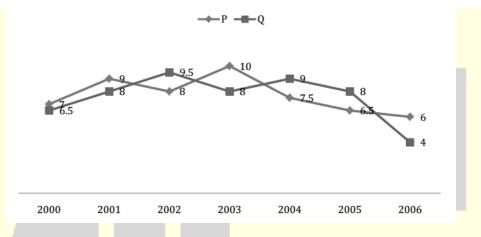
GATEFORUM Engineering Success
Engineering Success

GENERAL APTITUDE

Q. No.1-5 Carry One Mark Each


1.	If I were you I	that laptop. It's m	uch too expensive	
			(C) wouldn't buy	y (D) would buy
Answ	er: (C)	(D) shun touy	(c) would tou	(D) would buy
2.	He turned a deaf ear	to my request		_
۷.			.0	
		lined phrasal verb mear		
	(A) ignored	(B) appreciated	(C) twisted	(D) returned
Answ	er: (A)			
3.		-		ow to complete the following
	sentence .	is a	will, is a way.	
	(A) Wear, there, the	eir	(B) Were, their,	there
	(C) Where, there, there	nere	(D) Where, their	, their
A <mark>nsw</mark>	er: (C)			
4.	(x % of y) + (y % of	x) is equivalent to .		
	(A) 2 % of <i>xy</i>		(B) 2 % of (<i>xy</i> /1	00)
	(C) <i>xy</i> % of 100		(D) 100 % of <i>xy</i>	
Answ (er: (A)			
5.	The sum of the digi	ts of a two digit numbe	r is 12. If the new numl	per formed by reversing the digits is
	greater than the orig	inal number by 54, find	the original number.	
	(A) 39	(B) 57	(C) 66	(D) 93
Answ (er: (A)			
	© All rights reserved by Thinkce	I Learning Solutions Pvt. Ltd. No part c	f this booklet may be reproduced or utiliz	zed in any form without the written permission.

| PI-GATE-2016 |

Q. No. 6 - 10 Carry Two Marks Each

6. Two finance companies, P and Q, declared fixed annual rates of interest on the amounts invested with them. The rates of interest offered by these companies may differ from year to year. Year-wise annual rates of interest offered by these companies are shown by the line graph provided below

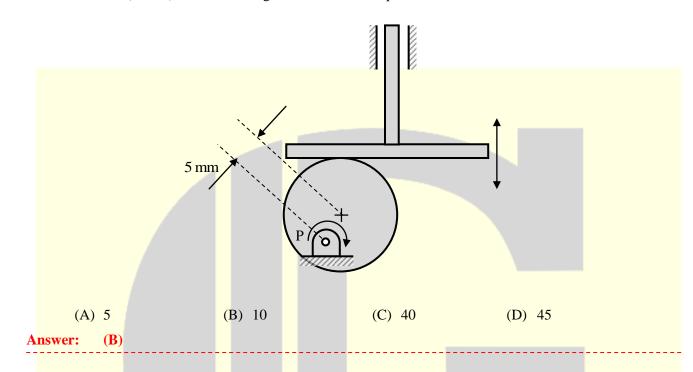
If the amounts invested in the companies, P and Q, in 2006 are in the ratio 8:9, then the amounts received after one year as interests from companies P and Q would be in the ratio:

(A)	2:3	(B) 3:4		(C)	6:7	(E))	4:3
Answer:	(D)			 					

7. Today, we consider Ashoka as a great ruler because of the copious evidence he left behind in the form of stone carved edicts. Historians tend to correlate greatness of a king at his time with the availability of evidence today.

Which of the following can be logically inferred from the above sentences?

