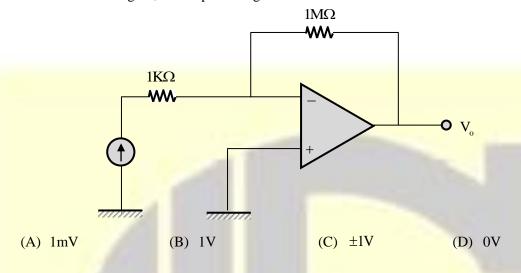
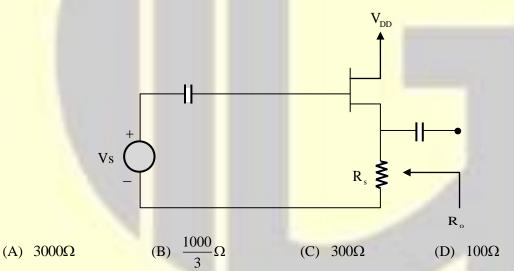

The circuit shown in figure is a 1.

- (A) Low-pass filter
- (C) Band-pass filter

- (B) High-pass filter
- (D) Band-reject filter


In the op-amp circuit given in figure, the load current i_L is 2.


- $(A) -\frac{v_s}{R_2}$
- (C) $-\frac{v_s}{R_L}$ (D) $\frac{v_s}{R_L}$

3. An op-amp has an offset voltage of 1mV and is ideal in all other respects. If this op-amp is used in the circuit shown in figure, the output voltage will be

4. For the circuit shown above if $g_m = 3 \times 10^{-3}$ and $R_s = 3000\Omega$, then the approximate value of R_o is

- **5.** Where does the operating point of a class-B power amplifier lie?
 - (A) At the middle of a.c load time
 - (B) Approximately at collector cut-off on both and a.c load lines
 - (C) Inside the collector cut-off region on a.c load line
 - (D) At the middle point of d.c load line

- The Laplace transform of e^{-2t} is 6.
 - (A) $\frac{1}{2s}$

- (C) $\frac{2}{s+1}$ (D) $\frac{1}{s+2}$
- The system with characteristic equation $s^4 + 3s^3 + 6s^2 + 9s + 12 = 0$ 7.
 - (A) Stable

(B) Unstable

(C) Marginally stable

- (D) Marginally unstable
- Compared to field effect photo transistors, bipolar photo transistors are 8.
 - (A) More sensitive and faster

- (B) Less sensitive and slower
- (C) More sensitive and slower

- (D) Less sensitive and faster
- 9. The output V-I characteristics of an enhancement type MOSFET has
 - (A) Only an ohmic region
 - (B) Only a saturated region
 - (C) An ohmic region at low voltage value followed by a saturation region at higher voltages
 - (D) An ohmic region at large voltage values preceded by a saturation region at lower voltages
- 10. Which of the following relation is valid?

Where MTBF = Mean Time Between Failures

MTTF = Mean Time to Failures

MTTR = Mean Time to Repair

(A) MTBF = MTTF + MTTR

- (B) MTTR + MTTF + MTBF = 1
- (C) $\frac{1}{MTTR} + \frac{1}{MTTF} = \frac{1}{MTBF}$
- (D) MTBF.MTTF.MTTR = 1

- 11. Two transistors have the same value of α but different gain bandwidth products. One of them is a germanium transistor and the other is a silicon transistor. Both the transistors have similar geometrics and base width. The transistor with lower GB product
 - (A) is the germanium
 - (B) is the silicon
 - (C) both are same
 - (D) Cannot be identified unless more information is available

- 12. The following transistor configuration has the highest input impedance
 - (A) CC
- (B) CE
- (C) CB
- (D) All of the above
- If t_c, h and t_m specify the cache access time, hit ratio and main memory access time then the average **13.** access time is (given $t_c = 160 \text{ns}$, $t_m = 960 \text{ns}$, h = 0.90)
 - (A) 160 ns
- (B) 960 ns
- (C) 256 ns
- (D) $960 \times 0.9 \text{ ns}$
- 14. The advantage of write (copy) back data cache organization over write through organization is
 - (A) Main memory consistency

