G	GATEFORUM Engineering Success	EE-ISRO-2015	<u>www.gateforumonline.com</u>
1.	The current I em units, flowi r = Mean radius of the galvar N = Number of turns of the g H = Horizontal component o	ng in a coil of a tangent galvanomete nometer coil. galvanometer coil. f earth magnetic field.	er is given by the expression where
	ϕ = Deflection of galvanome	eter magnetic needle.	
	(A) $I = (Hr/2\pi N) * \cos \phi$	(B) $I = (2\pi Nr)$	/H)* tan o
	(C) $I = (Hr/2\pi N)^* \tan \phi$	(D) $I = (2\pi N/$	'H)*cosφ
2.	To measure current, Ammete (A) Series with very low res (B) Series with very High re (C) Parallel with very low r (D) Parallel with very High	ers are connected in sistance esistance esistance resistance	
3.	If a circuit is formed consis temperature of T1 and the o called as (A) Peltier Effect (C) Seeback Effect	ting of two dissimilar metallic condu ther is at higher temperature T2, a c (B) Thompson (D) Ferranti E	uctors, and if one of the junction has a urrent flow in the circuit. This effect is n Effect ffect
4.	Two wattmeter connected to 500 Watts respectively. Wh positive? (A) 0.800 (B)	o measure the input of a balanced 3 hat will be the power factor of the 0.565 (C) 0.750	Phase circuit indicates 2000 Watts and circuit, when both of the readings are (D) 0.696
5.	Wheatstone Bridge is used for	or measurement of	
	(A) Earth Resistance	(B) Very High	n Resistance value
	(C) Medium Resistance Val	ue (D) Very Low	resistance values

	Engineering Success	EE-ISRO-2015	<u>www.gateforumonline.com</u>
6.	In a series RLC circuit, during re	sonance	
	(A) Inductive reactance become	s equal to capacitive reactan	ice
	(B) Only R becomes zero		
	(C) Only Capacitive reactance b	ecomes zero	
	(D) Only Inductive reactance be	comes zero	
7.	Which of the following network in a restricted portion of the net voltage source" or by a single "eo	theorem deals with finding twork by replacing the actual quivalent current source" act	out the circuit values of voltage and curren al source of energy by a single "equivalen ting at a terminal pair?
	(A) Compensation Theorem	(B) Norte	on's Theorem
	(C) Substitute Theorem	(D) They	enin's Theorem
8.	What will be the base impedance 11 kV?	e for a three phase system w	vith base MVA = 100 MVA and Base kV a
	(A) 1.21 Ohms (B) 3.6	5 Ohms (C) 5.2 O	Ohms (D) 2.78 Ohms
9.	The differential protection relay circuit during short circuit cond used	may lose us stability for thro	ough faults due to saturation of CT magneti ficulty which of the following technique i
	(A) Biased differential relay	(B) Induc	ction disc relay
	(C) Stepped Tap changing meth	od (D) IDM	ITL Relay
10	During single phosing, the unhal	an and states assument have a s	antina annunga annungat which annu
10.	(A) Magnetic flux retating in an	anced stator current have a n	
	(A) Magnetic flux rotating in op	posite direction to main field	
	(B) Magnetic flux rotating in sat	me direction to main field	
	(C) Increase the speed of the m	otor above synchronous spec	ed
	(D) Motor Starts rotating in Op	posite direction	

G	GAILFORUM Engineering Success	EE-ISR	O-2015	www.gateforumonline.com
25.	The following dis $D4 = 0.06$. The Tot	tortion readings are ava al Harmonic Distortion (7	ilable for a power an THD) is	nplifier. $D2 = 0.2$, $D3 = 0.02$ and
	(A) 30.97%	(B) 20.97%	(C) 15.67%	(D) 13.29%
26.	A transformer coup = 36 V. If the circ efficiency as 100 %	pled class A amplifier driv uit delivers 2 Watts to 1 is	res a 16 Ohm loud spea	aker through 4:1 transformer with V_{cc} cross the load assuming transformer
			$V_{cc} = 36V$ N1: N2	$R_L - 16\Omega$
	+ V _i -			
	(A) 39V	(B) 6 29 V	(C) 22.6 V	(D) 565 V

