ISRO Previous Year Papers Electronics \& Telecommunications

GATEFORUM Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.

For more details visit gateforumonline.com

1. The plane wave propagating through the dielectric has the magnetic field component as $\mathrm{H}=20 \mathrm{e}^{-\mathrm{ax}} \cos (\omega \mathrm{t}-0.25 \mathrm{x}) \hat{\mathrm{a}}_{\mathrm{y}} \mathrm{A} / \mathrm{m} \quad\left(\hat{\mathrm{a}}_{\mathrm{x}}, \hat{a}_{\mathrm{y}}, \hat{\mathrm{a}}_{\mathrm{z}}\right.$ are unit vectors along x, y and z axis respectively). Determine the polarization of the wave
(A) \hat{a}_{x}
(B) $-\hat{a}_{z}$
(C) $\frac{a_{x}+a_{y}}{\sqrt{2}}$
(D) \hat{a}_{y}
2. In free space, $H=0.1 \cos (\omega t-\beta x) a_{z} A / m\left(\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}\right.$ are unit vectors along x, y and z axis respectively). The total power passing through a square plate of side 10 cm on plane $x+2 y=1.0$, is approximately
(A) 42.12 mW
(B) 16.85 mW
(C) 18.84 mW
(D) 8.425 mW
3. Consider the rectangular cavity as shown below:

If $\mathrm{a}=\mathrm{c}>\mathrm{b}$, the dominant mode of resonance corresponding to the above rectangular cavity is
(A) TE011
(B) TE 101
(C) TM110
(D) TM011
4. A video camera generates data at a rate of 5 Mbps . The data is channel coded at rate $1 / 3$ and 8 PSK modulated. Which of the following statements is correct?
(A) Information rate: 15 Mbps ; Symbol rate: 5 Msps
(B) Information rate: 5 Mbps ; Symbol rate: 5 Msps
(C) Information rate: 15 Mbps ; Symbol rate: 15 Msps
(D) Information rate: 5 Mbps ; Symbol rate: 5 Msps
5. Evaluate $\int_{-\infty}^{\infty} x^{4} f(x) d x$ where, $f(x)=\frac{1}{\sqrt{2 \pi}} e^{\left(\frac{x^{2}}{2}\right)}, x(-\infty, \infty)$
(A) 3
(B) $3 \sqrt{\pi}$
(C) $\sqrt{3} \pi$
(D) 3π
6. Consider a transformation $T: R^{3} \rightarrow R^{2}$ where R^{3} and R^{2} represent three and two dimensional real column vectors respectively. Also, $T(x)=A x$ for some matrix A and for each x in R^{3}. How many rows and columns does A have and what is its maximum possible rank?
(A) Rows : 3; Columns : 2; Rank : 3
(B) Rows : 3; Columns : 2; Rank : 2
(C) Rows : 2; Columns : 3; Rank : 2
(D) Rows : 2; Columns : 3; Rank : 3
7. The output of a three element co-linear antenna array operating in a free space environment is combined (after appropriate phase shifting) to maximize the signal received from a particular direction as shown in figure.

If the inter-element spacing is half of the signal wavelength and direction of maximum response is 30° from the perpendicular to the array, what are the phases to be applied to each element? Consider the first element as the reference.
(A) $\left[\begin{array}{lll}-\frac{\pi}{3} & 0 & \frac{\pi}{3}\end{array}\right]$
(B) $\left[\begin{array}{lll}-\frac{\pi}{4} & 0 & \frac{\pi}{4}\end{array}\right]$
(C) $\left[\begin{array}{lll}0 & \frac{\pi}{2} & \pi\end{array}\right]$
(D) $\left[\begin{array}{lll}0 & \frac{\pi}{4} & \frac{\pi}{2}\end{array}\right]$
8. The transmission line of characteristic impedance 50Ω and feeding a purely resistive load of 200Ω uses single quarter wavelength long short-circuit stub which is placed at a distance d from the load. The VSWR on the transmission line section of length d and VSWR on the stub respectively are