- (B) Write allocate on write miss
- (C) Less memory bandwidth requirement
- (D) Higher capacity

- E² PROM storage element is 15.
 - (A) Cross-coupled latch

(B) Isolated gate transistor

(C) Capacitor

- (D) Flip flop
- **16.** The modulus of $1 + \cos \alpha + i \sin \alpha$ is

- (A) $2\sin\frac{\alpha}{2}$ (B) $2\cos\frac{\alpha}{2}$ (C) $\sin^2\frac{\alpha}{2}-1$ (D) $\cos^2\frac{\alpha}{2}-1$

GATEFORUM Engineering Success
Engineering Success

| EC-ISRO-2008 |

www.gateforumonline.com

17.	The 8 bit DAC produces 1.0V for a digital input of 00110010. What is the largest output it can produce				gest output it can produce?	
	(A) 5V	(B) −5V	(C)	5.5V	(D)	5.10V
18.	The fastest ADC among	g the following is				
	(A) Successive approx	-	(B)	Dual slope type		
	(C) Sigma-Delta ADC			Flash converter		
19.	The mod number of a	Johsnon counter will be	alway	s equal to		_ the number of flip flops
	used					
	(A) same					
	(B) twice					
	(C) 2 ^N where N is the	number of flip flops				
	(D) None of the these					
20.	Odd parity generator us	seslogic				
	(A) XNOR	(B) XOR	(C)	Sequential	(D)	OR
21.	Which type of memory	has fast erase and write t	imes			
	(A) EPROM		(B)	EEPROM		
	(C) Flash memory		(D)	None of these		
22.	The performance gain tusing	that can be obtained by in	mprov	ing some portion	of a	computer can be calculated
	(A) Moore's law		(B)	Djkstra's algorith	nm	
	(C) Amdahl's law		(D)	Murphy's law		

23.	Microprogramming refers to					
	(A) Emulation					
	(B) Programming at micro level					
	(C) The use of storage to implement the control	unit				
	(D) Array processing					
24.	An array processor is a machine					
	(A) SIMD (B) MIMD	(C) SISD	(D) MISD			
25.	machines tend to make use of interr	nal resources of th	ne processor, a rich set of registers	and		
	a pipelined organization.					
	(A) CISC (B) Parallel processor		(D) Array processor			
26						
26.	Difference between a switch and Hub					
	(A) Both are same	(B) Switch avo				
	(C) Hub avoids broadcast	(D) None of the	e above			
27.	100 Base T refers to					
27.	(A) Fibre connectivity	(B) BNC conne	ectors			
	(C) SONET	(D) Twisted pa				
28.	A.C.D. flip flop with a cleak input can be convert	ad to a 'D' flip fle	an voin a			
40.	A S-R flip flop with a clock input can be converted (A) Two inverters	ed to a D Inp no	op using			
	(A) Two inverters (B) the flip flop outputs $(Q \& \overline{Q})$ connected to its inputs $(S \& R)$					
	(C) One inverter					
	(D) Not possible					

29.	An 8 bit ADC has a f maximum error	full scale input of 2.55V.	If other cumulative e	errors are 2.55mV, determine the
	(A) 10mV	(B) 12.55mV	(C) 7.45mV	(D) 2.55mV
30.	A counter is designed stage, when input frequ		ops. Determine the ou	tput frequency at the last (sixth)
	(A) 1 MHz		(C) 15.625 KHz	
31.	The Ethernet protocol u			
	(A) CSMA/CA	(B) SCPC	(C) CSMA/CD	(D) Slotted ALOHA
32.	The value of c which m	nakes the angle 45° betwe	en $\overline{a} = i + cj$ and $\overline{b} = i +$	j is
	(A) 1	(B) $\frac{1}{\sqrt{2}}$	(C) $\frac{-1}{\sqrt{2}}$	(D) 0
33.	In a delay chained coming the one			pt request has the highest priority
	(A) With the largest ve	ector address	(B) With highest sp	eed of operation
	(C) Electrically neares	et to the CPU	(D) Electrically fart	
34.	RS-232 interface			
	(A) Uses only positive			t signals over long distance
	(C) Uses only negative	e voltage	(D) A logic uses pos	sitive voltage
35.	Assuming ideal conditi	ons, the speed up obtaine	d from a balanced N sta	age pipeline is
	(A) 2N	(B) N^2	(C) N	(C) N!

