General Aptitude

O. No. 1-5 Carry One Mark Each

1. Four persons P, Q, R and S are to be seated in a row, all facing the same direction, but not necessarily in the same order. P and R cannot sit adjacent to each other. S should be seated to the right of Q . The number of distinct seating arrangements possible is:
(A) 2
(B) 6
(C) 4
(D) 8

Answer: (B)
2. \oplus and \odot are two operators on numbers p and q such that
$\mathrm{p} \oplus \mathrm{q}=\frac{\mathrm{p}^{2}+\mathrm{q}^{2}}{\mathrm{pq}}$ and $\mathrm{p} \odot \mathrm{q}=\frac{\mathrm{p}^{2}}{\mathrm{q}}$;
If $x \oplus y=2 \odot 2$, then $x=$
(A) $\frac{3 y}{2}$
(B) 2 y
(C) y
(D) $\frac{\mathrm{y}}{2}$

Answer: (C)

3. In a company, 35% of the employees drink coffee, 40% of the employees drink tea and 10% of the employees drink both tea and coffee. What $\%$ of employees drink neither tea nor coffee?
(A) 35
(B) 15
(C) 40
(D) 25

Answer: (A)
4. Getting to the top is \qquad than staying on top.
(A) much easy
(B) more easy
(C) easiest
(D) easier

Answer: (D)

5.

TRIANGLE

(A) \perp bIVNCГE
(B) ДВIVИVГE
(C) 」ВІӨИСГэ
(D) LbI甘ИегЕ

Answer: (D)

Q. No. 6-10 Carry Two Marks Each

6. Consider two rectangular sheets, Sheet M and Sheet N of dimensions $6 \mathrm{~cm} \times 4 \mathrm{~cm}$ each

Folding operation 1: The sheet is folded into half by joining the short edges of the current shape.
Folding operation 2: The sheet is folded into half by joining the long edges of the current shape.
Folding operation 1 is carried out on Sheet M three times.
Folding operation 2 is carried out on Sheet N three times.
The ratio of perimeters of the final folded shape of Sheet N to the final folded shape of Sheet M is \qquad _.
(A) $3: 2$
(B) $5: 13$
(C) 7:5
(D) $13: 7$

Answer: (D)
7. Five line segments of equal lengths, PR, PS, QS, QT and RT are used to form a star as shown in the figure below.

The value of θ, in degrees, is \qquad .
(A) 45
(B) 72
(C) 108
(D) 36

Answer: (D)

8. Statement: Either P marries Q or X marries Y

Among the options below, the logical NEGATION of the above statement is:
(A) Neither P marries Q nor X marries Y .
(B) X does not marry Y and P marries Q
(C) P does not marry Q and X marries Y
(D) P marries Q and X marries Y

Answer:
(A)
9. A function, λ, is defined by
$\lambda(p, q)=\left\{\begin{array}{cc}(p-q)^{2}, & \text { if } p \geq q, \\ p+q, & \text { if } p<q .\end{array}\right.$
The value of the expression $\frac{\lambda(-(-3+2),(-2+3))}{(-(-2+1))}$ is:
(A) 16
(B) 0
(C) $\frac{16}{3}$
(D) -1

Answer: (B)

10. Humans have the ability to construct worlds entirely in their minds, which don't exist in the physical world. So far as we know, no other species possesses this ability. This skill is so important that we have different words to refer to its different flavors, such as imagination, invention and innovation.

Based on the above passage, which one of the following is TRUE?
(A) We do not know of any species other than humans who possess the ability to construct mental worlds
(B) imagination, invention and innovation are unrelated to the ability to construct mental worlds
(C) No species possess the ability to construct worlds in their minds
(D) The terms imagination, invention and innovation refer to unrelated skills

Answer: (A)

Civil Engineering

Q. No. 1 to 25 Carry One Mark Each

1. If water is flowing at the same depth in most hydraulically efficient triangular and rectangular channel sections then the ratio of hydraulic radius of triangular section to that of rectangular section is
(A) $\frac{1}{\sqrt{2}}$
(B) 1
(C) 3
(D) $\sqrt{2}$

Answer: (A)