- (A) Emperors who do not leave significant sculpted evidence are completely forgotten.
- (B) Ashoka produced stone carved edicts to ensure that later historians will respect him.
- (C) Statues of kings are a reminder of their greatness.
- (D) A king's greatness, as we know him today, is interpreted by historians
- Answer: (D)


G	ngineering Success	P	I-GATE-2016	<u>www.gateforumonline.c</u>
5.	Fact 1: Humans are	e mammals.		
	Fact 2: Some huma	ns are engineers.		
	Fact 3: Engineers b	build houses.		
	If the above stateme	ents are facts, which of the	he following can be logica	lly inferred?
	I. All mammals	build houses		
	II. Engineers are	e mammals		
	III. Some human	s are not engineers		
	(A) II only	(B) III only	(C) I, II and III	(D) I only
nsw	· · · · ·			
	A square pyramid h surface area of the j	-	nd the slant height is half o	of the perimeter. What is the late
	(A) x^2	(B) $0.75x^2$	(C) $0.50x^2$	(D) 0.25 x^2
	at the same time. A	After how many hours is	nours to read a book. Both	started reading copies of the bo be read by Ananth, twice that to constant pace.
0.	Ananth takes 6 hou at the same time. A read by Bharath? A (A) 1	After how many hours is	nours to read a book. Both the number of pages to b	a started reading copies of the bo be read by Ananth, twice that to
0.	Ananth takes 6 hou at the same time. A read by Bharath? A	fter how many hours is ssume Ananth and Bhara	nours to read a book. Both the number of pages to b ath read all the pages with	a started reading copies of the bo be read by Ananth, twice that to constant pace.
).	Ananth takes 6 hou at the same time. A read by Bharath? A (A) 1	after how many hours is ssume Ananth and Bhara (B) 2 PRODUCTI	nours to read a book. Both the number of pages to b ath read all the pages with	a started reading copies of the bo be read by Ananth, twice that to constant pace.
). nsw	Ananth takes 6 hou at the same time. A read by Bharath? A (A) 1 ver: (C)	after how many hours is ssume Ananth and Bhara (B) 2 PRODUCTI	nours to read a book. Both the number of pages to b ath read all the pages with (C) 3 ON ENGINEERING	a started reading copies of the bo be read by Ananth, twice that to constant pace.
). nsw	Ananth takes 6 hou at the same time. A read by Bharath? A (A) 1 ver: (C) The eigen values of (A) i and –i	after how many hours is ssume Ananth and Bhara (B) 2 <u>PRODUCTI</u> <u>Q.No.1-25 C</u>	nours to read a book. Both the number of pages to b ath read all the pages with (C) 3 ON ENGINEERING	a started reading copies of the bo be read by Ananth, twice that to constant pace.
). nsw	Ananth takes 6 hou at the same time. A read by Bharath? A (A) 1 ver: (C) The eigen values of (A) i and –i	After how many hours is ssume Ananth and Bhar(B) 2PRODUCTI Q.No.1-25 CThe matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ are	nours to read a book. Both the number of pages to b ath read all the pages with (C) 3 ON ENGINEERING arry One Mark Each	a started reading copies of the bo be read by Ananth, twice that to constant pace. (D) 4
nsw	Ananth takes 6 hou at the same time. A read by Bharath? A (A) 1 ver: (C) The eigen values of (A) i and –i ver: (C)	after how many hours is ssume Ananth and Bhara (B) 2 PRODUCTI Q.No.1-25 C The matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ are (B) 1 and -1	nours to read a book. Both the number of pages to b ath read all the pages with (C) 3 ON ENGINEERING arry One Mark Each	(D) 0 and -1
). 	Ananth takes 6 hou at the same time. A read by Bharath? A (A) 1 ver: (C) The eigen values of (A) i and –i ver: (C)	after how many hours is ssume Ananth and Bhara (B) 2 PRODUCTI Q.No.1-25 C The matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ are (B) 1 and -1	oours to read a book. Both the number of pages to b ath read all the pages with (C) 3 ON ENGINEERING arry One Mark Each (C) 0 and 1	(D) 0 and -1
0.	Ananth takes 6 hou at the same time. A read by Bharath? A (A) 1 ver: (C) The eigen values of (A) i and –i ver: (C) The number of solu (A) zero	tions of the simultaneou	oours to read a book. Both the number of pages to b ath read all the pages with (C) 3 ON ENGINEERING arry One Mark Each (C) 0 and 1 s algebraic equations y = 3	 (D) 0 and -1 (B) 4 = 3x + 5 is

