U	Engineering Success	PI-GATE-2017	<u>www.gateforumonline.c</u>
		GENERAL APITTUDE	
		Q. No.1-5 Carry One Mark Each	
•	She has a sharp tongue and it	t can occasionally turn	
	(A) hurtful (B)	left (C) methodical	(D) vital
Insv	ver: (A)		
•	Some table are shelves. So	me shelves are c hairs. All chairs a	re benches. Which of the following
	(i) At least one handh is a t	ship	
	(i) At least one shalf is a h	able	
	(ii) At least one shell is a be	hle	
	(iii) All benches are chairs	DIE	
	(A) only (i) $(A) = A = A = A = A = A = A = A = A = A =$	(B) only (ii)	
	(A) only (i) (C) only (ii) and (iii)	(D) only (iv)	
nou	(\mathbf{C}) only (\mathbf{n}) and (\mathbf{n})		
2	10% of deaths on city road	s may be attributed to drunken drivir	ng. The number of degree needed
•	represent this as a slice of a p	bie chart is	ig. The humber of degree heeded
	(A) 120 (B)	144 (C) 160	(D) 212
nsv	ver: (B)		
	In the summer, water consul	mption is known to decrease overall b	y 25%. A water Board official sta
	that in the summer househo	ld consumption decreases by 20%, w	hile other consumption increases
	70%.		
	Which of the following states	ment is correct?	
	(A) The ratio of household t	to other consumption is 8/17	
	(B) The ratio of household t	to other consumption is 1/17	
	(B) The fatto of household (
	(C) The ratio of household t	to other consumption is 17/8	
	(D) The ratio of household t(C) The ratio of household t(D) There are errors in the or	o other consumption is 17/8	

G	GATEFORUM Engineering Success	PI-GATE-2017	www.gateforumonline.com
5.	I made arrangement	ts had Iinformed earlier.	
	(A) could have, been	(B) would have, bei	ng
	(C) had, have	(D) had been, been	
ins	wer: (A)		
	Q). No. 6- 10 Carry Two Marks Each	
5.	"If you are looking for a histo the reason of the cleaving of mutilation will have in the resp for though I have spent a lift intimately associated with the matters".	bry of India, or for an account of the rise the subcontinent into two mutually antag pective section, and ultimately on Asia, y fetime in the country. I lived too near actors, to get the perspective needed for	and fall of the British Raj, or fo gonistic parts and the effects this you will not find it in these pages the seat of events, and was too r the impartial recording of these
	(A) importial (B)	argumentative (C) compared	(D) hestile
	(A) impartial (B)	argumentative (C) separated	(D) nostile
	There are 3 Indians and 3 Ch choose so that every subgroup	inese in a group of 6 people. How many has at least one Indian?	v subgroups of this group can we
	(A) 56 (B)	52 (C) 48	(D) 44
ns	wer: (A)		
.	A contour line joints location contour plot of a geographical	is having the same height above the me region. Contour lines are shown at 25 m	an sea level. The following is a intervals in this plot.
	425	550 500 475	
	The path from P to Q is best do	escribed by	
	(A) Up-Down-Up-Down	(B) Down-Up-Down	n-Up
	(C) Down-Up-Down	(D) Up-Down-Up	
ne	wer: (C)		
1115			