2. The direct and indirect costs estimated by a contractor for bidding a project is ₹ 160000 and ₹ 20000 respectively, If the mark up applied is 10% of the bid price, the quoted price (in ₹.) of the contactor is
(A) 182000
(B) 196000
(C) 198000
(D) 200000

Answer: (D)
3. The cohesion (c), angle of internal friction (ϕ) and unit weight (γ) of a soil are $15 \mathrm{kPa}, 20^{\circ}$ and $17.5 \mathrm{kN} / \mathrm{m}^{3}$, respectively. The maximum depth of unsupported excavation in the soil (in m,rounded off to two decimal places) is \qquad _.

Answer:

(4.897)
4. In an Oedometer apparatus, a specimen of fully saturated clay has been consolidated under a vertical pressure of $50 \mathrm{kN} / \mathrm{m}^{2}$ and is presently at equilibrium. The effective stress and pore water pressure immediately on increasing the vertical stress to $150 \mathrm{kN} / \mathrm{m}^{2}$, respectively are
(A) 0 and $150 \mathrm{kN} / \mathrm{m}^{2}$
(B) $100 \mathrm{kN} / \mathrm{m}^{2}$ and $50 \mathrm{kN} / \mathrm{m}^{2}$
(C) $150 \mathrm{kN} / \mathrm{m}^{2}$ and 0
(D) $50 \mathrm{kN} / \mathrm{m}^{2}$ and $100 \mathrm{kN} / \mathrm{m}^{2}$

Answer: (D)

5. The volume determined from $\iiint^{v} 8 x y z d V$ for $V=[2,3] \times[1,2] \times[0,1]$ (in integer) is \qquad .

Answer:

6. A signalized intersection operates in two phases. The lost time is 3 seconds per phases. The maximum ratios of approach flow to saturation flow for the two phases are 0.37 and 0.40 . The optimum cycle length using the Webster's method (in seconds rounded off to one decimal places) is \qquad .

Answer: (60.869)
7. Which of the following is/are correct statement(s)?
(A) If the whole circle bearing of a line is 270°, its reduced bearing is $90^{\circ} \mathrm{NW}$.
(B) The boundary of water of a calm water pond will represent contour line
(C) In the case of fixed hair stadia tachometry, the staff intercept will be larger, when the staff is held nearer to the observation point.
(D) Back bearing of a line is equal to Fore bearing $\pm 180^{\circ}$

Answer: (A, B, D)
8. Gypsum is typically added in cement to
(A) increase workability
(B) prevent quick setting
(C) enhance hardening
(D) decrease heat of hydration

Answer: (C)
9. A propped cantilever beam EF is subjected to a unit moving load as shown in the figure (not to scale). The sign convention for positive shear force at the left and right sides of my section is also shown:

The CORRECT qualitative nature of the influence line diagram for shear force at G
(A)

(B)

(C)

(D)

Answer:
(B)
10. The liquid forms of particulate air pollutants are
(A) fly ash and fumes
(B) dust and mist
(C) mist and spray
(D) smoke and spray

Answer:
 (C)

11. Which one of the following statements is correct?
(A) Combustion is an exothermic process, which takes place in the absence of oxygen
(B) Pyrolysis is an exothermic process, which takes place in the absence of oxygen
(C) Combustion is an endothermic process, which takes place in the abundance of oxygen
(D) Pyrolysis is an endothermic process, which takes place in the absence of oxygen.

Answer: (D)

12. The equation of deformation is derived to be $y=x^{2}-x L$ for a beam shown in the figure.

The curvature of the beam at the mid-span (in units in integer) will be \qquad .