(A) 0 and 0 respectively
(B) 1 and 1 respectively
(C) 4 and 1 respectively
(D) 4 and ∞ respectively
9. The plane $\mathrm{y}=0$ carries a uniform current density of $-20 \hat{\mathrm{k}} \mathrm{mA} / \mathrm{m}$. The magnetic field intensity at $\mathrm{x}=1$, $\mathrm{y}=10$ and $\mathrm{z}=-2$ is
(A) $-10 \hat{i} \mathrm{~mA} / \mathrm{m}$
(B) $10 \hat{\mathrm{i}} \mathrm{mA} / \mathrm{m}$
(C) $-20 \hat{\mathrm{i}} \mathrm{mA} / \mathrm{m}$
(D) $20 \hat{\mathrm{i}} \mathrm{mA} / \mathrm{m}$
10. A charge of 2 C is placed near a grounded conducting plate at a distance of 1 m . The force acting between the charge of 2 C and ground conducting plate in Newton is
(A) $\frac{1}{4 \pi \varepsilon}$
(B) $\frac{1}{8 \pi \varepsilon}$
(C) $\frac{1}{16 \pi \varepsilon}$
(D) $4 \pi \varepsilon$
11. A data sequence $\mathrm{x}[\mathrm{n}]=\{1,2,3,4,5\}$ passes through a linear time-invariant system with impulse response $\mathrm{h}[\mathrm{n}]=\{5,4,3,2,1\}$. The output of the filter will be
(A) $\{6,6,6,6,6\}$
(B) $\{5,8,9,8,5\}$
(C) $\{5,14,26,40,55,40,26,14,5\}$
(D) $\{1,4,10,20,35,44,46,40,25\}$
12. Consider a signal $v(t)$ with Fourier transform $V(f)$. If $V^{\prime}(f)$ represents the Fourier transform of $v(2 t)$, what is the relation of $\mathrm{V}^{\prime}(\mathrm{f})$ to $\mathrm{V}(\mathrm{f})$?
(A) Magnitude scaled by 0.5 and bandwidth compressed
(B) Magnitude scaled by 0.5 and bandwidth expanded
(C) Magnitude scaled by 2 and bandwidth compressed
(D) Magnitude scaled by 2 and bandwidth expanded
13. If one of the code words of a Hamming $(7,4)$ code is 0001011 , which of the following cannot be the valid code word in the same group?
(A) 0011101
(B) 0101100
(C) 0011010
(D) 1110100
14. Which of the following digital modulations can be decoded non-coherently?
(A) QAM
(B) APSK
(C) BPSK
(D) BFSK
15. A mobile antenna receives two copies of the signal transmitted by the base station. The first copy is the line-of-sight (LoS) component and the other is a reflected component which is 20 dB weaker in terms of Power than the LoS component and delayed by 100 ns . If the signal is sufficiently wideband, causing constructive and destructive interference at different frequency points within the signal bandwidth. What will be the ratio of maximum to minimum signal level variation across bandwidth and what will be the frequency separation between two consecutive maxima or minima?
(A) $101 / 99,10 \mathrm{MHz}$
(B) $121 / 81,10 \mathrm{MHz}$
(C) $101 / 99,5 \mathrm{MHz}$
(D) $121 / 81,5 \mathrm{MHz}$
16. An antenna with an efficiency of 90% has a maximum radiation intensity of $0.5 \mathrm{~W} /$ Steradian. Calculate the directive gain of the antenna when the input power to the antenna when the input power to the antenna is 0.4 W
(A) 18.23
(B) 17.4
(C) 11.2
(D) 21.6
17. In a semiconductor device, if Fermi level $\left(\mathrm{E}_{\mathrm{F}}\right)$ is positioned at conduction band $\left(\mathrm{E}_{\mathrm{C}}\right)$. Determine the approximate probability of finding electrons in states at $\left(E_{C}+k_{B} T\right)$. (where k_{B} is Boltzmann constant and T is device temperature in Kelvin).
(A) 0.18
(B) 0.27
(C) 0.38
(D) 0.52
18. For the following energy band diagram, determine the approximate resistivity for $x>\mathrm{L}$ portion of semiconductor. $\mathrm{E}_{\mathrm{g}}=1.12 \mathrm{eV}, \mathrm{T}=300 \mathrm{~K}, \mu_{\mathrm{n}}=600 \mathrm{~cm}^{2} / \mathrm{Vs}, \mu_{\mathrm{p}}=400 \mathrm{~cm}^{2} / \mathrm{Vs}, \mathrm{n}_{\mathrm{i}}=10^{10} / \mathrm{cm}^{3}$