G	ATEFORUM ngineering Success	PI-0	GATE-2016	www.gateforumonline.
•	At $x = 0$, the function	$f(x) = \left \sin \frac{2\pi x}{L} \right \left(-\infty < x \right)$	$x < \infty, L > 0$ is	
	(A) continuous and c	lifferentiable	(B) not continue	ous and not differentiable.
	(C) not continuous b	ut differentiable	(D) continuous	but not differentiable
Answ	er: (D)			
l.	For the two functions	$f(x, y) = x^3 - 3xy^2$ and	$g(x,y)=3x^2y-y^3$	
	Which one of the foll	owing options is correct?		
	(A) $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial x}$	(B) $\frac{\partial f}{\partial x} = -\frac{\partial g}{\partial y}$	(C) $\frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x}$	(D) $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$
Answ	er: (C)			
5.	The function $f(z) = -\frac{1}{2}$	$\frac{x^2 + 1}{z^2 + 4}$ is singular at		
	(A) $z = \pm 2$	(B) $z = \pm 1$	(C) $z = \pm i$	(D) $z = \pm 2i$
Answ	er: (D)			
5.	A fair coin is tossed N	N times. The probability t	hat head does not tur	n up in any of the tosses is
	(A) $\left(\frac{1}{2}\right)^{N-1}$	(B) $1 - \left(\frac{1}{2}\right)^{N-1}$	(C) $\left(\frac{1}{2}\right)^{N}$	(D) $1 - \left(\frac{1}{2}\right)^{N}$
Answ	er: (C)			
7.		iable X has the following	g probability density	function
	$f_{x}(x) = \frac{1}{\sqrt{8\pi}} e^{-\left\{\frac{(x-1)^{2}}{8}\right\}}$	$,-\infty < x < \infty$		
	Then $f_1^{\infty} f_x(x) dx =$			
	(A) 0	(B) $\frac{1}{2}$	(C) $1 - \frac{1}{e}$	(D) 1
	er: (B)			

U	ngineering Success		PI-GATE-2016		www.gateforumonline.co						
3.	The elasti	c modulus of a rigid perfectly	plastic solid is								
	(A) 0	(B) 1	(C) 100	(D) i	nfinity						
Insw	er: (D)										
•	Consider	the following statements:									
	(P) Hard	(P) Hardness is the resistance of a material to indentation.(O) Electic modulus is a measure of dustility.									
	(Q) Elastic modulus is a measure of ductility.										
	(R) Deflection depends on stiffness.										
	(S) The total area under the stress-strain curve is a measure of resilience.										
	-	e above statements, the correct									
	(A) P and		(B) Q and S								
	(C) P and	l R only	(D) R and S	only							
nsw	er: (C)										
	The correct (A)	ct Free Body Diagram of the	beam is (B)								
					Î						
	(C)		(D)								
Answ	er: (B)										

| PI-GATE-2016 |

11. Consider a circular cam with a flat face follower as shown in the figure below. The cam is rotated in the plane of the paper about point P lying 5 mm away from its center. The radius of the cam is 20 mm. The distance (in mm) between the highest and the lowest positions of the flat face follower is

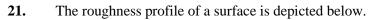
12. A vertical cylindrical tank of 1 m diameter is filled with water up to a height of 5 m from its bottom. Top surface of water is exposed to atmosphere. A hole of 5 mm² area forms at the bottom of the tank. Considering the coefficient of discharge of the hole to be unity and the acceleration due to gravity to be 10 m/s^2 , the rate of leakage of water (in litre/min) through the hole from the tank to the atmosphere, under the given conditions, is ______.