Answer:

13. If $\mathrm{P}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\mathrm{Q}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ then $\mathrm{Q}^{\mathrm{T}} \mathrm{P}^{\mathrm{T}}$
(A) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(B) $\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$
(C) $\left[\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right]$
(D) $\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right]$

Answer: (D)

14. 'Kinematic viscosity' is dimensionally represented as
(A) $\frac{\mathrm{M}}{\mathrm{LT}}$
(B) $\frac{\mathrm{T}^{2}}{\mathrm{~L}}$
(C) $\frac{\mathrm{M}}{\mathrm{L}^{2} \mathrm{~T}}$
(D) $\frac{\mathrm{L}^{2}}{\mathrm{~T}}$

Answer: (D)
15. Which one of the following is correct?
(A) The partially treated effluent from a food processing industry, containing high concentration of biodegradable organics, is being discharged into a flowing river at a point P. If the rate of degradation of the organics is higher than the rate of aeration, then dissolved oxygen of the river water will be lowest at point P.
(B) For an effluent sample of a sewage treatment plant, the ratio $\mathrm{BOD}_{5 \text { day } 20^{\circ} \mathrm{C}}$ upon ultimate BOD is more than 1.
(C) A young lake characterized by low nutrient content and low plant productivity is called eutrophic lake.
(D) The most important type of species involved in the degradation of organic matter in the case of activated sludge process basedwastewater treatment is chemoheterotrophs.
Answer: (D)
16. Consider the limit:
$\lim _{x \rightarrow 1}\left(\frac{1}{\ln \mathrm{x}}-\frac{1}{\mathrm{x}-1}\right)$
The limit (correct up to one decimal place) is \qquad .
Answer: (0.5)
17. A truss EFGH is shown in the figure, in which all the members have the same axial rigidity R. In the figure, P is the magnitude of external horizontal forces acting at joints F and G .

If $\mathrm{R}=500 \times 10^{3} \mathrm{kN}, \mathrm{P}=150 \mathrm{kN}$ and $\mathrm{L}=3 \mathrm{~m}$, the magnitude of the horizontal displacement of joint G (in mm , round off to one decimal place) is \qquad .

Answer: (0.9)
18. Which of the following is NOT a correct statement?
(A) The first reading from a level station is a 'Fore Sight'
(B) Contours of different elevations may intersect each other in case of an overhanging cliff
(C) Basic principle of surveying is to work from whole to parts
(D) Planimeter is used for measuring 'Area'.

Answer:
(A)
19. The rank of matrix $\left|\begin{array}{llll}1 & 2 & 2 & 3 \\ 3 & 4 & 2 & 5 \\ 5 & 6 & 2 & 7 \\ 7 & 8 & 2 & 9\end{array}\right|$ is
(A) 2
(B) 3
(C) 4
(D) 1

Answer: (A)
20. The shaper of the most commonly designed highway vertical curve is
(A) spiral
(B) circular (single radius)
(C) parabolic
(D) circular (multiple radii)

Answer:
(C)
21. A highway designed for $80 \mathrm{~km} / \mathrm{h}$ speed has a horizontal curve section with radius 250 m . If the design lateral friction is assumed to develop fully, the required super elevation is
(A) 0.07
(B) 0.05
(C) 0.02
(D) 0.09

Answer:
(B)
22. A partially saturated soil sample has natural moisture content of 25% and bulk unit weight of $18.5 \mathrm{kN} / \mathrm{m}^{3}$. The specific gravity of soil solids is 2.65 and unit weight of water is $9.81 \mathrm{kN} / \mathrm{m}^{3}$. The unit weight of the soil sample on full saturation is
(A) $20.12 \mathrm{kN} / \mathrm{m}^{3}$
(B) $18.50 \mathrm{kN} / \mathrm{m}^{3}$
(C) $21.12 \mathrm{kN} / \mathrm{m}^{3}$
(D) $19.03 \mathrm{kN} / \mathrm{m}^{3}$

Answer: (D)
23. Two reservoirs are connected through a homogeneous and isotropic aquifer having hydraulic conductivity (K) of $25 \mathrm{~m} /$ day and effective porosity (η) of 0.3 as shown in the figure (not to scale). Ground water is flowing in the aquifer at the steady state.

If water in Reservoir 1 is contaminated then the time (in days, round off to one decimal place) taken by the contaminated water to reach to Reservoir 2 will be \qquad _.

Answer: (2400)
24. The state of stress in a deformable body is shown in the figure. Consider transformation of the stress from the $\mathrm{x}-\mathrm{y}$ coordinate system to the $\mathrm{X}-\mathrm{Y}$ coordinate system. The angle, θ, locating the X -axis is assumed to be positive when measured from the x -axis in counter-clockwise direction

The absolute magnitude of the shear stress component σ_{xy} (in MPa, rounded off to one decimal place) in $x-y$ coordinate system is \qquad _.