(A) $11.00 \Omega \mathrm{~cm}$
(B) $15.75 \Omega \mathrm{~cm}$
(C) $23 \Omega \mathrm{~cm}$
(D) $31.25 \Omega \mathrm{~cm}$
19. The radiation intensity of a given antenna is $U=2(\sin \theta \sin \varphi)$ in the range $0 \leq \theta \leq \pi$ and $0 \leq \varphi \leq \pi$ and 0 elsewhere. The directivity is
(A) 3 dB
(B) 6 dB
(C) 8 dB
(D) 9 dB
20. Which of the following is an example of oversampling ADC architecture?
(A) Sigma delta
(B) Successive approximation
(C) Integrator
(D) Flash
21. A radar receiver has a detection SNR threshold of 10 dB for a 4 MHz bandwidth signal at 300 MHz frequency. If the transmit EIRP of the radar is 40 dBW and receive G / T is $10 \mathrm{~dB} / \mathrm{K}$, what is the maximum Radar cross-section (in $\mathrm{dB} \mathrm{m}^{2}$) detectable at 10 km range?
(Given: $10 \log (4 \pi)=11,10 \log \left(\mathrm{k}_{\mathrm{B}}\right)=-228.6, \mathrm{k}_{\mathrm{B}}$ is Boltzmann constant).
(A) $-15.6 \mathrm{~dB} \mathrm{~m}^{2}$
(B) $-12.6 \mathrm{~dB} \mathrm{~m}^{2}$
(C) -9.6 dB m 2
(D) $-5.6 \mathrm{~dB} \mathrm{~m}^{2}$
22. A source generates four messages $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3$ and m 4 with probabilities $0.5,0.25,0.125$ and 0.125 respectively. The messages are generated independently of each other. A source coder assigns binary code to each message. Which of the following codes has minimum average length is also uniquely decodable (sequence as per $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \mathrm{~m} 4$)?
(A) $00,01,10,11$
(B) $0,1,10,11$
(C) $110,111,10,0$
(D) $0,10,110,111$
23. For the given circuit, switch remains closed for a long time and opens at $t=0$ seconds. Assuming ideal model for every device, find steady state magnitude of voltage at capacitor.

(A) 1
(B) 25
(C) 50
(D) 100
24. For the given circuit, aspect ratio of M_{1} transistor is $20 / 0.5, \mathrm{I}_{\mathrm{D}_{1}}=200 \mu \mathrm{~A}, \mathrm{~V}_{\text {тно }}=0.6 \mathrm{~V}, 2 \phi_{\mathrm{F}}=0.81 \mathrm{~V}$, $\gamma=0.4 \mathrm{~V}^{2}$ and $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=59.5 \mu \mathrm{~A} / \mathrm{V}^{2}$.If $\mathrm{V}_{\mathrm{in}}=1.2 \mathrm{~V}$, find the minimum value of aspect ratio of M_{2} transistor to remain saturated. $(\sqrt{10}=3.16)$

(A) 92
(B) 195
(C) 280
(D) 560
25. Two coherent microwave power sources of same frequency f, each generating P Watts of average power, are combined using a four port network in the following manner:

If the S-parameter of 4-port network are $\left[\begin{array}{cccc}0 & \frac{j}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \\ \frac{j}{\sqrt{2}} & 0 & 0 & \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & 0 & 0 & \frac{j}{\sqrt{2}} \\ 0 & \frac{-1}{\sqrt{2}} & \frac{j}{\sqrt{2}} & 0\end{array}\right]$,
between the inputs to maximize the output at port 2 and what is the maximum power?
(A) $90^{\circ}, 2 \mathrm{P}$
(B) $90^{\circ}, \sqrt{2} \mathrm{P}$
(C) $45^{\circ}, 2 \mathrm{P}$
(D) $45^{\circ}, \sqrt{2} \mathrm{P}$
26. Which of the following statement is wrong?
(A) $(100.64)_{8}=(1000000000.1101)_{2}$
(B) $(512.512)=(4022.224)_{5}$
(C) $(2202)_{6}=(426)_{11}$
(D) $(0.23)_{4}=(0.1011)_{2}$
27. Which of the following statement is correct?
(A) NAND and NOR functions are Commutative and Associated
(B) Both NAND and NOR functions are neither Commutative nor Associative
(C) NAND and NOR functions are Associative but Commutative
(D) NAND and NOR functions are Commutative but not Associative
28. Which one plot gives the closed resemblance to the stability $\mathrm{S}\left(\mathrm{I}_{\mathrm{CO}}\right)$ of emitter bias configuration of BJT with respect to $\frac{R_{E}}{R_{B}}$? (R_{E} is emitter resistance and $R B$ is base resistance)
(A)