	Engineering Success		PI-GATE-2017	www.gateforum	online.com
9.	Trucks (10m long) after each truck and cars and trucks go a hour?	and cars (5 m long) l a gap of atleast 15m alternatively, what is	go on a single lane brid a after each car. Trucks the maximum number	dge. There must be a gap of atle and cars travel at a speed of 36 of vehicles that can use the brid	east 20 n 5 km/h. I ge in ond
	(A) 1440	(B) 1200	(C) 720	(D) 600	
Ansv	ver: (A)				
10.	S, T, U, V, W, X, T third to the left of T opposite each other	Y and Z are seated a and second to the right. Who is third to the 1	round a circular table. ght of S.U'sneighbours eft of V?	T's neighbours are Y and V. Z are S and Y; and T and W are r	is seated not seated
	(A) X	(B) W	(C) U	(D) T	
Ansv	ver: (A)				
		Produc	TION ENGINEERIN	<u>NG</u>	
		<u>Q. No. 1-2</u>	5 Carry One Mark E	ach	
1	Divergence of the e	url of a twice differen	tichle continuous vost	or function is	
1.	(A) unity	(B) infinity	(C) zero	(D) a unit vector	
	(II) unity	(D) minity	(C) 2010	(D) a unit vector	
Ansv	ver: (C)				
Ansv	ver: (C)				
Ansv 2.	ver: (C) For two non-zero ve	ectors A and B, If A	$\overline{A} + \overline{B}$ is perpendicular	to $\overline{A} - \overline{B}$, then	
Ansv 2.	ver: (C) For two non-zero vo (A) the magnitude	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma	$\overline{A} + \overline{B}$ is perpendicular gnitude of \overline{B}	to $\overline{A} - \overline{B}$, then	
Ansv 2.	ver: (C) For two non-zero va (A) the magnitude (B) the magnitude	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B}	to $\overline{A} - \overline{B}$, then	
Ansv 2.	ver: (C) For two non-zero va (A) the magnitude (B) the magnitude (C) \overline{A} and \overline{B} cann	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B}	to $\overline{A} - \overline{B}$, then	
Ansv 2.	 ver: (C) For two non-zero van (A) the magnitude (B) the magnitude (C) A and B cann (D) the magnitudes 	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal s of \overline{A} and \overline{B} are equ	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B} al	to $\overline{A} - \overline{B}$, then	
Ansv 2. Ansv	 ver: (C) For two non-zero van (A) the magnitude (B) the magnitude (C) Ā and B cann (D) the magnitudes ver: (D) 	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal s of \overline{A} and \overline{B} are equ	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B} al	to $\overline{A} - \overline{B}$, then	
Ansv 2. Ansv	 ver: (C) For two non-zero van (A) the magnitude (B) the magnitude (C) A and B cann (D) the magnitudes ver: (D) 	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal s of \overline{A} and \overline{B} are equ	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B} al	to $\overline{A} - \overline{B}$, then	
Ansv 2. Ansv 3.	 ver: (C) For two non-zero van (A) the magnitude (B) the magnitude (C) Ā and B cann (D) the magnitudes ver: (D) For an orthogonal magnitudes 	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal s of \overline{A} and \overline{B} are equ natrix Q, the valid equ	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B} al uality is	to $\overline{A} - \overline{B}$, then	
Ansv 2. Ansv 3.	ver: (C) For two non-zero va (A) the magnitude (B) the magnitude (C) \overline{A} and \overline{B} cann (D) the magnitudes ver: (D) For an orthogonal m (A) $Q^{T} = Q^{-1}$	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal s of \overline{A} and \overline{B} are equ natrix Q, the valid equ (B) $Q = Q^{-1}$	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B} al uality is (C) $Q^{T} = Q$	to $\overline{A} - \overline{B}$, then (D) det(Q)=0	
Ansv 2. Ansv 3.	ver: (C) For two non-zero va (A) the magnitude (B) the magnitude (C) \overline{A} and \overline{B} cann (D) the magnitudes ver: (D) For an orthogonal m (A) $Q^{T} = Q^{-1}$ ver: (A)	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal s of \overline{A} and \overline{B} are equ natrix Q, the valid equ (B) $Q = Q^{-1}$	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B} al uality is (C) $Q^T = Q$	to $\overline{A} - \overline{B}$, then (D) det(Q)=0	
Ansv 2. Ansv 3. Ansv	ver:(C)For two non-zero value(A) the magnitude(B) the magnitude(C) \overline{A} and \overline{B} cann(D) the magnitudesver:(D)For an orthogonal m(A) $Q^T = Q^{-1}$ ver:(A)	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal s of \overline{A} and \overline{B} are equ natrix Q, the valid equ (B) $Q = Q^{-1}$	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B} al uality is (C) $Q^T = Q$	to $\overline{A} - \overline{B}$, then (D) det(Q)=0	
Ansv 2. Ansv 3. Ansv	ver: (C) For two non-zero va (A) the magnitude (B) the magnitude (C) \overline{A} and \overline{B} cann (D) the magnitudes ver: (D) For an orthogonal m (A) $Q^{T} = Q^{-1}$ ver: (A)	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal s of \overline{A} and \overline{B} are equ natrix Q, the valid equ (B) $Q = Q^{-1}$	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B} al uality is (C) $Q^T = Q$	to $\overline{A} - \overline{B}$, then (D) det(Q)=0	
Ansv 2. Ansv 3. Ansv	ver: (C) For two non-zero va (A) the magnitude (B) the magnitude (C) \overline{A} and \overline{B} cann (D) the magnitudes ver: (D) For an orthogonal m (A) $Q^{T} = Q^{-1}$ ver: (A)	ectors \overline{A} and \overline{B} , If \overline{A} of \overline{A} is twice the ma of \overline{A} is half the mag ot be orthogonal s of \overline{A} and \overline{B} are equ natrix Q, the valid equ (B) $Q = Q^{-1}$	$\overline{A} + \overline{B}$ is perpendicular agnitude of \overline{B} nitude of \overline{B} al uality is (C) $Q^T = Q$	to $\overline{A} - \overline{B}$, then (D) det(Q)=0	