Answer:
(96.18)
25. The shape of the cumulative distribution function of Gaussian distribution is
(A) Straight line at 45 degree angle
(B) Bell-shaped
(C) S-shaped
(D) Horizontal line

Answer: (C)

Q. No. 26 to 55 Carry Two Marks Each

26. A cylinder (2.0 m diameter, 3.0 m long and 25 kN weight) is acted upon by water on one side and oil (specific gravity $=0.8$) on other side as shown in the figure.

The absolute ratio of the net magnitude of vertical forces to the net magnitude of horizontal forces (rounded off to two decimal places) is \qquad ,

Answer:
(0.38)
27. Vehicular arrival at an isolated intersection follows the Poisson distribution. The mean vehicular arrival rate is 2 vehicle per minute. The probability (round off to 2 decimal places) that at least 2 vehicles will arrive in any given 1 -minute interval is \qquad .

Answer:

 (0.593)28. Spot speeds of vehicles observed at a point on a highway are $40,55,60,65$ and $85 \mathrm{~km} / \mathrm{h}$. The space mean speed (in km / h, round off to two decimal places) of the observed vehicle is \qquad .

Answer: (56.99)
29. An unlined canal under regime conditions along with a silt factor of 1 has a width of flow 71.25 m . Assuming the unlined canal as a wide channel, the corresponding average depth of flow (in m . round off to two decimal places) in the canal will be \qquad .
Answer: (2.938)
30. Employ stiffness matrix approach for the simply supported beam as shown in the figure to calculate unknown displacements rotations. Take length L-8m, modulus of elasticity, $\mathrm{E}=3 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$; Moment of inertia, $\mathrm{I}=225 \times 10^{6} \mathrm{~mm}^{4}$.

The mid-span deflection of the beam (in mm , round off to integer) under $\mathrm{P}=100 \mathrm{kN}$ in downward direction will be \qquad .

Answer:
(118.5)
31. Based on drained triaxial shear tests on sands and clays, the representative variations of volumetric strain $\left(\frac{\Delta \mathrm{V}}{\mathrm{V}}\right)$ with the shear strain (y) is shown in the figure.

Choose the CORRECT option regarding the representative behavior exhibited by Curve P and Curve Q .
(A) Curve P represents loose sand and normally consolidated clay, while Curve ' Q ' represents dense sand and over consolidated clay
(B) Curve ' P ' represents loose sand and over consolidated clay, while Curve ' Q ' represents dense sand and normally consolidated clay
(C) Curve ' P ' represents dense sand and over consolidated clay, while Curve ' Q ' represents loose sand and normally consolidated clay
(D) Curve ' P ' represents dense sand and normally consolidated clay, while Curve 'Q' represents loose sand and over consolidated clay

Answer: (C)

32. A small project has 12 activities - N. P. Q. R. S. T. U. V. W. X. Y and Z. The relationship among these activities and the duration of these activities are given in the Table.

Activity	Duration (in weeks)	Depends upon
N	2	-
P	5	N
Q	3	N
R	4	P

S	5	Q
T	8	R
U	7	R, S
V	2	U
W	5	U
X	1	T, V
Y	W	X, Y
Z		

The total float of the activity ' V ' (in weeks, in integer) is \qquad .
Answer:
(0)
33. A baghouse filter has to treat $12 \mathrm{~m}^{3} / \mathrm{s}$ of waste gas continuously. The baghouse is to be divided into 5 sections of equal cloth area such that one section can be shut down for cleaning and/ or repairing, while the other 4 sections continue to operate. An air-to-cloth ratio of $6.0 \mathrm{~m}^{3} / \mathrm{min}-\mathrm{m}^{\prime}$ cloth will provide sufficient treatment to the gas. The individual bags are of 32 cm in diameter and 5 m in length. The total number of bags (in integer) required in the baghouse is \qquad _.