(B) $\quad \mathrm{S}\left(\mathrm{I}_{\mathrm{CO}}\right)$

(C) $\quad \mathrm{S}\left(\mathrm{I}_{\mathrm{CO}}\right)$

(D)

29. For the given amplifier circuit, find the input cut-off frequency. FET parameters are $g_{m}=4 \mathrm{~mA} / \mathrm{V}$,

$$
\mathrm{C}_{\mathrm{gs}}=4 \mathrm{pF}, \mathrm{r}_{\mathrm{ds}}=40 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{gd}}=2 \mathrm{pF}
$$

(A) 35.5 MHz
(B) 45.5 MHz
(C) 90.5 MHz
(D) 10.5 MHz
30. Which of the following digital devices requires an external refresh circuit?
(A) FLASH Memory
(B) E^{2} PROM
(C) SRAM
(D) DRAM
31. What would be the maximum operating frequency of Mod-8 counter constructed with JK flip flops, having propagation delay of 8 ns ?
(A) 16.525 MHz
(B) 15.625 MHz
(C) 25.625 MHz
(D) 18.525 MHz
32. The following state diagram represents which of the input equation. (Given $\left.D_{A}=[A, x, y]\right)\left(\right.$ Where D_{A} denotes a DFF with output. The x and y are the inputs to the circuit)

(A) $\mathrm{D}_{\mathrm{A}}=\mathrm{A} \oplus \mathrm{x} \oplus \mathrm{y}$
(B) $\mathrm{D}_{\mathrm{A}}=\mathrm{A}+\mathrm{x} \oplus \mathrm{y}$
(C) $\mathrm{D}_{\mathrm{A}}=\mathrm{A} \oplus \mathrm{x}+\mathrm{y}$
(D) $\mathrm{D}_{\mathrm{A}}=\mathrm{A}+\mathrm{x}+\mathrm{y}$
33. Which of the following logic circuits do not have no-change condition?
(A) D-FF
(B) $\mathrm{T}-\mathrm{FF}$
(C) JK-FF
(D) SR-latch
34. In VHDL, following statement is written a process, where Clock frequency is 24 MHz .

If (clock' event and clock $=$ ' 1 ') then counter_4bit <= counter_4bit + x " 1 ";

End if;
The frequency of counter_4bit (2) will be:
(A) 12 MHz
(B) 4 MHz
(C) 6 MHz
(D) 3 MHz
35. Initial voltage of C_{1} capacitance is 3 V in the given circuit. Correct sketch of V_{x} as a function of time is.
(Threshold voltage $\left(\mathrm{V}_{\mathrm{th}}\right)=0.5 \mathrm{~V}$)

36. An SRAM has address lines from A_{0} to A_{19} and data width from D_{0} to D_{15}. Total capacity of the SRAM will be
(A) 20 MB
(B) 16 MB
(C) 8 MB
(D) 4 MB
37. Which of the following digital integrated circuit cannot be used as wired logic connections?
(A) Totem-pole TTL gate
(B) Open collector TTL gate
(C) Totem-pole output with 3-state gate
(D) Emitter Coupled Logic
38. The logic function implemented by following circuit can be represented as

(A) $\mathrm{Y}=\overline{[(\mathrm{AB})+(\mathrm{B}+\mathrm{C})+(\mathrm{B}+\mathrm{D})}]$
(B) $\mathrm{Y}=\overline{[(\mathrm{AB})+(\mathrm{A}+\mathrm{C})+(\mathrm{B}+\mathrm{D})}]$
(C) $\mathrm{Y}=[\overline{(\mathrm{AB})}+\overline{(\mathrm{A}+\mathrm{C})}+\overline{(\mathrm{AB}+\mathrm{D})}]$
(D) $\mathrm{Y}=\overline{[(\mathrm{AB})+(\mathrm{A}+\mathrm{C})+(\mathrm{AD})}]$
39. The value of C required for sinusoidal oscillation of frequency $=2 \mathrm{kHz}$ in the given circuit is
$1.9 \mathrm{k} \Omega$

(A) $\frac{1}{2 \pi} \mu \mathrm{~F}$
(B) $\frac{1}{(4 \pi)} \mu \mathrm{F}$
(C) $\frac{1}{\pi} \mu \mathrm{~F}$
(D) None of these
40. In the given circuit, $\mathrm{V}_{\mathrm{be}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=5.3 \mathrm{~V}, \beta=100 . \mathrm{V}_{0}$ is

(A) 5 V
(B) 10 V
(C) 15 V
(D) 20 V
41. A $18 \mu \mathrm{~F}$ capacitor holding charge of Q coulomb is connected to the circuit at time $\mathrm{t}=0$ sec.