	GATEFORUM	PI-GATE-2017 <u>www.gateforumonline.com</u>
4.	• The product of a complex number $z = x + i$	iy and its complex conjugate \overline{z} is
	(A) x^2 (B) y^2	(C) $x^2 - y^2$ (D) $x^2 + y^2$
A	nswer: (D)	
_		
5.	(A) line	(B) parabola
	(C) polynomial with power 3	(D) polynomial with power $1/3$
A	nswer: (B)	
6.	. For a two-dimensional state-of-stress defin	ned as $\sigma_{xx} = \sigma_{yy} = \tau_{xy} = S$, the Mohr's circle of stress has
	(A) center at (S, 0) and radius S	(B) center at (0, 0) and radius S
	(C) center at (S, 0) and radius 0	(D) center at $(S/2, 0)$ and radius 2S
A	nswer: (A)	
7.	• A specimen of steel has yield strength of with $\sigma_1 = \sigma_2 = 500$ MPa. The factor of safe	700 MPa. The specimen is subjected to a state of plane-stress fety according to the yon-Mises theory of failure is
A	$\mathbf{v}_{1} = \mathbf{v}_{1} + \mathbf{v}_{2} + \mathbf{v}_{2} + $	
8.	• The inside and outside radii of a thick-	-walled cylindrical pressure vessel are denoted by a and b,
	respectively If the vessel is subjected to a	an internal pressure P, then the magnitude of the radial stress
	σ_{π} is	
	(A) zero at $r = a$ and maximum at $r = b$	(B) maximum at $r = a$ and zero at $r = b$
A	nswer: (B)	(D) zero at bour $I = a$ and $I = b$
9.	• A metallic cylindrical casting of an exhaus	st pipe has inner radius 50 mm and wall thickness 7 mm. If the
	thermal conductivity of the material of the in K/kW is (up to three decimal	e casing is 50 W/m-K, then the thermal resistance of the casing
A	$\frac{1111}{1000} = \frac{1110}{1000} = \frac{1110}{1000} = \frac{1110}{1000} = \frac{1110}{1000} = \frac{1110}{1000} = \frac{11100}{1000} = \frac{11100}{1$	
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

10.	In Value Engineering a	pproach, th	he value of the product is
	(A) inversely proportion	onal to its f	functions and directly proportional to its cost
	(B) directly proportion	al to its fu	inctions and inversely proportional to its cost
	(C) inversely proportion	onal to its f	functions as well as its cost
	(D) directly proportion	al to its fu	unctions as well as its cost
Answe	er: (B)		
1 <mark>1.</mark>	Match the ASME proce	ess chart sy	ymbols with their correct description
	Symbols	Descr	ription
	P. ()	1.	STORAGE
	₽. ➡	2.	TRANSPORTATION
	R.	3.	OPERATION
	s.	4.	DELAY
	T. D	5.	INSPECTION
	(A) P-3, Q-4, R-1, S-5,	, T- 2	(A) P-4, Q-2, R-5, S-1, T-3
	(C) P-3, Q-2, R-5, S-1,	, T- 4	(D) P-1, Q-5, R-3, S-2, T-4
Answe	er: (C)		
1 <mark>2.</mark>	In Glass Fiber Reinforc	ed Plastic ((GFRP) composites with long fibers, the role of matrix is to
	P. support and transfe	er the stress	sess to the fibers
	Q. reduce propagation	n of cracks	3
	R. carry the entire loa	d	
	S. protect the fibers a	gainst dam	nage
	The correct statements	are	
	(A) P, Q and R	(B) Q, F	R and S (C) P, Q and S (D) P, R and S
Answe	er: (C)		
	© All rights reserved by Thinkcell Lea	rning Solutions Pv	vt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