Answer: (3.0 to 3.0)

GATEFORUM

PI-GATE-2016 www.gateforumonline.com **13.** The figure below shows an air standard Diesel cycle in p-V diagram. The cut-off ratio is given by: 13 = 2 = 3

	p 4
	(A) $\frac{V_3}{V_1}$ (B) $\frac{V_2}{V_1}$ (C) $\frac{V_3}{V_2}$ (D) $\frac{V_1}{V_3}$
<u>A</u>	v ₁ v ₂ v ₃ ver: (C)
1	The ratio of press force required to punch a square hole of 30 mm side in a 1 mm thick aluminium sheet to that needed to punch a square hole of 60 mm side in a 2 mm thick aluminium sheet is
A	ver: (0.4 to 0.26)
1	Which one of the following is a natural polymer?
	(A) Cellulose (B) Nylon (C) Polyester (D) Polyvinyl chloride
A	ver: (A)
1	In powder metallurgy, sintering of the component
	(A) increases density and reduces ductility
	(B) increases porosity and reduces density
	(C) increases density and reduces porosity
	(D) increases porosity and reduces brittleness
A	ver: (C)


17. A single point right handed turning tool is used for straight turning. The feed is 0.25 mm/rev and the uncut chip thickness is found to be 0.25 mm. The inclination angle of the main cutting edge is 10°. The back rake angle (in degrees) is _____.

Answer: (10.0 to 10.0)

	CATEFORUM		PI-GATE-2016	<u>wwn</u>	.gateforumonline.co
8.	Consider the following	ig statements.			
	(P) Electrolyte is use	ed in Electro-cher	nical machining.		
	(Q) Electrolyte is use	ed in Electrical di	scharge machining.		
	(R) Abrasive-slurry	is used in Ultraso	nic machining.		
	(S) Abrasive-slurry	is used in Abrasiv	e jet machining.		
	Among the above star	tements, the corre	ct ones are		
	(A) P and R only		(B) Q and	d S only	
	(C) Q, R and S only		(D) P and	l Q only	
nsw	ver: (A)				
9.	Consider the following	ig statements.			
	(P) Computer aided	process planning	(CAPP) takes input fr	om material requirement	plan (MRP).
	(Q) Production flow	analysis helps in	work cell formation.		
	(R) Group technolog	y takes input fror;	n choice of machining	or cutting parameters.	
	Among the above star	tements, the corre	ct one(s) is (are)		
	(A) P only	(B) Q and R	only (C) P and	R only (D) Q only	
nsw	ver: (D)				
0.	shaft designated as 1 fundamental deviation	100h8 are 100.00 n (in µm) for the	0 mm and 100.055 i same is	and 100.014 mm. Simila nm. If a shaft is designa	•
	(1) 00	(B) zero	(C) 22	(D) 24	
	(A) –22				
nsw					
Insw					
nsw					
Insw					
nsw					
ANSW					
Answ					
Answ					
LNSW					

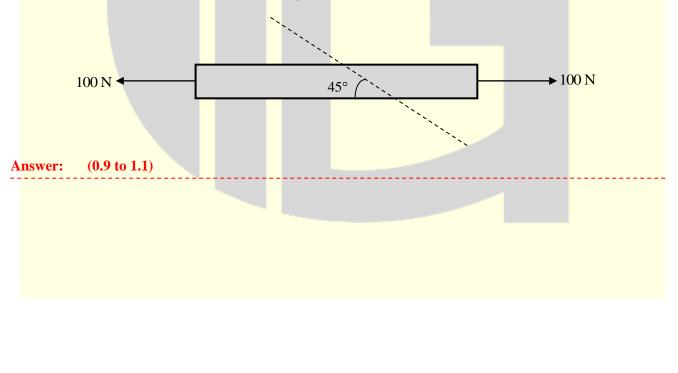
| PI-GATE-2016 | www.gateforumonline.com

	profile height	2µm 2µm		5mm_		
	The surface roughr	ness parameter R _a	(in µm) is			
A <mark>nswe</mark>	er: (2.0)					
2 <mark>2.</mark>	The facility layout	technique that use	es relationship	REL) chart is		
	(A) CRAFT		(B) Travel chart.		
	(C) Partial Set Co	vering	(D) ALDEP		
Answe	er: (D)					
		_				
23.						ean and the standard
	deviation of X are	μ and 0, respect			A 18	
	(A) nσ	(B) σ	(C) $\frac{\sigma}{n}$	(D) $\frac{\sigma}{\sqrt{n}}$	
Answe	er: (D)				VII.	

