(B)	DNA microarra	y	
	(C)	Northern hybridizat	ion	(D)	Southern hybrid	ization	
Ans	wer:	(B)				-	
			<u>Q. No. 26 – 55 Ca</u>	arry Two	o Marks Each		
26.	Wha	t is the solution of the	differential equation	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y},$	with the initial co	prodition, at $x = 0, y = 1$?	
	(A)	$\mathbf{x}^2 = \mathbf{y}^2 + 1 \tag{6}$	(B) $y^2 = x^2 + 1$	(C)	$y^2 = 2x^2 + 1$	(D) $x^2 - y^2 = 0$	
Ans	wer:	(B)					
27.	For s DNA	÷	esis, which one of the	followin	ng restriction enzy	mes is used to digest me	ethylated
	(A)	KpnI ((B) DpnI	(C)	XhoI	(D) M1uI	
Ans	wer:	(B)					

GATEFORUM Engineering Success

BT-GATE-2019

28. A new game is being introduced in a casino. A player can lose Rs. 100, break even, win Rs.100 or win Rs.500. The probabilities (P(X)) of each of these outcomes (X) are given in the following table:

X (in Rs.)	-100	0	100	500
P (X)	0.25	0.5	0.2	0.05

The standard deviation (σ) for the casino payout is Rs. _____ (rounded off to the nearest integer)

Answer: (129)

29. A UV-visible spectrophotometer has a minimum detectable absorbance of 0.02. The minimum concentration of a protein sample that can be measured reliably in this instrument with a cuvette of 1 cm path length is ______ μ M. The molar extinction coefficient of the protein is 10,000L mol⁻¹cm⁻¹.

Answer: (2)

30. The molecular mass of a protein is 22 kDA. The size of the cDNA (excluding the untranslated regions) that codes for this protein is ______ kb (rounded off to 1 decimal place).

Answer: (0.6)

31. Yeast biomass $(C_6H_{10}O_3N)$ grown on glucose is described by the stoichiometric equation given below:

 $C_6H_{12}O_6 + 0.48NH_3 + 3O_2 \rightarrow 0.48C_6H_{10}O_3N + 3.12CO_2 + 4.32H_2O_3$

The amount of glucose needed for the production of 50 gL^{-1} of yeast biomass in a batch reactor with a working volume of 100000 L is ______ kg (rounded of to the nearest integer).

Answer: (13020)

32. Match the instruments in Group I with their corresponding measurements in Group II.

Grou	p I	Group II		
Р	Manometer	1.	Agitator speed	
Q.	Rotameter	2.	Pressure difference	
R.	Tachometer	3.	Cell number	
S.	Haemocytometer	4.	Air flow rate	

G	GATEF Engineerin	ORUM ig Success	BT-GATE-20	19 <u>www.gateforumonline.com</u>
	(A)	P-4,Q-1,R-2,S-3	(B)	P-3, Q-4, R-1, S-2
	(C)	P-2,Q-4,R-1,S-3	(D)	P-2,Q-1,R-4,S-3
Ans	wer:	(B)		
33.	Whic	ch one of the following is coded by the	e ABO blood g	group locus in the human genome?
	(A)	Acyl transferase	(B)	Galactosyltransferase
	(C)	Transposase	(D)	β – Galactosidase
Ans	wer:	(B)		
34.	Whic	ch one of the following covalent linkag	ges exists bety	veen 7-Methyl guanosine (m ⁷ G) and mRNAs?
	(A)	2'-3' triphosphate	(B)	3'-5' triphosphate
	(C)	5'-5' triphosphate	(D)	2'-5' triphosphate
Ans	wer:	(C)		

35. Group I lists spectroscopic methods and Group II lists bimolecular applications of these methods. Match the methods in Group I with the applications in Group II

	Group I			Group II		
	Р.	Infrared	1.	Identification of functional groups		
	Q.	Circular Dichroism	2.	Determination of secondary structure		
	R.	Nuclear Magnetic Resonance	3.	Estimation of molecular weight		
			4.	Determination of 3-D structure		
(/	(A) $P-4, Q-3, R-1$			(B) $P-2, Q-1, R-3$		
((C) P-	-1, Q-2, R-4		(D) $P-3, Q-2, R-4$		