Answer:

[^0]34. A combined trapezoidal footing of length L supports two identical square columns (P_{1} and P_{2}) of size $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$, as shown in the figure. The columns P_{1} and P_{2} carry loads of 2000 kN and 1500 kN respectively.

Answer: (5.83)
35. The values of abscissa (x) and ordinate (y) of a curve are as follows:

\mathbf{x}	\mathbf{y}
2.0	5.00
2.5	7.25
3.0	10.00
3.5	13.25
4.0	17.00

By Simpson's $1 / 3^{\text {rd }}$ rule, the area under the curve (round off to two decimal places) is \qquad .
Answer:
(20.66)
36. A tube well of 20 cm diameter fully penetrates a horizontal, homogeneous and isotropic confined aquifer of infinite horizontal extent. The aquifer is of 30 m uniform thickness. a steady pumping at the rate of 40 litres/s from the well for a longtime result in a steady drawdown of 4 m at the well face. the subsurface flow to the well due to pumping is steady, horizontal and Darcian and the radius of influence of the well is 245 m . The hydraulic conductivity of the aquifer (in $\mathrm{m} /$ day, round off to integer) is \qquad .
Answer: (35.76)
37. A wedge M and a block N are subjected to forces P and Q as shown in the figure.

Surface 1

If force P is sufficiently large, then the block N can be raised. The weights of the wedge and the block are negligible compared to the forces P and Q . The coefficient of friction (μ) along the inclined surface between the wedge and the block is 0.2 . All other surfaces are frictionless. The wedge angle is 30°.

The limiting force P , in terms of Q , required for impending motion of block N to just move it in the upward direction is given as $\mathrm{P}=\alpha \mathrm{Q}$. The value of the coefficient ' α ' (rounded off to one decimal place)is

Answer:
(D)
38. A secondary clarifier handles a total flow of $9600 \mathrm{~m}^{3} / \mathrm{d}$ from the aeration tank of a conventionalactivatedsludge treatment system. The concentration of solids in the flow from the aeration tank is $3000 \mathrm{mg} / \mathrm{L}$. The clarifier is required to thicken the solids 12000 mgL and hence it is to be designed for a solid flux of 3.2 $\mathrm{kg} / \mathrm{m}^{2}$.h. The surface area of the designed clarifier for thickening (in m^{2}, in integer) is \qquad .

Answer:

39. A retaining wall of height 10 m with clay backfill is shown in the figure (not to scale). Weight of the retaining wall is 5000 kN per m acting at 3.3 m from the top of the retaining wall. The interface friction angle between base of the retaining wall and the base soil is 20.The depth of clay in front of the retaining wall is 2.0 m . The properties of the clay backfill, and the clay placed in front of the retaining wall are the same. Assume that the tension crack is filled with water. UseRankine's earth pressure theory. Take unit weight of water, $\gamma_{w}=9.81 \mathrm{kN} / \mathrm{m}^{3}$.

The factor of safety (Rounded off to two decimal places) against sliding failure of the retaining wall after ignoring the passive earth pressure will be \qquad _.

Answer:

(4.29)
40. A column is subjected to a total load (P) of 60 kN supported through a bracket connection, as shown in the figure (not to scale).

The result force in bolt R (in kN , round off to one decimal place) is \qquad .
Answer: (28.18)
41. A water sample is analyzed for coliform organisms by the multiple tube fermentation method. The results of confirmed test are as follows:

Sample size(mL)	Number of positiveResults out of $\mathbf{5}$ tubes	Number of negativeResults out of5 tubes
0.01	5	0
0.001	3	2
0.0001	1	4

The most probable number (MPN) of coliform organisms for the above results is to be obtained using the following MPN index.