36. The number of comparators required in an 8-bit flash-type A/D converter is

(A) 256

(B) 255

(C) 9

(D) 8

37. Minimum number of 2-input NAND gates that will be required to implement the function:

Y = AB + CD + EF is

(A) 4

(B) 5

(C) 6

(D) 7

38. In a ripple counter how many changes in state happen when count changes from 7 to 8?

(A) 1

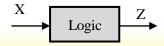
(B) 2

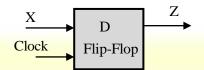
(C) 3

(D) 4

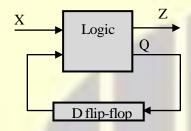
- 39. A programmable device (PROM) is
 - (A) programmable OR and fixed AND array
 - (B) programmable AND and fixed OR array
 - (C) programmable AND and programmable OR array
 - (D) none
- 40. In asynchronous circuits, which of the following best explains a dynamic hazard?
 - (A) Output changes several times for a single change in an input
 - (B) Output changes to a different state for a single change in an input
 - (C) Output changes momentarily when it is supposed to remain constant for a single change in an input
 - (D) None of the above
- 41. Digital signal processors use a computer architecture derived from

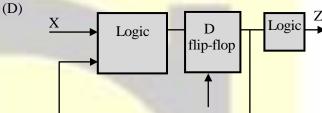
(A) Harvard Architecture


(B) Von-Neumann Architecture

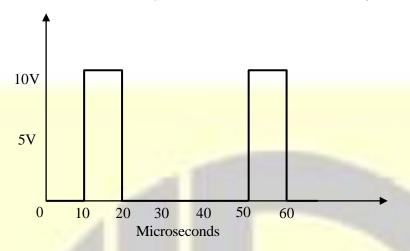

(C) Cray Architecture (D) None of the above

42. Which of the following represents the Moore model for sequential circuits?


(A)



(C)



- 43. An ant-aliasing filter is
 - (A) An analog filter
 - (C) Can be analog or digital

- (B) A digital filter
- (D) None of the above
- 44. Which of the following filter has the fastest roll-off?
 - (A) R-C
- (B) Bessel
- (C) Butterworth
- (D) Chebyshev

- Find the rms value of the signal $x(t) = 5\cos\left(50t + \frac{\pi}{3}\right)$ 45.
 - (A) $\sqrt{5}$
- (B) $\sqrt{5 \times 50t}$ (C) $\sqrt{50 + \frac{\pi}{3}}$ (D) $\sqrt{12.5}$

46. Determine the value indicated by a DC voltmeter for the waveform given below

- (A) 0V
- (B) 2.5V
- (C) 10V
- (D) 5V

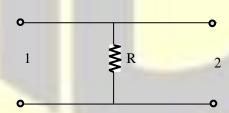
- Evaluate the function $\int_{0}^{\infty} t^{2} \delta(t-3) dt$ 47.
- (C) $t^2(t-3)$ (D) 9
- A husband and wife appear in an interview for two vacancies for same post. The probability of husband 48. getting selected is $\frac{1}{5}$ while the probability of wife getting selected is $\frac{1}{7}$. Then the probability that anyone of them getting selected is
 - (A) $\frac{11}{35}$
- (B) $\frac{12}{35}$
- (C) $\frac{1}{35}$ (D) $\frac{34}{35}$
- 49. The rms value of Complex waveforms are measured using
 - (A) Transistor Voltmeter
 - (B) Differential Voltmeter
 - (C) High bandwidth Voltmeter
 - (D) Voltmeter containing heat sensing elements such as thermocouples

50. Find the fundamental period T of the following continuous signal


$$x(t) = 20\cos(10\pi t) + \frac{\pi}{6}$$

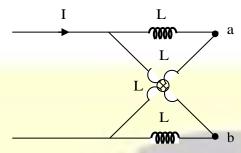
(A) $\frac{\pi}{6}$ sec

(B) $\frac{20\times10\pi}{T}$ sec

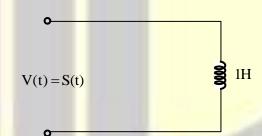

(C) 5sec

- (D) $\frac{1}{5}$ sec
- 51. In the circuit shown the switch closes at t=0. The voltage across $4\mu F$ capacitor in ideal condition changes to