Answer: (C)

	Engineerin	ng Success		BT-	GATE-20	19]	www.gateforumonline.co
36.	In a	cross-flow filtrati	ion proc	ess, the pressu	re drop ((ΔP) driving	g the fluid fl	low is 2 atm, inlet fee
	press	sure (P_i) is 3 a	tm and	filtrate pressu	re (P_f)	is equal to	atmospheric	pressure. The average
		membrane pressur					_	
Ansv		(1)	Ň					
37.		ch one of the follo e helix?	wing am	nino acid residu	es will de	estabilize an o	α-helix wh	en inserted in the midd
	(A)	Pro	(B)	Val	(C)	Ile	(D)	Leu
Ansv	wer:	(A)						
38.	The	Laplace transform	of the fu	unction $f(t) = t$	$^{2} + 2t + 1$	is		
	(A)	$\frac{1}{s^3} + \frac{3}{s^2} + \frac{1}{s}$	(B)	$\frac{4}{s^3} + \frac{4}{s^2} + \frac{1}{s}$	(C)	$\frac{1}{r^3} + \frac{2}{r^2} + \frac{1}{r^2}$	· (D)	$\frac{2}{s^3} + \frac{2}{s^2} + \frac{1}{s}$
				5 5 5		5 5 5		
		(D) ea plants, purple co	olor of fl				allele while v	white color is determine
39.	In pe by th with	a plants, purple co ne recessive allele. white flowers. Th	. A gene e probat	owers is determ tic cross betwe	ined by then two puries the second seco	ne dominant	bearing plan	white color is determine ts results in an offsprin ill have purple flowers
39.	In pe by th with	a plants, purple co ne recessive allele. white flowers. Th (round	. A gene e probat	owers is determ tic cross betwe bility that the th	ined by then two puries the second seco	ne dominant	bearing plan	ts results <mark>in an offsp</mark> rin
39. Ansv	In pe by th with wer: Whice	ea plants, purple concerne recessive allele. white flowers. Th (round (0.75)	A gene e probat led off to	owers is determ tic cross betwe bility that the th b 2 decimal plac	ined by then two puind offspr and offspr ares).	ne dominant urple flower- ing from the	bearing plan se parents wi	ts results <mark>in an offsp</mark> rin
39. Ansv	In pe by th with wer: Whice	ea plants, purple co ne recessive allele. white flowers. Th (round (0.75) ch of the following	A gene e probab led off to g stateme	owers is determ tic cross betwe bility that the th b 2 decimal place ents are CORRI	ined by tl en two pu ird offspr æs). ECT wher	ne dominant urple flower- ing from the	bearing plan se parents wi	ts results in an offsprin ill have purple flowers
39. Ansv	In pe by th with wer: Whice BLA	a plants, purple content white flowers. Th (round (0.75) ch of the following ST algorithm?	A gene e probab led off to g stateme indicate	owers is determ tic cross betwe bility that the th bility that the the bility that the the bility that	ined by then two puird offspringers).	ne dominant urple flower- ing from the	bearing plan se parents wi	ts results in an offsprin ill have purple flowers
39. Ansv	In pe by th with wer: Whice BLA P.	ea plants, purple co ne recessive allele. white flowers. Th (round (0.75) ch of the following ST algorithm? A larger E-value	A gene e probab led off to g stateme indicates	owers is determ tic cross betwe bility that the th b 2 decimal plac ents are CORRI es higher sequer	ined by then two puird offsprixes). ECT where a construct where a construct of the similar ology	ne dominant urple flower- ing from the a protein se	bearing plan se parents wi	ts results in an offsprin ill have purple flowers
Ansv 39. 40.	In pe by th with wer: White BLA P. Q.	a plants, purple content of the following ST algorithm? A larger E-value $\angle 10^{-10}$	A gene e probat led off to g stateme indicates Γ score in	owers is determ tic cross betwe bility that the th b 2 decimal plac ents are CORRE es higher sequer s sequence hom ndicates higher	ined by then two puird offsprives). CCT where a similation of the	ne dominant urple flower- ing from the a protein se	bearing plan se parents wi	ts results in an offsprin ill have purple flowers
39. Ansv	In pe by th with wer: Whio BLA P. Q. R.	a plants, purple concernencessive allele. white flowers. The concernence (round (0.75)) ch of the following ST algorithm? A larger E-value $\angle 10^{-10}$ E-value $\angle 10^{-10}$ A higher BLAST	A gene e probat led off to g stateme indicates Γ score in	owers is determ tic cross betwe bility that the th b 2 decimal plac ents are CORRE es higher sequer s sequence hom ndicates higher	ined by then two puird offsprives). CCT where a similation of the	ne dominant urple flower- ing from the a protein se	bearing plan se parents wi	ts results in an offsprin ill have purple flowers
39. Ansv	In pe by th with wer: Whid BLA P. Q. R. S.	a plants, purple content of the following (0.75) ch of the following ST algorithm? A larger E-value $\leq 10^{-10}$ A higher BLAST E-value $> 10^{10}$ in	A gene e probat led off to g stateme indicates Γ score in	owers is determ tic cross betwe bility that the th b 2 decimal plac ents are CORRE es higher sequer s sequence hom ndicates higher	ined by then two puries of the similar offsprotes similar ology sequence logy	ne dominant urple flower- ing from the a protein se rity similarity	bearing plan se parents wi quence datab	ts results in an offsprin ill have purple flowers