|PI-GATE-2017|

GATEFORUM Engineering Success

www.gateforumonline.com

I LI F	ATEFORUM ngineering Success	PI-GATE-2017	<u>www.gateforumonline.co</u>
.3.	Turning, drilling, boring and milli operation(s) performed by a single p	ng are commonly used machining op oint cutting tool is (are)	erations. Among these, th
	(A) turning only	(B) drilling and milling	only
	(C) turning and boring only	(D) boring only	
Insw	rer: (C)		
. <mark>4.</mark>	In chemical machining, the etch fact	or is expressed as	
	(A) $\frac{\text{undercut}}{\text{depth of cut}}$	(B) $\frac{\text{depth of cut}}{\text{undercut}}$	
	(C) workpiece wear	(D) tool wear	
	tool wear	workpiece wear	
Insw	ver: (A)		
5.	A Shewhart \overline{X} -chart was developed	for an in-control process. Considerin	g the probability of a poi
	falling outside the 3σ control limits	as 0.0026, the value of average run leng	th for this chart is
nsw	rer: (384 to 385)		
.6.	Accuracy of a measuring instrument	is expressed as	
	(A) true value-measured value	(B) measured value – tru	e value
	(C) $1 - \frac{\text{true value} - \text{measured value}}{1 - \frac{1}{2}}$	(D) $1+\frac{\text{true value} - \text{mea}}{1+1}$	sured value
	true value	true val	ue
nsw	ver: (C)		

PI-GATE-2017

GATEFORUM

17. The operating characteristic curves of three single sampling plans X, Y and Z with same lot size and acceptance number are shown in the figure.

22. The ideal stress-strain behavior for a completely brittle material during tensile testing up to failure is described by

C	ATEFORUM ngineering Success	 	PI-GATE-2017	www.gateforumonline.com
23.	With reference steel at 1,100°C	to Iron-Carbon equilibriur is	n phase diagram, the c	rystal structure of 0.3% plain carbon
	(A) HCP	(B) BCT	(C) BCC	(D) FCC
Answ	ver: (D)			
24.	If E is the modu linear elastic and	lus of elasticity in GPa, G l isotropic material, the thr	is the shear modulus in ee terms are related as	GPa and v is the Poisson's ratio of a
	(A) $E = G(1 - 2)$	2v)	(B) $E = 2G(1 - C)$	- v)
	(C) $E = G(1 + 2)$	2v)	(D) $E = 2G (1 - 1)$	+ v)
Answ	ver: (D)			
2 <mark>5.</mark>	A machined su dimensions in th	rface with standard symb e Figure are in micrometer	ols indicating the surf	ace texture is shown in Figure. (All
			$50-50 \times 10^{3}$	
			120	
			60	
	The waviness he	eight (n micrometer) of the	surface is	
	(A) 1	(B) 50	(C) 60	(D) 120
Answ	ver: (B)			
		<u>Q.No.26-55 (</u>	Carry Two Marks Eac	<u>h</u>
2 <mark>6.</mark>	The improper in	tegral $\int_{0}^{\infty} e^{-2t} dt$ converges to)	
	(A) 0	(B) 1.0	(C) 0.5	(D) 2.0
Answ	ver: (C)			