G	AILFUKUM ngineering Success	I	PI-GATE-2016	www.gateforumonline.com
24.			he normal time, respectiv the following relationship	vely, to complete a job. Allowance = os is correct?
	(A) $ST = \frac{NT}{(1-LL)}$		(B) $ST = NT(1 +$	- LL)
	(C) $ST = \frac{NT}{(1+LL)}$		(D) $ST = NT(1 - 1)$	-LL)
Answ	ver: (A)			
25.	• •	- ·	n is 20 units per hour. T e inventory (in units) in t	The average flow time is 30 minute he system is
	(A) 1.5	(B) 9	(C) 10	(D) 11.33
Answ	ver: (C)			
		<u>Q.No.26-55 C</u>	Carry Two Marks Each	
2 <mark>6.</mark>	The range of values of k	for which the func	tion	
	$f(x) = (k^2 - 4)x^2 + 6x^2$	$3 + 8x^4$		
	has a local maxima at p	bint $x = 0$ is		
	(A) $k < -2$ or $k > 2$		(B) $k \leq -2 \text{ or } k \geq$	≥2
	(C) $-2 < k < 2$		(D) $-2 \le k \le 2$	
Answ	ver: (C)			
27.	$\lim_{x \to 0} \left(\frac{e^{5x} - 1}{x} \right)^2 \text{ is equal t}$	0		
Answ	ver: (25.0 to 25.0)			
28.	To solve the equation $2\sin x = x$			
	by Newton-Raphson moves value of x (in radian) ob	-		= 2.0. Consider x in radian only. The
	(A) – 8.101	(B) 1.901	(C) 2.099	(D) 12.101
Answ	ver: (B)			
	© All rights reserved by Thinksoll Lear	ning Solutions Put Ltd. No part	of this booklet may be reproduced or utili	zed in any form without the written permission.

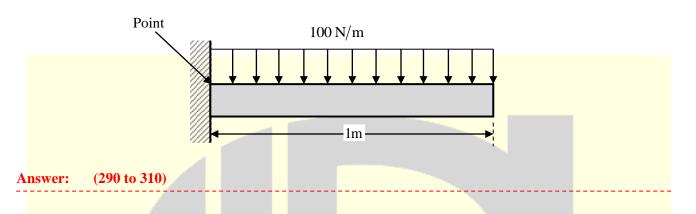
| PI-GATE-2016 |

29. In linear gas tungsten arc welding of two plates of the same material, the peak temperature T (in K) is given as $T = \frac{C_1 q}{\alpha}$, where q is the heat input per unit length (in J/m) of weld, α is the thermaldiffusivity (in m²/s) of the plate materials and C₁ is a constant independent of process parameters and material types. Two welding cases are given below. Case I: V = 15V, I = 200A, v = 5 mm/s, k = 150 W/mK, $\rho = 3000 \text{ kg/m}^3$, C = 900 J/kg-K


Case II: V = 15V, I = 300A, v = 10 mm/s, k = 50 W/mK, $\rho = 8000 \text{ kg/m}^3$, C = 450 J/kg-K

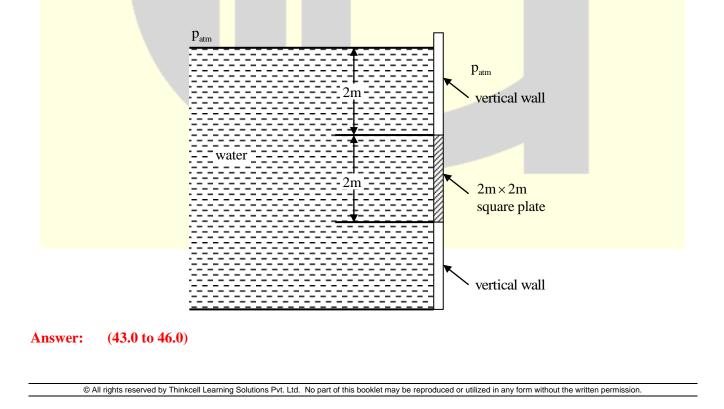
where, V is welding voltage, I is welding current, v is welding speed, and k, ρ and C refer to the thermal conductivity, the density and the specific heat of the plate materials, respectively. Consider that electrical energy is completely converted to thermal energy. All other conditions remain same.