The time at which the capacitor will be discharged to approximately $\mathrm{Q} / 2.72$ coulombs.
(A) 68 ms
(B) 34 ms
(C) 17 ms
(D) 2.72 ms
42. Determine the value of voltage V_{1} in the figure shown below.

The value of voltage V_{1} in volts is
(A) 100 V
(B) 14.28 V
(C) 50 V
(D) 68.25 V
43. Output characteristics of a BJT amplifier is given. Find the minimum collector current required for $\mathrm{r}_{0}=50 \mathrm{k} \Omega$. (r_{0} is output resistance)

(A) 1 mA
(B) 5 mA
(C) 10 mA
(D) 100 mA
44. In the given circuits, S_{1} switch remains closed and S_{2} remains open for the long time. At $t=0$, S_{1} opens and S_{2} closes and remain in this position for the long time. Find drain current for $t<0$ and $\mathrm{t} \gg 0$ respectively if, $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and Aspect ratio $=2$

(A) $600 \mu \mathrm{~A}, 0 \mu \mathrm{~A}$
(B) $600 \mu \mathrm{~A}, 25 \mu \mathrm{~A}$
(C) $600 \mu \mathrm{~A},-25 \mu \mathrm{~A}$
(D) $0 \mu \mathrm{~A}, 600 \mu \mathrm{~A}$
45. In the circuit shown below, switch S_{1} is closed at $t=0$ seconds. Switch S_{2} is opened at $t=0$ seconds.

The current flowing through the inductor of 0.3 H at $\mathrm{t}=8$ milli seconds is
(A) 0.65 mA
(B) 0.32 mA
(C) 0.26 mA
(D) 0.18 mA
46. The transmission parameters of the network given in the following figure are represented in the matrix form as
$|\mathrm{T}|=\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right]$

Calculate the Transmission parameter B of $[\mathrm{T}]$ matrix.
(A) $\mathrm{j} 2 \Omega$
(B) $-\mathrm{j} 2 \Omega$
(C) $(-\mathrm{j} 2+4) \Omega$
(D) 4Ω
47. In the circuit shown, diodes are ideal. Which is the correct representation of transfer characteristics of the circuit?

48. Consider the R-L-C network shown below,

The average power absorbed by the inductor in Watts is
(A) 40
(B) 15
(C) 0
(D) 5
49. The total number of possible trees corresponding to the network shown in the following figure is

(A) 9
(B) 5
(C) 8
(D) 7
50. For an n-type Ge specimen, width $=4 \mathrm{~mm}$, length $=1 \mathrm{~mm}$, current (along the length of specimen) $=1$ mA , magnetic field (perpendicular to the current flow direction) $=0.1 \mathrm{~Wb} / \mathrm{m}^{2}$ and Hall voltage magnitude $=0.005 \mathrm{~V}$. Calculate the majority carriers density.
(A) $3 \times 10^{19} \mathrm{~cm}^{-3}$
(B) $3 \times 10^{19} \mathrm{~m}^{-3}$
(C) $6 \times 10^{19} \mathrm{~cm}^{-3}$
(D) $6 \times 10^{19} \mathrm{~m}^{-3}$
51. The following table gives the forward characteristics of a Si diode. Estimate the temperature of a diode junction. (Given: $\ln (0.2)=-1.609$)

$\mathrm{V}_{\mathrm{f}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{f}}(\mathrm{mA})$
0.6	1
0.65	5

(A) 240 K
(B) 360 K
(C) 400 K
(D) 470 K
52. An n-channel MOS transistor is made on a p-type substrate with $\mathrm{N}_{\mathrm{a}}=10^{15} \mathrm{~cm}^{-3}$. Find approximate depletion charge per unit area $\left(\mathrm{Q}_{\mathrm{d}}\right)$ at strong inversion.
$\left\{\ell \mathrm{n}(10)=2.3, \sqrt{0.046}=0.215, \mathrm{n}_{\mathrm{i}}=10^{10} \mathrm{~cm}^{3}\right\}$
(A) $-6.9 \times 10^{8} \mathrm{C} / \mathrm{cm}^{2}$
(B) $6.9 \times 10^{-8} \mathrm{C} / \mathrm{cm}^{2}$
(C) $-3.4 \times 10^{-8} \mathrm{C} / \mathrm{cm}^{2}$
(D) $3.4 \times 10^{-8} \mathrm{C} / \mathrm{cm}^{2}$
53. For a p-channel Si JFET, $\mathrm{N}_{\mathrm{a}}=3 \times 10^{16} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{d}}=10^{18} \mathrm{~cm}^{-3}$. Channel thickness dimension is $\mathrm{a}=0.33 \mu \mathrm{~m}$. Find approximate pinch-off voltage $\mathrm{V}_{\mathrm{p}} \cdot\left\{\mathrm{n}_{\mathrm{i}}=10^{10} \mathrm{~cm}^{-3}, \mathrm{~V}_{\mathrm{T}}=26 \mathrm{mV}, \ln (3)=1.098\right\}$
(A) 2.5 V
(B) 1.7 V
(C) 4.2 V
(D) 3.6 V
54. Consider the circuit shown in the following figure

