

ISRO Previous Year Papers Electronics & Telecommunications

GATEFORUM Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.

For more details visit gateforumonline.com

C	GATEFORUM Engineering Success	E(C-ISRO-2020	<u>www.gatefoi</u>	<u>rumonline.com</u>
5.	Evaluate $\int_{-\infty}^{\infty} x^4 f(x) dx$	where, $f(x) = \frac{1}{\sqrt{2\pi}}$	$e^{\left(\frac{x^2}{2}\right)}, x(-\infty,\infty)$		
	(A) 3	(B) $3\sqrt{\pi}$	(C) $\sqrt{3}\pi$	(D) 3π	
-					
6.	Consider a transform	ation $T: R^3 \rightarrow R^2$ wh	here \mathbf{R}^3 and \mathbf{R}^2 represent	ent three and two dime	nsional real
	column vectors respec and columns does A h	tively. Also, T(x) = A ave and what is its ma	Ax for some matrix A a aximum possible rank?	nd for each x in R ³ . How	many rows
	(A) Rows : 3; Column	1s:2; Rank:3	(B) Rows : 3; C	Columns : 2; Rank : 2	

- (C) Rows : 2; Columns : 3; Rank : 2
- (D) Rows : 2; Columns : 3; Rank : 3
- 7. The output of a three element co-linear antenna array operating in a free space environment is combined (after appropriate phase shifting) to maximize the signal received from a particular direction as shown in figure.

If the inter-element spacing is half of the signal wavelength and direction of maximum response is 30° from the perpendicular to the array, what are the phases to be applied to each element? Consider the first element as the reference.

GATEFORUM Engineering Success

8. The transmission line of characteristic impedance 50 Ω and feeding a purely resistive load of 200 Ω uses single quarter wavelength long short-circuit stub which is placed at a distance d from the load. The VSWR on the transmission line section of length d and VSWR on the stub respectively are

	GAIEFORUM Engineering Success	E	C-ISRO-2020	www.gateforumonline.
12.	Consider a signal v(t what is the relation of) with Fourier transfo V'(f) to V(f)?	orm V(f). If V'(f) represe	ents the Fourier transform of vo
	(A) Magnitude scaled	l by 0.5 and bandwidt	h compressed	
	(B) Magnitude scaled	l by 0.5 and bandwidt	h expanded	
	(C) Magnitude scaled	1 by 2 and bandwidth	compressed	
	(D) Magnitude scaled	l by 2 and bandwidth	expanded	
13.	If one of the code wo valid code word in the	ords of a Hamming (7 same group?	7, 4) code is 0001011, w	hich of the following cannot be
	(A) 0011101	(B) 0101100	(C) 0011010	(D) 1110100
	Which of the followin	a digital modulations	oon ha daaadad nan aaba	wonth:
14.		(D) A DEV		(D) DESK
	(A) QAM	(D) APSK	(C) DPSK	(D) DESK
15.	A mobile antenna reco line-of-sight (LoS) co Power than the LoS of constructive and destr will be the ratio of ma frequency separation b	eives two copies of the mponent and the othe component and delaye uctive interference at aximum to minimum between two consecut	te signal transmitted by the signal transmitted by the r is a reflected component of by 100 ns. If the signal different frequency point signal level variation acritice maxima or minima?	he base station. The first copy is t which is 20 dB weaker in term al is sufficiently wideband, caus s within the signal bandwidth. W oss bandwidth and what will be
	(A) 101/99, 10 MHz		(B) 121/81, 10 M	Hz
	(C) 101/99, 5 MHz		(D) 121/81, 5 MH	Iz
			-	
16.	An antenna with an et the directive gain of antenna is 0.4 W	fficiency of 90% has a the antenna when th	a maximum radiation interest in the anity of the second seco	ensity of 0.5 W/Steradian. Calcutenna when the input power to
			(C) 11.2	(D) 21.6
	(A) 18.23	(B) 17.4	(C) 11.2	(D) 21.0