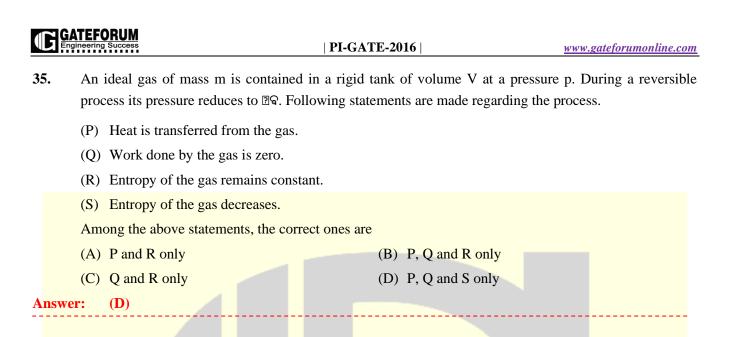
The ratio of the peak temperature in Case I to that in Case II is


	(A)	$\frac{1}{3}$	(B) $\frac{1}{2}$	(C) 1	(D) 2	
A	nswer:	(A)	 	 		

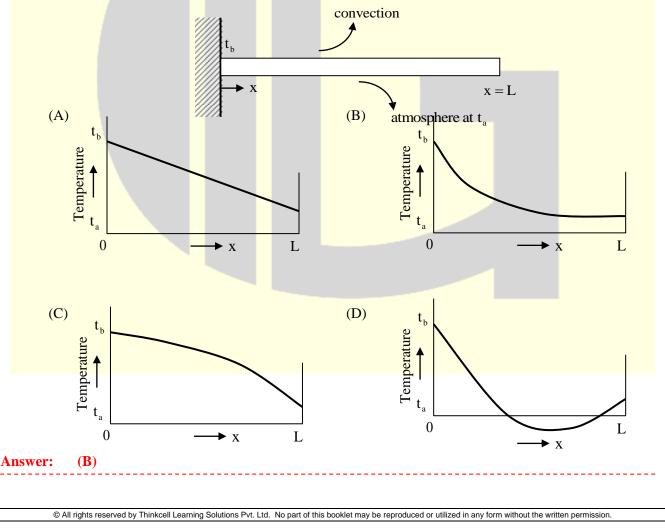
30. A bar of rectangular cross-sectional area of 50 mm² is pulled from both the sides by equal forces of 100N as shown in the figure below. The shear stress (in MPa) along the plane making an angle 45° with the axis, shown as a dashed line in the figure, is ______.

| PI-GATE-2016 |


31. A 1 m \times 10 mm \times 10 mm cantilever beam is subjected to a uniformly distributed load per unit length of 100 N/m as shown in the figure below. The normal stress (in MPa) due to bending at point P is



32. A thin-walled cylindrical pressure vessel of internal diameter 2 m is designed to withstand an internal pressure of 500 kPa (gauge). If the allowable normal stress at any point within the cylindrical portion of the vessel is 100 MPa, then the minimum thickness of the plate of the vessel (in mm) is_____.


Answer: (4.5 to 5.5)

33. A 2 m × 2 m square opening in a vertical wall is covered with a metallic plate of the same dimensions as shown in the figure below. Consider the acceleration due to gravity to be 10.0 m/s². The force (in kN) exerted by water on the plate is _____.