<u>Engineering Success</u>

PI-GATE-2017

27.	The local minima of the function $f(x) = x^2 - x^4$ in the range $-0.8 \le x \le 0.8$ is located at
	(A) $x = 0$ (B) $x = \frac{1}{\sqrt{2}}$ (C) $x = -\frac{1}{\sqrt{2}}$ (D) $x = \frac{1}{2}$
Ans	wer: (A)
28.	Runge-Kutta fourth order method is used to solve the differential equation $\frac{dy}{dx} = y - x$. If the initial vale $y(0) = 2$ and step-size is 0.1, then the value of $y(0.1)$ is (up to three decimal places).
Ans	wer: (2.8 to 2.3)
29.	Two machines are defective in a lot of 10. A combination of four machines is to be picked at a time from the lot. The maximum number of combinations that can be obtained without any defective machine is

- Answer: (70)
- **30.** The simply-supported beam shown in the Figure is loaded symmetrically using two equal point loads P. The radius of curvature of the deflection-curve is 15m for the portion of the beam that is subjected to pure bending. The vertical deflection (in mm) at point M, equidistant from both the supports, is ______ (up to two decimal places).

31. A solid circular shaft is subjected to a bending moment M and torque T simultaneously. Neglecting the effects of stress concentration, the equivalent bending moment is expressed as

(A) $\frac{1}{2}\left(M+\sqrt{M^2+T^2}\right)$	(B) $\left(\frac{M}{2} + \sqrt{M^2 + T^2}\right)$
(C) $\frac{1}{2} \left(M + \sqrt{M^2 + 4T^2} \right)$	(D) $\left(\frac{M}{2} + \sqrt{M^2 + 4T^2}\right)$

Answer: (A)

32. A pair of spur gears with 20° full-depth involute teeth is used to transmit 3.5 kW of power. The pinion rotates at 700 rpm and has pitch circle diameter of 100 mm. Assuming a single pair of teeth in contact, the total force acting on a gear tooth (in kN) is

	(A)	0.347	(B) 0.954	(C) 1.016	(D) 1.302	
A	nswer:	(C)				
Ξ.			 			

33. A manometer is used for the pressure measurement in a closed tank. The three fluids f1, f2 and f3 have specific weights γ , 2γ and 0.5 γ respectively. The schematic arrangement with manometric readings and other dimensions are shown in the Figure. In order to ensure zero gauge pressure in the tank at the midheight level (h/2), the height of tank h (in m) is ______.

GATEFORUM **PI-GATE-2017** www.gateforumonline.com 34. A pipeline with variable cross-section contains water with specific weight 10^4 N/m^3 . The flow conditions at two points 1 and 2 on the axis of the pipe are: $V_1 = 10 \, \text{m/s}$ $P_1 = 3 \text{ bar},$ $P_2 = 1 bar$, $V_2 = 20 \, \text{m/s}$ Consider frictional losses to be negligible. For no-flow condition between points 1 and 2 (as shown in Figure), if the height z_1 from the datum is 1m, then the height z_2 (in m) is _____ (g = 9.81 \text{ m/s}^2) 2 Z_2 Datum (5.5 to 6.0) **Answer:**

35. A reversible heat engine (E) operating in a cycle interacts with three reservoirs 1, 2 and 3 maintained at temperature $T_1 = 500$ K, $T_2 = 400$ K and $T_3 = 300$ K, respectively. The engine receives 10 kJ of heat from reservoir 1 and rejects 3 kJ to reservoir 3. The net work output, $W_{net}(in kJ)$ from the engine is _____