MPN Index for Various Combinations of Positive Results when Five Tubes used per Dilution of $\mathbf{1 0 . 0} \mathbf{~ m L}, \mathbf{1 . 0} \mathbf{~ m L}$ and $\mathbf{0 . 1} \mathbf{m L}$	
Combination of Positive tubes	MPN index per $\mathbf{1 0 0} \mathbf{~ m L}$
$0-2-4$	11
$1-3-5$	19
$4-2-0$	22
$5-3-1$	110

The MPN of coliform organisms per 100 mL is
(A) 110000
(B) 1100000
(C) 1100
(D) 110

Answer: (A)
42. Ammonia nitrogen is present in a given wastewater sample as the ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$and ammonia $\left(\mathrm{NH}_{3}\right)$.If pH is the only deciding factor for the proportion of these two constituents, which of the following is a correct statement?
(A) At pH 7.0, $\left(\mathrm{NH}_{4}^{+}\right)$and NH_{3} will be found in equal measures
(B) At pH below $9.25 \mathrm{NH}_{3}$ will be predominant
(C) At pH $7.0\left(\mathrm{NH}_{4}^{+}\right)$will be predominant
(D) at pH above 9.25 , only $\left(\mathrm{NH}_{4}^{+}\right)$will be present

Answer:
 (C)

43. A 50 mL sample of industrial wastewater is taken into a silica crucible. The empty weight of the crucible is 54.352 g . The crucible with the sample is dried in a hot air over at $104^{\circ} \mathrm{C}$ till a constant weight of 55.129 g . Thereafter, the crucible with the dried sample is fired at $600^{\circ} \mathrm{C}$ for 1 h in a muffle furnace, and the weight of the crucible along with residue is determined as 54.783 g . The concentration of total volatile solids is \qquad .
(A) $1700 \mathrm{mg} / \mathrm{L}$
(B) $8620 \mathrm{mg} / \mathrm{L}$
(C) $6920 \mathrm{mg} / \mathrm{L}$
(D) $15540 \mathrm{mg} / \mathrm{L}$

Answer: (C)
44. The longitudinal section of a runway provides the following data:

End to-end runway (m)	Gradient \%
0 to 300	+1.2
300 to 600	-0.7
600 to 1100	+0.6
1100 to 1400	-0.8
1400 to 1700	-1.0

The effective gradient of the runway (in \% round off to two decimal places) is \qquad .

Answer: (0.32)

5. The soil profile at a construction site is shown in the figure (not to scale). Ground water table (GWT) is at 5 m below the ground level at present. An old well data shows that the ground water table was as low as 10 m below the ground level in the past. Take unit weight of water, $\gamma_{\mathrm{w}}=9.81 \mathrm{kN} / \mathrm{m}$.

Ground level			
Sand $\gamma=17.5 \mathrm{kN} / \mathrm{m}^{3}$		Present GWT	5m
$\gamma_{\text {sat }}=18.5 \mathrm{kN} / \mathrm{m}^{3}$	15 m		
Clay			
$\gamma_{\text {sat }}=17 \mathrm{kN} / \mathrm{m}^{3}$	8m		

The over consolidation ratio (OCR) (rounded off to two decimal places) at the mid-point of the clay layer is \qquad
Answer: (1.22)
46. Refer the truss as shown in the figure (not to scale).

If load, $\mathrm{F}=10 \sqrt{3} \mathrm{kN}$, moment of inertia, $\mathrm{I}=8.33 \times 10^{6} \mathrm{~mm}^{4}$, area of cross-section, $\mathrm{A}=10^{4} \mathrm{~mm}^{2}$, and length, $\mathrm{L}=2 \mathrm{~m}$ for all the members of the truss, the compressive stress (in $\mathrm{kN} / \mathrm{m}^{2}$, in integer) carried by the member $\mathrm{Q}-\mathrm{R}$ is \qquad .

Answer:
(500)
47. Contractor X is developing his biding strategy against Contactor Y . The ratio of Y 's bid price to X 's cost of the 30 previous bids in which contractor X has completed against Contractor Y is given in the table:

Ratio of Y's bid price to \mathbf{X} 's cost	Number of bids
1.02	6
1.04	12
1.06	3
1.10	6
1.12	3

Based on the bidding behavior of the Contractor Y , the probability of winning against Contractor Y at a mark up of 8% for the next project is
(A) more than 50% but less than 100%
(B) 0%
(C) more than 0% but less than 50%
(D) 100%