36. A long slender metallic rod of length L is used as a fin. As shown in the figure below, the left end of the fin is kept at a constant temperature t_b . The fin loses heat by convection to the atmosphere which is at a temperature t_a ($t_a < t_b$). Four options of temperature profiles are shown. Identify the correct option.

| PI-GATE-2016 |

- **37.** In a fully developed turbulent flow through a circular pipe, a head loss of h_1 is observed. The diameter of the pipe is increased by 10% for the same flow rate and a head loss of h_2 is noted. Assume friction factor for both the cases of pipe flow is the same. The ratio of $\frac{h_2}{h_1}$ is closest to (A) 0.34 (B) 0.62 (C) 0.87 (D) 1.00 **Answer: (B)**
- **38.** Two cast iron blocks P and Q, each of 500 mm length, have the same cross-sectional area. Block P has rectangular cross-section of 100 mm \times 200 mm. Block Q is of square cross-section. Both P and Q were cast under the same conditions with all their surfaces enclosed within the mould. The solidification time of a casting is proportional to the square of the ratio of its volume to its surface area. The ratio of solidification time of the block P to that of the block Q is _____.

Answer: (0.88 to 0.92)

GATEFORUM

39. A 300 mm long copper wire of uniform cross-section is pulled in tension so that a maximum tensile stress of 270 MPa is developed within the wire. The entire deformation of the wire remains linearly elastic. The elastic modulus of copper is 100 GPa. The resultant elongation (in mm) is _____.

Answer: (0.80 to 0.82)

40. In a single-pass rolling operation, a 200 mm wide metallic strip is rolled from a thickness 10 mm to a thickness 6 mm. The roll radius is 100 mm and it rotates at 200 rpm. The roll-strip contact length is a function of roll radius and, initial and final thickness of the strip. If the average flow stress in plane strain of the strip material in the roll gap is 500 MPa, the roll separating force (in kN) is _____.

Answer: (1990 to 2010)

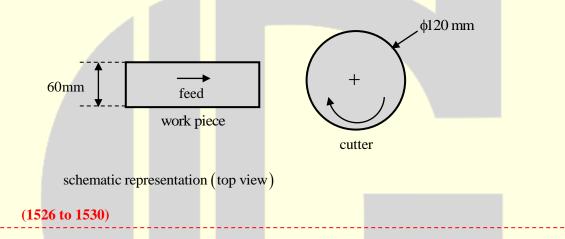
41. Two solid cylinders of equal diameter have different heights. They are compressed plastically by a pair of rigid dies to create the same percentage reduction in their respective heights. Consider that the dieworkpiece interface friction is negligible. The ratio of the final diameter of the shorter cylinder to that of the longer cylinder is ______.

Answer: (1.0 to 1.0)

42. Two flat steel sheets, each of 2.5 mm thickness, are being resistance spot welded using a current of 6000A and weld time of 0.2s. The contact resistance at the interface between the two sheets is 200 $\mu\Omega$ and the specific energy to melt steel is 10×10^9 J/m³. A spherical melt pool of diameter 4mm is formed at the interface due to the current flow. Consider that electrical energy is completely converted to thermal energy. The ratio of the heat used for melting to the total resistive heat generated is _____.

Answer: (0.20 to 0.25)

C Engineering Success


| PI-GATE-2016 |

www.gateforumonline.com

43. A cylindrical bar of 100 mm diameter is orthogonally straight turned with cutting velocity, feed and depth of cut of 120 m/min, 0.25 mm/rev and 4 mm, respectively. The specific cutting energy of the work material is 1×109 J/m³. Neglect the contribution of feed force towards cutting power. The main or tangential cutting force (in N) is _____

Answer: (990 to 1010)

44. A 60 mm wide block of low carbon steel is face milled at a cutting speed of 120 m/min, feed of 0.1 mm/tooth and axial depth of cut of 4 mm. A schematic representation of the face milling process is shown below. The diameter of the cutter is 120 mm and it has 12 cutting edges. The material removal rate (in mm³/s) is _____.

45. In abrasive water jet machining, the velocity of water at the exit of the orifice, before mixing with abrasives, is 800 m/s. The mass flow rate of water is 3.4 kg/min. The abrasives are added to the water jet at a rate of 0.6 kg/min with negligible velocity. Assume that at the end of the focusing tube, abrasive particles and water come out with equal velocity. Consider that there is no air in the abrasive water jet. Assuming conservation of momentum, the velocity (in m/s) of the abrasive water jet at the end of the focusing tube is _____.