G	ATEFORUM ingineering Success		PI-GATE-2017	<u>www.gateforumonline.com</u>
86.	A schematic diagram	n of peripheral milling	g is shown in the figure.	
		work piece table feed		d/2
		e	ℓ_{a}	-
	If t is the depth of expressed as	cut and d is the diam	eter of the milling cutter	, then the length of approach $\left(\ell_{a}\right)$ is
	(A) $\sqrt{d(t-d)}$	(B) $\sqrt{d(d-t)}$	(C) $\sqrt{t(d-t)}$	(D) $\sqrt{t(t-d)}$
Answ	ver: (C)		• • •	V V
37.	An electrical applia 10% of the cost of t order is Rs. 201. Th level, respectively (a	nces showroom sells he ceiling fan. The co here is a lead time of roun <mark>de</mark> d to the next hi	2,400 ceiling fans in one st of one ceiling fan is Rs 5 weeks. The economic ghest integer) are	year (52 weeks). The holding cost i 6.600. The cost incurred for placing a order quantity (EOQ) and the reorde
	(A) 231, 127	(B) 38, 231	(C) 127, 231	(D) 127, 13
Answ	/er: (C)			
8.	In a calendar year, a of motorbikes for smoothing method August is	he demand forecast o he month of June ar with smoothing cons	of motorbikes for the mon nd July are 300 and 350 tant 0.7 is used, then th	oth of June is 200. The actual demand 0, respectively. If single exponentia ne demand forecast for the month o
Answ	/er: (326)			
	© All rights reserved by Thinkog	ILL earning Solutions Pvt Ltd No p	art of this booklet may be reproduced or ut	ilized in any form without the written permission

C GATEFORUM Engineering Success

PI-GATE-2017

39. In a project, tasks A, B, C, D, E, F, G, H, I and J are to be performed. The precedence relationships and the time required (in days) to complete the tasks are given in the Table.

Tasks	А	В	С	D	Е	F	G	Н	Ι	J
Time (days)	8	10	8	10	16	17	18	14	9	4
Preceding tasks	-	-	-	А	А	B, D	С	С	F, G	E,I,H

The time required (in days) to complete the project along the critical path is _____.

Answer: (48)

40. The potential production alternatives for manufacturing a product along with their unit cost and monthly capacity are given in the Table.

S.No.	Production Alternatives	Unit cost (Rs.)	Capacity/Month
1.	Regular time production	5	300
2.	Overtime production	6	200
3.	Subcontracting	10	500

The inventory at the end of July is 100 units. If the demand for the month of August is 620, then the minimum total cost (in Rs) to meet the demand is ______.

41. The preparatory and miscellaneous codes used in CNC part programming and the functions are given in the Table.

	Group-I		Group-II
Р.	G01	1.	Circular interpolation, counter-clockwise
Q.	G03	2.	End of program
R.	M06	3.	Tool change
S.	M02	4.	Linear interpolation

The correction combination of code and the respective function is

(A) $P-4$, $Q-1$, $R-3$, $S-2$ (B)
-------------------------------------	------------

(C) P-1, Q-4, R-3, S-2

Answer: (A)

© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

P-4, Q-1, R-2, S-3

(D) P-2, Q-1, R-3, S-4

Answer: (2900)

G GATEFORUM Engineering Success

PI-GATE-2017

A surface of 30mm × 30 mm of an iron blocks is machined using electrochemical machining process. The atomic weight and valency of iron is 55.85 and 2, respectively. The density of iron is 7,860 kg/m³. If input current is 1,000 A and Faraday's constant is 96,540 Coulombs, then the feed rate (in mm/min) is ______ (up to two decimal places).

Answer: (2.40 to 2.50)

43. Quality control department of a company maintains 'c' chart to assess the quality of laptops. In this process, twenty laptops are examined randomly. The number of nonconformities observed per laptop is given in the Table.

Laptop number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Number of	1	3	7	4	10	6	1	5	4	3	6	4	2	7	4	2	9	8	5	2
non conformities																				

Based on the data, the upper control limit for the 'c' chart is ______ (up to two decimal places).

Answer: (1.00 to 11.20)

44. The Merchant circle diagram showing various forces associated with a cutting process using a wedge shaped tool is given in the Figure.