Answer:
(C)
48. The solution of the second-order differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$ with boundary conditions $y(0)=1$ and $y(1)=3$ is
(A) $\mathrm{e}^{-\mathrm{x}}-\left[3 e \sin \left(\frac{\pi \mathrm{x}}{2}\right)-1\right] \mathrm{xe}^{-\mathrm{x}}$
(B) $\mathrm{e}^{-\mathrm{x}}+(3 \mathrm{e}-1) \mathrm{x} \mathrm{e}^{-\mathrm{x}}$
(C) $e^{-x}-(3 e-1) x e^{-x}$
(D) $\mathrm{e}^{-\mathrm{x}}+\left[3 \operatorname{esin}\left(\frac{\pi \mathrm{x}}{2}\right)-1\right] \mathrm{xe}^{-\mathrm{x}}$

Answer: (B)

49. Traversing is carried out for a closed traverse PQRS. The internal angles at vertices $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are measured as $92^{\circ}, 68^{\circ} .123^{\circ}$. And 77° respectively. If fore bearing of line PQ is 27°, fore bearing of line RS (in degrees, in integer) is \qquad -.

Answer:

50. A square plate $\mathrm{O}-\mathrm{P}-\mathrm{Q}-\mathrm{R}$ of a linear elastic material with sides 1.0 m is loaded in a state of plane stress. Under a given stress condition, the plate deforms to a new configuration O-P'-Q-R' as shown in the figure (not to scale). Under the given deformation, the edges of the plate remain straight.

The horizontal displacement of the option $(0.5 \mathrm{~m}, 0.5 \mathrm{~m})$ in the plate O-P-Q-R (in mm , rounded off to one decimal places) is \qquad _.

Answer:
(2.5)
51. On a road, the speed -density relationship of a traffic stream is given by $u=70-0.7 \mathrm{k}$ (where speed, u , is in km / h and density, k , is in veh $/ \mathrm{km}$). At the capacity condition, the average time headway will be
(A) 2.1 s
(B) 0.5 s
(C) 1.6 s
(D) 1.0 s

Answer: (A)

52. A fluid flowing steadily in a circular pipe of radius R has a velocity that is everywhere parallel to the axis (centerline) of the pipe. The velocity distribution along the radial direction is $V_{r}=U\left(1-\frac{r^{2}}{R^{2}}\right)$, where r is the radial distance as measured from the pipe axis and U is the maximum velocity at $r=0$. The average velocity of the fluid in the pipe is
(A) $\frac{\mathrm{U}}{4}$
(B) $\frac{U}{2}$
(C) $\frac{\mathrm{U}}{3}$
(D) $\left(\frac{5}{6}\right) \mathrm{U}$

Answer: (B)
53. The value $\int_{0}^{1}\left(e^{x} d x\right)$ using the trapezoidal rule with four equal subintervals is
(A) 2.192
(B) 718
(C) 1.727
(D) 2.718

Answer: (C)
54. An unsupported slope of height 15 m is shown in the figure (not to scale), in which the slope face makes an angle 50° with the horizontal.

The slope material comprises purely cohesive soil having undrained cohesion 75 kPa . A trial slip circle KLM, with a radius 25 m , passes through the crest and toe of the slope and it subtends an angle 60° at its center O. The weight of the active soil mass (W , bounded by KLMN) is $2500 \mathrm{kN} / \mathrm{m}$, which is acting at a horizontal distance of 10 m from the toe of the slope. Consider the water table to be present at a very large depth from the ground surface.

Considering the trial slip circle KLM, the factor of safety against the failure of slope under undrained condition (rounded off to two decimal places) is \qquad .

Answer:
55. A prismatic cantilever prestressed concrete beam of span length, $\mathrm{L}=1.5 \mathrm{~m}$ has one straight tendon place in the cross-section as shown in the figure (not to scale). The total prestressing force of 50 kN in the tendon is applied at $d_{c}=50 \mathrm{~mm}$ for the top in the cross-section of width, $b=200 \mathrm{~mm}$ and depth, $\mathrm{d}=300 \mathrm{~mm}$.

If the concentrated load, $\mathrm{P}=5 \mathrm{kN}$, the resultant stress (in MPa, in integer) experienced at point ' Q ' will be
\qquad .

Answer:
 (0)

[^0]: (30)