(A) 0

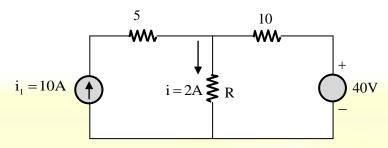

- (B) 16V
- (C) 15V
- (D) 24V
- **52.** The 2-port network of Figure A has open circuit impedance parameter given by matrix.

- $(A) \begin{bmatrix} R & R \\ R & R \end{bmatrix}$
- (B) $\begin{bmatrix} R & 0 \\ 0 & R \end{bmatrix}$
- (C) $\begin{bmatrix} \infty & R \\ R & \infty \end{bmatrix}$
- (D) $\begin{bmatrix} R & \infty \\ \infty & R \end{bmatrix}$

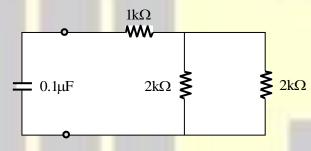

53. The network shown in the figure draw a current I. If the ends a and b are shorted, the current drawn would be

- (A) 6I
- (B) 4I
- (C) 2I
- (D) I
- As compared to a full-wave rectifier using two diodes, the four diode bridge rectifier has the dominant advantage of
 - (A) higher current carrying capacity
- (B) lower peak inverse voltage

(C) lower ripple factor


- (D) higher efficiency
- 55. When a unit impulse voltage is applied to an inductor of 1H, the energy supplied by the source is

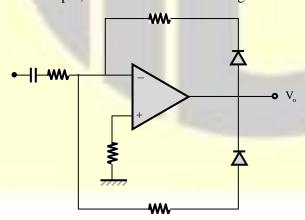
- (A) ∞
- (B) 1J
- (C) $\frac{1}{2}$ J
- (D) 0


56. The value of R for i = 2A is

(A) 5

- (B) 10
- (C) 40
- (D) 60

57. The time constant for the circuit shown below is



(A) 0.2 microsecond

(B) 0.8 millisecond

(C) 0.4 millisecond

- (D) 0.2 millisecond
- 58. For a sinusoidal input, the circuit shown in the figure will act as a

(A) Pulse generator

(B) Ramp generator

(C) Full-wave rectifier

(D) Voltage double

- **59.** A second-order band-pass active filter can be obtained by cascading a low pass second order section having cut off frequency f_{OH} with a high pass second order section having cut-off frequency f_{OL} provided
 - (A) $f_{OH} > f_{OL}$

- (B) $f_{OH} < f_{OL}$ (C) $f_{OH} = f_{OL}$ (D) $f_{OH} \le \frac{1}{2} f_{OL}$
- **60.** If $\alpha = 0.995$, $I_E = 10$ mA and $I_{CO} = 0.5 \mu$ A, then I_{CEO} will be
 - (A) $100 \, \mu A$
- (B) 10.1 mA
- (C) 25µA
- (D) 10.5mA
- 61. A programme having features such as data abstraction, encapsulation and data hiding, polymorphism inheritance is called
 - (A) Structured programme

(B) Object oriented programme

(C) Open source programme

- (D) Real time programme
- The library function exit () causes as exit from **62.**
 - (A) the loop in which it occurs
- (B) the block is which it occurs
- (C) the functions in which it occurs
- (D) the programme in which it occurs
- **63.** The "go to statement" causes control to go to
 - (A) An operator
- (B) A label
- (C) A variable (D) A function

- The differential equation satisfying $y = Ae^{3x} + Be^{2x}$ is 64.
 - (A) $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} 6y = 0$