	ingineering Success	[PI-GATE-2017	<u>www.gateforumonline.co</u>
	The coefficient o	f friction can be estimated	l from the ratio	
	(A) $\frac{f_1}{f_2}$	(B) $\frac{f_3}{f_4}$	(C) $\frac{f_5}{f_6}$	(D) $\frac{f_6}{f_5}$
Answ	ver: (D)			
4 <mark>5.</mark>	An air conditione unit is 2,000 ho conditioning unit	er unit is expected to run of purs and the mean time (up	continuously. The mean to repair (MTTR) is to three decimals places	time between failures (MTBF) for the 48 hours. The availability of the as).
Answ	ver: (0.970 to 0.9	980)		
46.	A firm manufactors for 40 ± 10 picofa estimated standars	ures capacitors using a sp arads (pF). The process us rd deviation is 3 pF, then	ecialized process. The d ed is in statistical contro the process capability in	esired specification for the capacitant of the process mean is 41 pF and the dex C_{pk} is
Answ	ver: (1)			
47.	A metallic strip diameter. It is as 10% reduction i	having a thickness of 12 soumed that there is no cl n cross-sectional area of	2 mm is to be rolled u hange in width of the st the strip after rolling, th	sing two steel rolls, each of 800 m rip during rolling. In order to achiev the angle subtended (in degrees) by the
	deformation zone	e at the centre of the roll is	s	
	deformation zone (A) 1.84	e at the centre of the roll i (B) 3.14	s (C) 6.84	(D) 8.23
Answ	deformation zone (A) 1.84 zer: (B)	e at the centre of the roll in (B) 3.14	s (C) 6.84	(D) 8.23
<mark>Answ</mark> 48.	deformation zone (A) 1.84 ver: (B) An electron bear energy released p	e at the centre of the roll in (B) 3.14 n welding process uses 1 per second by the beam (in	s (C) 6.84 5 mA beam current at a n J) is (up	(D) 8.23n accelerating voltage of 150 kV. Th to one decimal place).
Answ 48.	deformation zone (A) 1.84 ver: (B) An electron bear energy released p (1 Ampere = 6.23	e at the centre of the roll is (B) 3.14 In welding process uses 1. per second by the beam (in 8×10^{18} electrons per second	(C) 6.84 5 mA beam current at a n J) is (up ond, $1eV = 1.6 \times 10^{-19}$ J)	(D) 8.23 n accelerating voltage of 150 kV. Th to one decimal place).
Answ 48. Answ	deformation zone (A) 1.84 ver: (B) An electron bear energy released p (1 Ampere = 6.23 ver: (2250 to 220	e at the centre of the roll in (B) 3.14 In welding process uses 1. Der second by the beam (in 8×10^{18} electrons per second 55)	(C) 6.84 5 mA beam current at a n J) is (up ond, $1eV = 1.6 \times 10^{-19}$ J)	(D) 8.23 n accelerating voltage of 150 kV. Th to one decimal place).
Answ 48. Answ	deformation zone (A) 1.84 ver: (B) An electron bear energy released p (1 Ampere = 6.22 ver: (2250 to 220	e at the centre of the roll in (B) 3.14 n welding process uses 1 per second by the beam (in 8×10^{18} electrons per second 5	(C) 6.84 5 mA beam current at a n J) is (up ond, $1eV = 1.6 \times 10^{-19}$ J)	(D) 8.23 n accelerating voltage of 150 kV. Th to one decimal place).
Answ 48. Answ	deformation zone (A) 1.84 ver: (B) An electron bear energy released p (1 Ampere = 6.23 ver: (2250 to 220)	e at the centre of the roll is (B) 3.14 In welding process uses 1 per second by the beam (in 8×10^{18} electrons per seconds (5)	(C) 6.84 5 mA beam current at a n J) is (up ond, $1eV = 1.6 \times 10^{-19}$ J)	(D) 8.23 n accelerating voltage of 150 kV. Th to one decimal place).
Answ 48. Answ	deformation zone (A) 1.84 ver: (B) An electron bear energy released p (1 Ampere = 6.23 ver: (2250 to 220	e at the centre of the roll in (B) 3.14 In welding process uses 1. ber second by the beam (in 8×10^{18} electrons per seconds (65)	(C) 6.84 5 mA beam current at a n J) is (up ond, $1eV = 1.6 \times 10^{-19}$ J)	(D) 8.23 n accelerating voltage of 150 kV. Th to one decimal place).
Answ 48. Answ	deformation zone (A) 1.84 ver: (B) An electron bear energy released p (1 Ampere = 6.22 ver: (2250 to 220	e at the centre of the roll in (B) 3.14 n welding process uses 1. per second by the beam (in 8 × 10 ¹⁸ electrons per seco 65)	(C) 6.84 5 mA beam current at a a J) is (up ond, $1eV = 1.6 \times 10^{-19}$ J)	(D) 8.23 n accelerating voltage of 150 kV. Th to one decimal place).