C	GATEFORUM Engineering Success	EC-I	SRO-2020	www.gateforumonline.com
21.	A radar receiver h frequency. If the maximum Radar c	has a detection SNR thresho transmit EIRP of the radar ross-section (in dB m ²) deter	ld of 10 dB for a 4 M is 40 dBW and rec ctable at 10 km range	MHz bandwidth signal at 300 MHz eive G/T is 10 dB/K, what is the ?
	(Given: $10\log(4\pi)$	$=11, 10\log(k_{\rm B}) = -228.6, k$	B is Boltzmann consta	ant).
	(A) -15.6 dB m ²	(B) -12.6 dB m^2	(C) -9.6 dB m^2	(D) -5.6 dB m^2
22.	A source generate respectively. The code to each mes decodable (sequen	es four messages m1, m2, m messages are generated inde sage. Which of the followin ce as per m1, m2, m3, m4)?	13 and m4 with proba ependently of each ot ng codes has minimu	abilities 0.5, 0.25, 0.125 and 0.125 her. A source coder assigns binary im average length is also uniquely
	(A) 00, 01, 10, 11		(B) 0, 1, 10, 11	
	(C) 110, 111, 10,	0	(D) 0, 10, 110, 11	1
23.	For the given circumodel for every de	uit, switch remains closed fo evice, find steady state magni t=0 t=0 t=0	r a long time and ope tude of voltage at cap	ns at t = 0 seconds. Assuming ideal acitor.
			0.5 mm	$20 \mu\text{F}$ $\mp v_c$
	(A) 1	(B) 25	(C) 50	(D) 100
	© All rights reserved by Think	ccell Learning Solutions Pvt. Ltd. No part of this	booklet may be reproduced or utilize	ed in any form without the written permission.

GATEFORUM | EC-ISRO-2020 |

- www.gateforumonline.com
- For the given circuit, aspect ratio of M_1 transistor is 20/0.5, $I_{D_1} = 200\mu A$, $V_{THO} = 0.6V$, $2\phi_F = 0.81V$, 24. $\gamma=0.4V^2$ and $\mu_n C_{ox}=59.5\mu A/V^2~$.If $~V_{in}$ =1.2V, find the minimum value of aspect ratio of $~M_2$ transistor to remain saturated. ($\sqrt{10} = 3.16$)

Two coherent microwave power sources of same frequency f, each generating P Watts of average 25. power, are combined using a four port network in the following manner:

| EC-ISRO-2020 |

www.gateforumonline.com

Which one plot gives the closed resemblance to the stability $S(I_{co})$ of emitter bias configuration of 28. BJT with respect to $\frac{R_E}{R_B}$? (R_E is emitter resistance and RB is base resistance) $S(I_{\rm co})$ $S(I_{co})$ (A) (B) $1+\beta$ $1 + \beta$ 1 1 R_{E}/R_{B} R_{E}/R_{B} $S(I_{co})$ $S(I_{co})$ (C) (D) $1 + \beta$ $R_{_{\rm E}}/R_{_{\rm B}}$ R_{E}/R_{B} © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 10

,	The following state di	arom rangeante which	of the input equation	(Given $\mathbf{D} = [\mathbf{A} \times \mathbf{v}]$) (Where \mathbf{I}
4.	denotes a DFF with ou	tput. The x and y are th	e inputs to the circuit)	. (Orven $D_A - [A, x, y]$) (where I
		01, 10,	11	
	00 (\bigcirc	$\left(\begin{array}{c} \\ \end{array} \right)$	00, 01, 11
		10		
	(A) $D_A = A \oplus x \oplus y$		(B) $D_A = A + x G$	⊕ у
	(C) $D_A = A \oplus x + y$		(D) $D_A = A + x + x$	+ y
3.	Which of the following	glogic circuits do not h	ave no-change condition	on?
	(A) D-FF	(B) T-FF	(C) JK-FF	(D) SR-latch
54.	In VHDL, following st	atement is written a pro	ocess, where Clock fre	quency is 24 MHz.
	counter 4bit <= c	book = (1°) then ounter 4bit + x "1";		
	End if;			
	The frequency of coun	ter_4bit (2) will be:		
	(A) 12 MHz	(B) 4 MHz	(C) 6 MHz	(D) 3 MHz

GATEFORUM Engineering Success

35. Initial voltage of C_1 capacitance is 3 V in the given circuit. Correct sketch of V_x as a function of time is. (Threshold voltage $(V_{th}) = 0.5V$)

44. In the given circuits, S_1 switch remains closed and S_2 remains open for the long time. At t = 0, S_1 opens and S_2 closes and remain in this position for the long time. Find drain current for t < 0 and t >> 0 respectively if, $\mu_n C_{ox} = 100 \,\mu A/V^2$ and Aspect ratio = 2

GATEFORUM Engineering Success

| EC-ISRO-2020 |

47. In the circuit shown, diodes are ideal. Which is the correct representation of transfer characteristics of the circuit?