The power factor of the above circuit as seen by the source is
(A) 0.988 Lag
(B) 0.988 Lead
(C) 0.235 Lag
(D) 0.235 Lead
55. All the three inductors are perfectly coupled as shown in the figure, the value of total inductance (in Henry) across the terminal $A B$ is

(A) 46
(B) 38
(C) 12
(D) 10
56. For a uniformly doped npn transistor, find the approximate emitter injection efficiency.

Given that:
$\mathrm{N}_{\mathrm{E}}=2 \times 10^{18} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{B}}=10^{17} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{C}}=4 \times 10^{19} \mathrm{~cm}^{-3}, \mathrm{D}_{\mathrm{E}}=8 \mathrm{~cm}^{2} / \mathrm{s}, \mathrm{D}_{\mathrm{C}}=28 \mathrm{~cm}^{2} / \mathrm{s}, \mathrm{D}_{\mathrm{B}}=20 \mathrm{~cm}^{2} / \mathrm{s}$, $\mathrm{x}_{\mathrm{E}}=0.5 \mu \mathrm{~m}, \mathrm{x}_{\mathrm{B}}=0.3 \mu \mathrm{~m}$.
(A) 0.95
(B) 0.92
(C) 0.99
(D) 0.94
57. In a long p-type Si-bar with cross-sectional area $=0.5 \mathrm{~cm}^{2}$ and $\mathrm{N}_{\mathrm{a}}=2 \times 10^{17} \mathrm{~cm}^{-3}$, extra holes $=10^{16} \mathrm{~cm}^{-3}$ are injected. Assume $\mu_{\mathrm{p}}=500 \mathrm{~cm}^{2} / \mathrm{Vs}, \mathrm{n}_{\mathrm{i}}=10^{10} \mathrm{~cm}^{-3}$ and $\tau_{\mathrm{p}}=10^{-10} \mathrm{~s}$, find minority carrier lifetime.
(A) $10 \mu \mathrm{~s}$
(B) $15 \mu \mathrm{~s}$
(C) $20 \mu \mathrm{~s}$
(D) $25 \mu \mathrm{~s}$
58. In a p-type Si at 300 K and $\mathrm{N}_{\mathrm{a}}=8 \times 10^{15} \mathrm{~cm}^{-3}$, variation of space-charge density in the semiconductor as a function of surface potential is plotted, then select the true statement for weak inversion region. Given that p_{s} and n_{s} are hole and electron concentrations at the surface.
(A) $\mathrm{p}_{\mathrm{s}}>\mathrm{N}_{\mathrm{a}}$
(B) $\mathrm{n}_{\mathrm{s}}<\mathrm{N}_{\mathrm{a}}$ and $\mathrm{n}_{\mathrm{s}}>\mathrm{p}_{\mathrm{s}}$
(C) $\mathrm{n}_{\mathrm{s}}<\mathrm{N}_{\mathrm{a}}$ and $\mathrm{p}_{\mathrm{s}}<\mathrm{N}_{\mathrm{a}}$
(D) $\mathrm{n}_{\mathrm{s}}>\mathrm{N}_{\mathrm{a}}$
59. In order to ensure that the output voltage of an op-amp is zero, when both its inputs are grounded
(A) internal negative feedback is used
(B) an external offset balancing circuit is used at the input terminals
(C) the currents incident at the output node are carefully designed
(D) the totem-pole output transistors are designed to have exactly equal cut-in voltages
60. Consider the resistive network shown in the following figure. The value of Norton current across the terminal AB