<u> GATEFORUM</u>

PI-GATE-2017

49. In a machine shop, four jobs need to be assigned to four different machines. Each of the jobs is to be assigned to one machine only at a time. The time taken to complete the job in different machine is given in the Table.

Machines М М

		M_1	M_2	M_3	M_4
	\mathbf{J}_1	15	13	14	17
Iobs	\mathbf{J}_2	11	12	15	13
1003	\mathbf{J}_3	13	12	10	11
	\mathbf{J}_4	15	17	14	16

In order to ensure that the total time required to complete all the jobs is minimum, the optimal assignment of the job is

(A)	$J_1 \Rightarrow$	$\mathbf{M}_4, \mathbf{J}_2 \Rightarrow \mathbf{M}_2$	$,\mathbf{J}_{3} \Rightarrow \mathbf{M}_{3},=$	\Rightarrow J ₄ \Rightarrow M ₁	(B)	$J_1 \Rightarrow M_2, J_2 =$	\Rightarrow M ₁ , J ₃ \Rightarrow M	$\mathbf{I}_4, \mathbf{J}_4 = \mathbf{M}_3$
(C)	$J_1 \Rightarrow$	$\mathbf{M}_2, \mathbf{J}_2 \Longrightarrow \mathbf{M}_1$	$, \mathbf{J}_3 \Rightarrow \mathbf{M}_3, \mathbf{J}_2$	$_{4} \Longrightarrow M_{4}$	(D)	$\mathbf{J}_1 \Longrightarrow \mathbf{M}_4, \mathbf{J}_2 =$	\Rightarrow M ₂ , J ₃ \Rightarrow M	$\mathbf{M}_1, \mathbf{J}_4 \Rightarrow \mathbf{M}_3$
Answer:	(B)							

50. A hose coupling manufacturing company has production capacity of 2,500 units per year. The unit selling price of the item is Rs. 150. The fixed cost of production is Rs. 80,000 and variable cost of production per unit is Rs. 70. If the company wishes to achieve a profit of Rs. 20,000 during the calendar year, then the minimum quantity to be produced is _____

(1250)Answer:

|PI-GATE-2017|

Schematic diagram of pouring basin and sprue of a gating system is shown in the Figure. Depth of 51. molten metal in the pouring basin is 100 mm and the height of the sprue is 1,500 mm.

PI-GATE-2017

52. In a numerical control (NC) machine positioning system, the measures of precision are expressed by considering a single a axis as shown in the Figure.

53. In a machining operation with turning tool, the tool life (T) is related to cutting speed v(m/s), feed f (mm) and depth of cut d (mm) as

 $T = Cv^{-2.5}f^{-0.9}d^{-0.15}$

Where, C is a constant. The suggested values for the cutting parameters are: v = 1.5 m/s, f = 0.25 mm d = 3 mm for normal rough turning. If the operation is performed at twice the cutting speed and the other parameters remain unchanged, the corresponding percentage change in tool life is _____.

Answer: $(\pm 84 \text{ to } \pm 80)$

GATEFORUM

GATEFORUM Engineering Success

PI-GATE-2017

54. The annual demand of wrist watches produced on an assembly line is 1,03,125 units, The line operates 50 weeks/year, 5 shifts/week and 7.5 hours/shift. The uptime efficiency of the line is 99%. The cycle time (T_c) of the assembly line (in minutes/unit) is _____(up to two decimal places)

Answer: (1.00 to 1.10)

55. In a gear manufacturing company, three order P, Q and R are to be processed on a hobbing machine. The orders were received in the sequence P-Q-R. The Table indicates the process time remaining production calendar due date for each order.

Order	Process Time Remaining (day)	Due date		
Р	4	Day 20		
Q	16	Day 30		
R	6	Day 19		

Considering today as the Day 10 in the productions calendar of the Hobbing Shop, the sequence of the orders scheduled using the 'Critical Ratio' rule is

	(A)	P-Q	-R	(B)	P-R-Q		(C)	Q-P-R	(D)	Q-R-P
A	nswer:	(D)								
		-				G	Ľ			