G	GATEFORUM		EC-ISRO-2020		www.gateforumonline.com
55.	All the three indu Henry) across the	ctors are perfectly co terminal AB is	upled as shown in th	e figure, the va	lue of total inductance (in
			2H		
		5H	4H		
	A				P
	A •	6H	8H	10H	• D
	(A) 46	(B) 38	(C) 12	(D)	10
56.	For a uniformly do Given that: $N_E = 2 \times 10^{18} \text{ cm}^{-3}$	oped npn transistor, fir , $N_B = 10^{17} \text{ cm}^{-3}$, $N_C =$	nd the approximate em $4 \times 10^{19} \text{ cm}^{-3}$, D _E = 8 cm	hitter injection entropy m^2/s , $D_c = 28 cm^2/s$	fficiency. m^2/s , $D_B = 20 cm^2/s$,
	$x_{E} = 0.5 \mu m, x_{B} =$	0.3 μm.	2		
	(A) 0.95	(B) 0.92	(C) 0.99	(D)	0.94
57.	In a long p-type = 10^{16} cm ⁻³ are inj lifetime. (A) 10 µs	e Si-bar with cross- ected. Assume μ _p = 5 (B) 15 μs	sectional area = 0.5 $00 \text{ cm}^2/\text{Vs}, n_i = 10^{10}$ (C) 20 µs	cm^2 and $N_a = cm^{-3}$ and $\tau_p = 1$	2×10^{17} cm ⁻³ , extra holes 0^{-10} s, find minority carrier 25 µs
	<mark></mark>				
58.	In a p-type Si at 30 a function of surfa that p _s and n _s are	00 K and $N_a = 8 \times 10^{15}$ ice potential is plotted hole and electron con	cm ⁻³ , variation of spa , then select the true s centrations at the surf	ace-charge dens statement for we face.	ity in the semiconductor as ak inversion region. Given
	(A) $p_s > N_a$		(B) $n_s < N$	J_a and $n_s > p_s$	

- 59. In order to ensure that the output voltage of an op-amp is zero, when both its inputs are grounded
 - (A) internal negative feedback is used
 - (B) an external offset balancing circuit is used at the input terminals
 - (C) the currents incident at the output node are carefully designed
 - (D) the totem-pole output transistors are designed to have exactly equal cut-in voltages
- **60.** Consider the resistive network shown in the following figure. The value of Norton current across the terminal AB

61. The transfer characteristic of the different types of MOSFETs is shown in the following figure, where I_D is drain current and V_{GS} is the Gate-Source voltage, the correct combination of MOSFET w.r.t. to transfer characteristics is

Types of MOSFET	Transfer Characteristics
P. p-Channel Enhancement MOSFET	
Q. p-Channel Depletion MOSFET	
R. n-Channel Enhancement MOSFET	
S. n-Channel Depletion MOSFET	V _{GS}
(A) P-4, Q-2, R-1, S-3	(B) P-3, Q-2, R-4, S-1
(C) P-1, Q-3, R-2, S-4	(D) P-2, Q-4, R-3, S-1

G	AIEFUKUM ngineering Success	EC-ISRO-2020	www.gateforumonline.com
62.	Acceptor impurity concentra impurity atoms that must be conduction band edge. (Given 300K is 26 mV)	tion of Si at 300K is 10^{19} /cm ³ . Calcula added so that Si is n-type and the Ferm h: Effective density state N _C = 2.7×10^{19} /cm	ate the concentration of donor i Energy is 26 meV below the n^3 and Thermal Voltage (V_T) at
	(A) $1.5 \times 10^{19} / \text{cm}^3$	(B) $3 \times 10^{19} / \text{cm}^3$	
	(C) $10^{19} / \text{cm}^3$	(D) $2 \times 10^{19} / \text{cm}^3$	
63.	The electric field between two is inserted in between the plat of electric force in between between the plates (vacuum) a	parallel plates placed in vacuum is 'E'. If tes such that the normal to the boundary m the plates. Find the angle (θ) between th and dielectric slab.	a slab of dielectric constant $\sqrt{3}$ akes an angle 45° with the lines ne electric lines in the medium
	(A) 60° (B)	15° (C) 30°	(D) 25°
64.	Two parallel perfectly conduct off frequency of the lowest of are placed 10 mm apart so a frequency of TE_{11} mode.	cting planes of infinite extent are placed 'b rder TE mode is 15 GHz. If additionally, t as to form a rectangular waveguide as sh	o' distance apart so that the cut- two perfectly conducting planes own in figure. Find the cut-off
	نی می مراحب مراحب	Infinite Plane b a	nfinite Plane

CEGATEFORUM Engineering Success | EC-ISRO-2020 |

65. Consider the AND logic circuit in which $V_2 = 3V$ and V_1 lies between 0 to 5 volts. The output voltage is V_0 . The cut-in voltage of the diode D_1 and D_2 is 0.6 Volts. The output voltage V_0 versus V_1 corresponding to the below network is