27. In the R_L circuit given below, the maximum power will be transferred when value of, R_L is

G	SATEFORUM	EE-ISI	RO-2015	www.gateforumonline.com	
28.	A source $Vs(t)$: connected to this be	= $V\cos 100\pi t$ has an intersource has to extract the 1	ernal impedance of (4+ maximum power out of t	$(-j3)\Omega$. If a purely resistive load is the source, its value in Ohms should	
	(A) 3 ohms	(B) 5 ohms	(C) 4 ohms	(D) 7 ohms	
29.	In a transformer, core loss current	exciting current is made I _c , with negligible leakage	up of two components i e impedance drop (V is s	namely magnetizing current I _M and supply voltage)	
	(A) Both I_M and	I I _C lag supply voltage V I	by 90°		
	(B) Both I _M and	$I_{\rm C}$ are in phase with V			
	(C) I _M lags V by	y 90° whereas I _c is in pha	se with V		
	(D) I _M is in phas	se with V but I_c lags V by	y 90°		
30.	The leakage flux :	in a transformer depends u	ipon		
	(A) The applied	input voltage	(B) Turns ration	of transformers	
	(C) The load cur	rent	(D) The mutual f	flux	
31	If Excitation of su	inchronous generator fails	it acts as a		
51.	(A) Synchronous	motor	(B) Induction mo	otor	
	(C) Synchronous	generator	(D) Induction get	nerator	
		<u></u>		<u> </u>	
32 .	In a tap changer, t	the voltage at consumer te	rminals is kept within the	e prescribed limits by varying the	
	(A) Ratio of turns between primary and secondary windings				
	(B) Frequency				
	(C) Flux density	in core	· · · · · · · · · · · · · · · · · · ·	. P	
	(D) Angle betwe	en magnetic axis of the pri	imary and secondary win	ndings	

- (B) Generator and operating at leading pf
- (C) Motor and operating at a leading pf
- (D) Motor and operating at a lagging pf

36.	A phase synchronous motor, con	nected to an infinite bus, operating at a le	www.gateforumonline.co			
	torque, if excitation is increased (δ is load angle and ϕ power factor angle)					
	(A) Both δ and ϕ decreases	(B) δ and ϕ both increases	eases			
	(C) δ increases but ϕ decreases	(D) δ decreases but ϕ	increases			
37.	Magnetizing in rush current in tra	nsformer is rich in				
011	(A) 3^{rd} Harmonics	(B) 7 th Harmonics				
	(C) 2 nd Harmonics	(D) 5 th Harmonics				
38.	Two Inductor motors A and B are of motor B then	e identical except that the air gap of moto	or 'A' is 50% greater than the			
	(A) The no-load pf of Motor A will be better than that of Motor B					
	(B) The no-load pf of Motor A will be proper than that of Motor B					
	(C) The core losses of Motor A will be more than those of Motor B					
	(D) The operating flux of Motor	A will be smalle <mark>r than that of Mot</mark> or B				
39.	A 3 phase induction motor draws active power P and reactive power Q from grid. If it is operating as a generator, P and Q will respectively be					
	(A) Positive and negative	(B) Positive and positive	ve			
	(C) Negative and negative	(D) Negative and positi	ve			
40.	In case of 3 Phase Short circuit in a system, the power fed into the system is					
	(A) Mostly active	(B) Mostly reactive				
	(C) Active only	(D) Active and reactive	both			

GATEFORUM Engineering Success

| EE-ISRO-2015|

41. The output voltage of the ideal transformer with polarities and dots shown in the figure is given by

	$V_1 \sin \omega t$	1: N		
	(A) $(1/N)V_1 \sin(\omega t)$		(B) $\left(-\frac{1}{N}\right)V_1 \sin \frac{1}{N}$	(oot)
	(C) $-NV_1 \sin(\omega t)$		(D) $-NV_1 \cos(\omega t)$)
42.	The average real power source i(t)=4sin(ωt+2	[•] in watts delivered to 20°)A is	o a load impedance Z	$\Sigma = (4 - J2)\Omega$ by an ideal current
	(A) 78 Watts	(B) 32 Watts	(C) 0 Watts	(D) 64 Watts
43.	A network contains B br	anches and N nodes. 7	The number of mesh cu	rrent equations would be
	(A) $N - (B - 1)$	(B) B-N-1	(C) $(B+N)-1$	(D) $B - (N - 1)$
44.	Superposition theorem is	s valid for		
	(A) Linear circuits		(B) Non linear cir	rcuits
	(C) Both linear and non	linear circuits	(D) Circuits with	active elements
45	A sine man as has a ma	handha of 12 Malta K		
45.	(A) 1.732	(B) 1.11	(C) 1.415	(D) 0.706
	© All rights reserved by Thinkcell Learn	ing Solutions Pvt. Ltd. No part of thi	s booklet may be reproduced or utilize	ed in any form without the written permission.