Answer: (678 to 682)

Answer:

46. A single axis CNC table is driven by a DC servo motor that is directly coupled to a lead screw of 5 mm pitch. The circular encoder attached to the lead screw generates 1000 voltage pulses per revolution of the lead screw. The table moves at a constant speed of 6 m/min. The corresponding frequency (in kHz) of the voltage pulses generated by the circular encoder is_____.

Answer: (19.5 to 20.5)

PI-GATE-2016

47. A helical gear with involute tooth profile has been machined with a disc-type form gear milling cutter. The helical gear has 30 teeth and a helix angle of 30°. The module of the gear milling cutter is 2. The pitch circle diameter (in mm) of the helical gear is______.

Answer: (69.2 to 69.4)

48. A quality control engineer has collected 5 samples, each of size 30. The numbers of defective items in the samples are given in the table below.

Sample number	Ι	Π	III	IV	V
Number of	3	2	4	1	5
defective items					

The upper three-sigma (3σ) control limit for the proportion of defective items in any sample is

Answer: (0.25 to 0.27)

49. A job consists of two work elements, P and Q. Completion time (in minutes) of each work element was measured. A pilot study involved collecting a sample of 40 observations. The results of this pilot study are summarized in the table below.

Work element	Mean completion time (in minutes)	Standard deviation (in minutes)
Р	1	0.50
Q	1	0.05

For the main study, the minimum sample size for the sample mean time of any work element to be within 0.1 minutes of its true mean time with 95% confidence (corresponding standard normal value, $z_{0.025} = 1.96$) is ______.

Answer: (96 to 97)

50. Consider a system with 10 identical components connected in series. The time to failure of each component is exponentially distributed with a failure rate of 0.10 per 500 days. The reliability of the system after 400 days of operation is _____.

Answer: (0.40 to 0.46)

	ineering Success				[]	PI-GA	ГЕ-2016			<u>wwn</u>	<u>, gateforum</u>	online.co
1.	For a process, the quality loss coefficient is 5. The target value on the dimension to be attained throug the process is 50 mm. If the maximum loss permissible (in monetary terms) is INR 80, the maximum allowable deviation (in mm) from the target is											
	(A) $\frac{1}{4}$		(B)	$\sqrt{\frac{1}{10}}$			(C) 4		(D)	$\sqrt{10}$		
nswei	r: (C)											
2.	Consider a min the table mentioned.											
	Direction arcs	$1 \rightarrow 2$	1→3	$2 \rightarrow 4$	4 2	→5	$3 \rightarrow 2$	3→4	3→5	4→5	4→6	5→6
	Cost (in INR)	3	9	3	2		2	4	8	7	2	2
nswei	The second s not use any j (A) 7 r: (C)	-		t path)			-	IR) of		19		
3.	Five jobs nervector $t = 0$. Their respectively.	-			•			l the jobs	are avai	lable for	processin	ig at ti
	Jobs		Ι	II	III	IV	V					
	Processing minutes)	times (in	13	4	7	14	11					
								~ 4	. D			
	The average	completio	n time	(in min	utes)	of jobs	as per th	ne Shortes	t Process	ing Time	rule is	

C Engineering Success

| PI-GATE-2016 |

54. Transportation costs (in INR/unit) from factories to respective markets are given in the table below. The market requirements and factory capacities are also given. Using the North-West Corner method, the quantity (in units) to be transported from factory R to market II is

				Requirements				
			Р	Q	R	S	(in units)	
		Ι	3	3	2	1	50	
	Mark	et II	4	2	5	9	20	
		III	1	2	1	4	30	
		Factory capacity (in units)	20	40	30	10		
A	(A) 30 (B) 20 nswer: (C)			(C) 10				

55. In a given year, a restaurant earned INR 38,500 in revenues. In that year, total expenses incurred were INR 30,000 and the depreciation amount was INR 3,200. At 40% tax rate, the net cash flow (in INR) for that year was _____.

Answer: (6380 to 6380)