(A) -6 A
(B) 2 A
(C) 7 A
(D) -4.5 A
61. The transfer characteristic of the different types of MOSFETs is shown in the following figure, where I_{D} is drain current and V_{GS} is the Gate-Source voltage, the correct combination of MOSFET w.r.t. to transfer characteristics is

(A) P-4, Q-2, R-1, S-3
(B) P-3, Q-2, R-4, S-1
(C) P-1, Q-3, R-2, S-4
(D) P-2, Q-4, R-3, S-1
62. Acceptor impurity concentration of Si at 300 K is $10^{19} / \mathrm{cm}^{3}$. Calculate the concentration of donor impurity atoms that must be added so that Si is n-type and the Fermi Energy is 26 meV below the conduction band edge. (Given: Effective density state $\mathrm{N}_{\mathrm{C}}=2.7 \times 10^{19} / \mathrm{cm}^{3}$ and Thermal Voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$ at 300 K is 26 mV)
(A) $1.5 \times 10^{19} / \mathrm{cm}^{3}$
(B) $3 \times 10^{19} / \mathrm{cm}^{3}$
(C) $10^{19} / \mathrm{cm}^{3}$
(D) $2 \times 10^{19} / \mathrm{cm}^{3}$
63. The electric field between two parallel plates placed in vacuum is ' E '. If a slab of dielectric constant $\sqrt{3}$ is inserted in between the plates such that the normal to the boundary makes an angle 45° with the lines of electric force in between the plates. Find the angle (θ) between the electric lines in the medium between the plates (vacuum) and dielectric slab.
(A) 60°
(B) 15°
(C) 30°
(D) 25°
64. Two parallel perfectly conducting planes of infinite extent are placed 'b' distance apart so that the cutoff frequency of the lowest order TE mode is 15 GHz . If additionally, two perfectly conducting planes are placed 10 mm apart so as to form a rectangular waveguide as shown in figure. Find the cut-off frequency of TE_{11} mode.

(A) 30 GHz
(B) $15 / \sqrt{2} \mathrm{GHz}$
(C) $15 \sqrt{2} \mathrm{GHz}$
(D) $10 \sqrt{2} \mathrm{GHz}$
65. Consider the AND logic circuit in which $\mathrm{V}_{2}=3 \mathrm{~V}$ and V_{1} lies between 0 to 5 volts. The output voltage is V_{0}. The cut-in voltage of the diode D_{1} and D_{2} is 0.6 Volts. The output voltage V_{0} versus V_{1} corresponding to the below network is

66. Following are the applications of a Buck and Boost Converters respectively
A. Regulated DC power supplies
B. Regenerative braking of DC motors
C. DC motor speed control
(A) A, B
(B) B, C
(C) A, C
(D) B, A
67. In a MOSFET, SiO_{2} breaks down at electric field of the order of $5 \times 10^{6} \mathrm{~V} / \mathrm{cm}$. For a gate oxide of thickness $1000 \AA$ and channel thickness of $2 \mu \mathrm{~m}$, what is the maximum V_{GS} it can withstand?
(A) 5 V
(B) 10 V
(C) 100 V
(D) None of the above
68. Which of the following is false for a Thyristor?
A. Thyristor is a majority-carrier device.
B. The forward-bias portion of Thyristor's i-v characteristics has two stable operating regions.
C. The forward-bias portion of Thyristor's $\mathrm{i}-\mathrm{v}$ characteristic has one stable operating region.
D. The negative gate current turns off the Thyristor.
(A) A, B
(B) B, C, D
(C) A, C, D
(D) B, C
69. The Zener regulator circuit shown in the following figure consists of Si based Zener diode and Ge diode. The cut-in Voltage of Ge diode is 0.2 Volts, whereas cut-in Voltage of Si-diode is 0.7 Volts

The output voltage $\left(V_{o}\right)$ of the Zener regulator circuit is
(A) 10.2 V
(B) 10 V
(C) 9.8 V
(D) 0.2 V
70. The asymptotic bode plot for the gain magnitude of a minimum phase system $\mathrm{G}(\mathrm{s})$ is shown in figure below.