1 ono wing are a	he applications of a Buck a	and Boost Converters resp	pectively			
A. Regulated	DC power supplies					
B. Regenerati	ive braking of DC motors					
C. DC motor	speed control					
(A) A, B	(B) B, C	(C) A, C	(D) B, A			
In a MOSFET,	, SiO ₂ breaks down at ele	ectric field of the order	of $5 \times 10^6 \text{ V/cm}$. For a gate oxis			
thickness 1000	Å and channel thickness o	f 2 μ m, what is the maxir	num V _{Gs} it can withstand?			
(A) 5 V	(B) 10 V	(C) 100 V	(D) None of the above			
Which of the fe	llowing is folge for a Thur	inton?				
Which of the following is false for a Thyristor?						
 A. Thyristor is a majority-carrier device. B. The forward bias portion of Thyristor's is a herestaristics by the section of the section. 						
B. The forward-bias portion of Thyristor's i-v characteristics has two stable operating regions.						
D . The negati	ve gate current turns off th	e Thyristor	she stable operating region.			
D. The hegun		e mynstor.				
(A) A. B	(\mathbf{B}) B , \mathbf{C} , \mathbf{D}	(C) A. C. D	(D) B. C			
(A) A, B	(В) В, С, D	(C) A, C, D	(D) B, C			
(A) A, B	(В) В, С, Д	(C) A, C, D	(D) B, C			
(A) A, B The Zener regu	(B) B, C, D	(C) A, C, D ollowing figure consists	(D) B, C of Si based Zener diode and Ge			
(A) A, B The Zener regu The cut-in Volt	(B) B, C, D lator circuit shown in the f age of Ge diode is 0.2 Vol	(C) A, C, D ollowing figure consists ts, whereas cut-in Voltage	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts			
(A) A, B The Zener regu The cut-in Volt	(B) B, C, D lator circuit shown in the f age of Ge diode is 0.2 Vol 20 kΩ	(C) A, C, D ollowing figure consists ts, whereas cut-in Voltage	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts			
(A) A, B The Zener regu The cut-in Volt	(B) B, C, D lator circuit shown in the f age of Ge diode is 0.2 Vol $20 \text{ k}\Omega$	(C) A, C, D following figure consists ts, whereas cut-in Voltage	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts			
(A) A, B The Zener regu The cut-in Volt	(B) B, C, D lator circuit shown in the f age of Ge diode is 0.2 Vol 20 kΩ	(C) A, C, D following figure consists of ts, whereas cut-in Voltage	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts			
(A) A, B The Zener regu The cut-in Volt	(B) B, C, D lator circuit shown in the f age of Ge diode is 0.2 Volt $20 \text{ k}\Omega$	(C) A, C, D following figure consists ts, whereas cut-in Voltag	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts +			
(A) A, B The Zener regu The cut-in Volt 20 V	(B) B, C, D lator circuit shown in the f rage of Ge diode is 0.2 Volt 20 kΩ	(C) A, C, D following figure consists of ts, whereas cut-in Voltage Si 4 10V 20 kG	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts + +			
(A) A, B The Zener regu The cut-in Volt 20 V	(B) B, C, D lator circuit shown in the f age of Ge diode is 0.2 Volt 20 kΩ ••••••••••••••••••••••••••••••••••••	(C) A, C, D following figure consists of ts, whereas cut-in Voltage Gi 4 10V $20 \text{ k}\Omega$	(D) B, C of Si based Zener diode and Ge of Si-diode is 0.7 Volts + V_0			
(A) A, B The Zener regu The cut-in Volt 20 V	(B) B, C, D	(C) A, C, D following figure consists of ts, whereas cut-in Voltage Si 4 10V 20 kG Ge 4	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts + V_0 -			
(A) A, B The Zener regu The cut-in Volt 20 V	(B) B, C, D	(C) A, C, D following figure consists of ts, whereas cut-in Voltage $Gi \frown 10V \qquad 20 \text{ kG}$ Ge \bigtriangledown	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts + + V ₀ -			
(A) A, B The Zener regu The cut-in Volt 20 V	(B) B, C, D lator circuit shown in the f age of Ge diode is 0.2 Volt 20 kΩ (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)	(C) A, C, D following figure consists of ts, whereas cut-in Voltage $Gi 10V \qquad 20 \text{ kG}$ Ge $\swarrow \qquad 20 \text{ kG}$	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts + V_0 -			
 (A) A, B The Zener regu The cut-in Volt 20 V The output volt (A) 10.2 V 	(B) B, C, D lator circuit shown in the f age of Ge diode is 0.2 Volt 20 kΩ (+) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t)	(C) A, C, D following figure consists of ts, whereas cut-in Voltage Gi	(D) B, C of Si based Zener diode and Ge e of Si-diode is 0.7 Volts + V_0 - (D) 0.2 V			

71. Identify the convertor topologies from the figures given below:

C CATLEFORUM Engineering Success

| EC-ISRO-2020 |

80. From the below given Nyquist plot, calculate the number of open loop poles on the right hand side of splane for the closed loop system to be stable