C	GATEF Engineerin	ORUM g Success		BT-G	ATE-201	9	1	<u>vww.gateforumonline.com</u>
41.	Whic cultu		g statemen	its are CORREC	CT about	the function of fe	etal bov	vine serum in animal cell
	Р.	It stimulates cell	growth					
	Q.	It enhances cell a	attachmen	t				
	R.	It provides horm	ones and i	minerals				
	S.	It maintains pH a	at 7.4					
	(A)	P and Q only	(B) I	and S only	(C)	P, Q and R only	(D)	P,Q,R and S
Ans	wer:	(A)		<u> </u>				

42. $\int_{-1}^{1} f(x) dx$ Calculated using trapezoidal rule for the values given in the table is _____ (rounded off to 2 decimal places)

X	-1	-2/3	-1/3	0	$\frac{1}{3}$	$\frac{2}{3}$	1
f(x)	0.37	0.51	0.71	1.0	1.40	1.95	2.71

Answer: (2.37)

- **43.** The hexapeptide P has an isoelectric point (pI) of 6.9. Hexapeptide Q is a variant of P that contains valine instead of glutamate at position 3. The two peptides are analyzed by polyacrylamide gel electrophoresis at pH 8.0. Which one of the following statements is CORRECT?
 - (A) P will migrate faster than Q towards the anode
 - (B) P will migrate faster than Q towards the cathode
 - (C) Both P and Q will migrate together
 - (D) Q will migrate faster than P towards the anode

Answer: (A)

C	GATEF Engineerir	EFORUM aring Success BT-GATE-2019 <u>www.gateforumo</u>	<u>nline.com</u>
44.	Whie	nich one of the following statements is CORRECT about proportional controllers?	
	(A)) The initial change in control output signal is relatively slow	
	(B)	The initial corrective action is greater for larger error	
	(C)	They have no offset	
	(D)) There is no corrective action if the error is a constant	
Ans	wer:	(B)	
45.	In ge	general, which one of the following statements is NOT CORRECT?	
	(A)) Hydrogen bonds result from electrostatic interactions	
	(B)	Hydrogen bonds contribute to the folding energy of proteins	
	(C)	Hydrogen bonds are weaker than van der Waals interactions	
	(D)	Hydrogen bonds are directional	

Answer: (C)

46. Phenolic wastewater discharged from an industry was treated with Pseudomonas sp, in an aerobic bioreactor. The influent and effluent concentration of phenol were 10,000 and 10 ppm, respectively. The inlet feed rate of wastewater was $80L h^{-1}$. The kinetic properties of the organism are as follows:

Maximum specific growth rate $(\mu_m) = 1h^{-1}$

Saturation constant $(K_s) = 100 \text{ mg L}^{-1}$

Cell death rate $(k_d) = 0.01h^{-1}$

Assuming that the bioreactor operates under 'chemostat' mode, the working volume required for this process is ______ L (rounded off to the nearest integer)