The steady state error for the ramp input is

3
(C) 0
(D) 0.01
71. Identify the convertor topologies from the figures given below:

(A) (i) Flyback Converter
(B) (i) Forward Converter
(ii) Forward Converter
(ii) Flyback Converter
(C) Both are Forward Converters
(D) Both are Flyback Converters
72. Consider two control systems with following transfer function,

System 1: G(s) $=\frac{1}{3 s+1}$
System 2: $\mathrm{G}(\mathrm{s})=\frac{1}{\mathrm{~s}+1}$
Which of the following is true?
(A) Bandwidth of System 1 is greater than bandwidth of System 2
(B) Bandwidth of System 2 is greater than bandwidth of System 1
(C) Bandwidth of both the systems is same
(D) Both systems have infinite bandwidth
73. A system's open loop transfer function is given $G(s)=\frac{K}{s(s+2)(s+4)}$. If system is having a unity negative feedback, which of the following is true for such system to be stable?
(A) $\mathrm{K}>0$
(B) $0<\mathrm{K}<24$
(C) $\mathrm{K}<24$
(D) None of the above
74. The third peak overshoot and second undershoot of the step response of the second order underdamped system is given by
(A) $\mathrm{e}^{-\frac{3 \varepsilon \pi}{\sqrt{1-\varepsilon^{2}}}}$ and $\mathrm{e}^{-\frac{2 \varepsilon \pi}{\sqrt{1-\varepsilon^{2}}}}$ respectively
(B) $\mathrm{e}^{-\frac{4 \varepsilon \pi}{\sqrt{1-\varepsilon^{2}}}}$ and $\mathrm{e}^{-\frac{5 \varepsilon \pi}{\sqrt{1-\varepsilon^{2}}}}$ respectively
(C) $\mathrm{e}^{-\frac{6 \varepsilon \pi}{\sqrt{1-\varepsilon^{2}}}}$ and $\mathrm{e}^{-\frac{4 \varepsilon \pi}{\sqrt{1-\varepsilon^{2}}}}$ respectively
(D) $\mathrm{e}^{-\frac{5 \varepsilon \pi}{\sqrt{1-\varepsilon^{2}}}}$ and $\mathrm{e}^{-\frac{4 \varepsilon \pi}{\sqrt{1-\varepsilon^{2}}}}$ respectively
75. Consider the Nyquist plot of the second order underdamped system shown in the following figure.

The Resonant Frequency corresponding to the Nyquist plot is
(A) ω_{1}
(B) ω_{2}
(C) ω_{3}
(D) ω_{4}
76. The unit step response of a system with the transfer function $G(s)=\frac{1-s}{1+s}$ is given by which of the following? (A unit step function is represented by $u(t)$).
(A) $\left(1-2 \mathrm{e}^{-\mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
(B) $\left(1-\mathrm{e}^{-\mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
(C) $e^{-t} u(t)$
(D) $2 \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$
77. The system $\frac{1600}{s(s+1)(s+16)}$ is to be compensated such that its gain-crossover frequency becomes same as its uncompensated Phase-crossover frequency. Which of the following is the phase crossover frequency of the compensated system?
(A) $4 \mathrm{rad} / \mathrm{sec}$
(B) $8 \mathrm{rad} / \mathrm{sec}$
(C) $16 \mathrm{rad} / \mathrm{sec}$
(D) None of the above
78. A discrete time, linear time invariant system with input sequence x_{n} and output sequence y_{n} is characterised by
$\mathrm{y}_{\mathrm{n}}=0.1 \mathrm{x}_{\mathrm{n}}+0.9 \mathrm{y}_{\mathrm{n}-1}$
If two such systems are connected in series, which of the following is the governing difference equation of the overall system?
(A) $\mathrm{y}_{\mathrm{n}}-1.8 \mathrm{y}_{\mathrm{n}-1}+0.81 \mathrm{y}_{\mathrm{n}-2}=0.01 \mathrm{x}_{\mathrm{n}}$
(B) $\mathrm{y}_{\mathrm{n}}+0.81 \mathrm{y}_{\mathrm{n}-1}=0.01 \mathrm{x}_{\mathrm{n}}$
(C) $\mathrm{y}_{\mathrm{n}}-0.81 \mathrm{y}_{\mathrm{n}-1}+1.8 \mathrm{y}_{\mathrm{n}-2}=0.01 \mathrm{x}_{\mathrm{n}}$
(D) $\mathrm{y}_{\mathrm{n}}-1.8 \mathrm{y}_{\mathrm{n}-1}=0.01 \mathrm{x}_{\mathrm{n}}$
79. The total number of feedback loops of the signal flow graph is, where R is input and C is output

(A) 3
(B) 4
(C) 5
(D) 6
80. From the below given Nyquist plot, calculate the number of open loop poles on the right hand side of splane for the closed loop system to be stable

(A) 1
(B) 2
(C) 0
(D) -1