(B) $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$

(C) $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$

(D) $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 6y = 0$

65.	For an energy signal g(t) and its time-shifted version f(t-T), the
	(A) amplitude spectra are identical and their phase spectra are also identical
	(B) amplitude spectra are identical but their phase spectra are different
	(C) amplitude spectra are different but their phase spectra are identical
	(D) amplitude spectra and their phase spectra are different
66.	As the modulation index of an FM signal with sinusoidal modulation is increased from zero to two, the power in the carrier component will
	(A) Decrease continuously
	(B) Increase continuously
	(C) First increase, becomes zero and then decrease
	(D) First decrease, become zero and then increase
67.	For a short wave radio link between two stations via the ionosphere, the ratio of the maximum usable frequency to the critical frequency
	(A) is always less than 1
	(B) May be ≤ 1 depending on the distance between the two stations
	(C) is always greater than 1
	(D) Does not depend on the distance between the two stations
68.	A carrier voltage is simultaneously modulated by two sine waves causing modulation indices of 0.4 and 0.3. The overall modulation index is
	(A) 0.35
	(B) 0.7
	(C) 0.5
	(D) Cannot be calculated unless the phase relations are known
69.	If each stage has a gain of 10 dB, and noise figure of 10 dB, then the overall noise figure of a two-stage cascade amplifier will be
	(A) 10 (B) 1.09 (C) 1.0 (D) 10.9
	© All rights reserved by Thinkcell Learning Solutions Pyt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

16

70.	De-emphasis circuit is used					
	(A) To attenuate high frequencies					
	(B) To attenuate low frequencies					
	(C) To attenuate midband frequencies					
	(D) None of the above					
71.	An amplifier has an input power of 2 microwatts. The power gain of the amplifier is 60 dB. The output power will be					
	(A) 6 microwatts (B) 120 microwatts (C) 2 milliwatts (D) 2 watts					
72.	A transmission line has a VSWR of 2, the reflection coefficient is					
	(A) $\stackrel{1}{}$ (B) 0 (C) $\stackrel{1}{}$ (D) $\stackrel{1}{}$					
	(A) $\frac{1}{3}$ (B) 0 (C) $\frac{1}{4}$ (D) $\frac{1}{2}$					
73.	Which vacuum based device is widely used as a power amplifier in satellite communication systems?					
	(A) Amplitron (B) Klystron (C) Magnetron (D) TWT					
74.	Maxwell's equations establishes the relationship between $\bar{E}, \bar{D}, \bar{H}$ and \bar{B} at any point in a continuous					
	medium. When we move from one medium to another, then which of the following statement is correct?					
	(A) At the boundary separating the two media, the tangential components of \bar{E} and \bar{H} are continues					
	(B) At the boundary separating the two media the tangential components of only \overline{E} are continuous					
	(C) If there are surface charges present on the boundary then normal component of \bar{D} is continuous					
	(D) If there are not surface charges then normal component of \bar{D} is discontinuous					
75.	The input impedance of short circuited lossless line of the length less than a quarter wavelength is					
	(A) Purely resistive (B) Purely inductive					
	(C) Purely capacitive (D) Complex					

| EC-ISRO-2008 |

www.gateforumonline.com

- 76. The intrinsic impedance of free space is 377Ω . The approximate intrinsic impedance of a medium with relative permittivity and permeability of 4 and 1 respectively will be
 - (A) 75Ω
- (B) 94Ω
- (C) 188Ω
- (D) 377Ω
- 77. A 8 kHz communication channel has an SNR of 30 dB. If the channel bandwidth is doubled, keeping the signal power constant, the SNR for the modified channel will be
 - (A) 27 dB
- (B) 30 dB
- (C) 33 dB
- (D) 60 dB
- Two orthogonal signals $s_1(t)$ and $s_2(t)$ satisfy the following relation 78.
 - (A) $\int_0^T s_1(t) s_2(t) dt = 0$

(B) $\int_0^T s_1(t)s_2(t)dt = 1$

(C) $\int_0^T s_1(t)s_2(t)dt = \infty$

- (B) $\int_0^T s_1(t)s_2(t)dt = 1$ (D) $\int_0^T s_1(t)s_2(t)dt = \pi$
- 79. In which modulation system, when modulation frequency is doubled, the modulation index also becomes double.
 - (A) AM
- (B) FM
- (C) PM
- (D) None of these
- The matrix $A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & x \end{bmatrix}$ is its own adjoint. The value of x will be 80.
 - (A) 5

(B) 3

- (C) -3
- (D) -5