Answer: (1000)

47. The difference in concentrations of an uncharged solute between two compartments is 1.6-fold. The energy required for active transport of the solute across the membrane separating the two compartments is _____ cal mol⁻¹ (rounded off to the nearest integer). (R = 1.987 cal mol⁻¹ K⁻¹, T = 37 °C)

Answer: (281)

GATEFORUM Engineering Success **BT-GATE-2019** www.gateforumonline.com **48.** The dimensions and operating condition of a lab-scale fermentor are as follows: Volume = 1 LDiameter = 20 cmAgitator speed = 600 rpm Ratio of impeller diameter to fermentor diameter = 0.3This fermentor needs to be scaled up to 8,000 L for a large scale industrial application. If the scale-up is based on constant impeller tip speed, the speed of the agitator in the larger reactor is ______rpm. Assume that the scale-up factor is the cube root of the ratio of fermentor volumes. (30) **Answer:** 49. Which of the following factors affect the fidelity of DNA polymerase in polymerase chain reaction? Mg²⁺ concentration P. Q. pН

- **R.** Annealing temperature
- (A) P and Q only(B) P and R only
- (C) Q and R only

(D) P.Q and R

_ _ _ _ _ _ _ _ _ _ _ _ _

Answer: (D)

50. Match the organelles in Group I with their functions in Group II.

		Group I		Group II
	Р	Lysosome	1.	Digestion of foreign substances
	Q.	Smooth ER	2.	Protein targeting
	R.	Golgi apparatus	3.	Lipid synthesis
	S.	Nucleolus	4.	Protein synthesis
			5.	rRNA synthesis
(.	A) P	-1,Q,-3,R-2,S-5		(B) P-1,Q,-4,R-5,S-3
(C) $P-2,Q,-5,R-3,S-4$			(D) $P-3,Q,-5,R-4,S-1$
nswei	r: (A	.)		

G	Engineering Success	BT-GATE-2019	www.gateforumonline.com						
51.	Which of the following statements is ALWAYS CORRECT about an ideal chemostat?								
	P. Substrate concentration inside the chemostat is equal to that in the exit stream								
	Q. Optimal dilution rate is lower than critical dilution rate								
	R. Biomass concentration increases wi	th increase in dilution rate							
	S. Cell recirculation facilitates operation	on beyond critical dilution rate							
	(A) P and Q only	(B) P, R and S or	ıly						
	(C) P and S only	(D) $P_{,}Q$ and S or	ıly						
Ansv	wer: (B)								
52.	Determine the correctness or otherwise	of the following Assertion [a] a	nd the Reason [r]						
	Assertion[a]: It is possible to regenerate	e a whole plant from a single pl	ant cell.						
	Reason[r]: It is easier to introduce tra	ansgenes in to plants than anim	als.						
	(A) Both [a] and [r] are true and [r] is	the correct reason for [a]							
	(B) Both [a] and [r] are true but [r] is	not the correct reason for [a]							
	(C) Both [a] and [r] are false								
	(D) [a] is true but [r] is false								
Ansv	wer: (B)								
53.	Ail industrial fermentor containing 10,000 L of medium needs to be sterilized. The initial spore								
	concentration in the medium is 10^6 spores mL ⁻¹ . The desired probability of contamination after sterilization is 10^{-3} . The death rate of spores at 121° C is 4min^{-1} . Assume that there is no cell death								
		•							
	during heating and cooling phases. T (rounded off to the nearest integer).	ne notating time of the steril	ization process ismi						

- 54. Antibody-producing hybridoma cells are generated by the fusion of a
 - (A) T cell with a myeloma cell (B) B cell with a myeloma cell
 - (C) Macrophage with a myeloma cell (D) T cell and a B cell

Answer: (B)

	ORUM ng Success	BT-GATE-2019	www.gateforumonline.co
5. Whie	ch of the following factors can in	afluence the lag phase of a microbial	culture in a batch fermentor?
Р.	Inoculum size		
Q.	Inoculum age		
R.	Medium composition		
(A)	P and Q only	(B) Q and R only	
(C)	P and R only	(D) P, Q and R	
answer:	(D)		