G	JAIEFUKUW Engineering Success	EE-IS	RO-2015	www.gateforumonline		
46.	A sinusoidal voltage	$V = 50 \sin \omega t$ is applied	ed to a series RL circuit.	The current in the circuit is given		
	$I = 25\sin(\omega t - 53^\circ)$. The apparent power c	onsumed by the load is			
	(A) 375 VA	(B) 625 VA	(C) 2500 VA	(D) 750 VA		
47.	A band pass filter is	one which				
	(A) Attenuates freq	uencies between two de	esignated cut off frequenc	ies and passes all other frequenc		
	(B) Passes all frequ	encies				
	(C) Attenuation all	frequencies				
	(D) Passes frequence	cies between two design	nated cut off frequencies			
48 <mark>.</mark>	A bulb in staircase	has two switches, one	switch being at the group	nd floor and the other being at		
	floor. The bulb can be turned ON and also OFF by any one of the switch irrespective of the state of other switch. The logic of switching of bulb resembles					
	(A) AND gate	(B) XOR gate	(C) OR gate	(D) NAND gate		
	(II) III gate	(D) NON gaie	(C) OK gate	(D) MAND gate		
49 .	Time domain expression for the voltage $V_1(t)$ and $V_2(t)$ is given by					
	$V(t) - V sin(10t - 130^{\circ})$ and					
	$v_1(t) = v_m \sin(10t - 150^2)$ and					
	$V_2(t) = V_m \cos(10t + 10^\circ)$ which is the correct statement					
	The anticlockwise d	irection of rotation of p	hasor may be taken as po	sitive.		
	(A) $V_1(t)$ leads V_2	(t) by 130°	(B) $V_1(t)$ lags V_2	(t) by 130°		
	(C) $V_1(t)$ lags $V_2(t)$	$bv - 130^{\circ}$	(D) $V_{i}(t)$ leads V	$V_{2}(t)$ by -130°		
	(0) (10) (0) (0)			2(0)05 100		
50.	In practice earth is a	chosen as a place of zer	o electric potential becaus	se it		
	(A) is non-conducting					
	(B) is easily available	ole reference				
	(C) keeps losing an	d gaining electric charg	ge everyday			
	(D) has almost cons	stant potential	, 			
	(= ,	r				

12

	JAILFUKUW Engineering Success	EE-1	SRO-2015	<u>www.gateforumonline</u>		
51.	Series compensation	on on EHV lines is reso	orted to			
	(A) Improve the s	stability				
	(B) Reduce the fa	ult level				
	(C) Improve the v	voltage profile				
	(D) As a substitut	te for synchronous phas	e modifier			
52.	The magnetic susc	eptibility of a specimer	i is small and positive,	the specimen is		
	(A) Dia magnetic		(B) Ferroma	gnetic		
	(C) Paramagnetic		(D) Non-ma	gnetic		
53 .	The rate of rise of	restriking voltage depe	nds upon			
	(A) The type of circuit breaker					
	(B) Inductance of	f the system only				
	(C) The capacitar	nce of the system only				
	(D) The inductant	ce and capacitance of th	ne system only			
54.	A Digital Volt Me a width of 5μ sec/	eter (DVM) uses 10 MF /volt of unit signal. A 10	Iz clock and has a volution of the second structure of the second	tage controlled generator which prov correspond to a pulse count of		
	(A) 500	(B) 250	(C) 750	(D) 1000		
55 .	In figure shown be	elow, the Peak Inverse	Voltage (PIV) required	for diode is		
			D			
		+	5	10.0		
	300 sii	$n(\omega t)$	Ş	1002		
		-		- 100v		
]			

G	GATEFORUM Engineering Success	EE-ISR(D-2015	www.gateforumonline.com
56.	A practical current sou	rce consists of		
	(A) An ideal current s	source in series with an	impedance	
	(B) An ideal current s	source in parallel with a	n impedance	
	(C) An ideal current s	source with no impedan	ce in series or in p	arallel
	(D) An ideal current s	ource with h.tgh resista	nce in series	
57.	The transient current wave.	in a loss free LC circu	it when excited fi	om an AC source results in sine
	(A) Under damped		(B) Un dam	bed
	(C) Over damped		(D) Criticall	y damped
58.	The transport. layer pr	otocol used for real time	e multimedia file t	ransfer, DNS and e-mail respectively are
	(A) TCP, UDP, UDP	and TCP	(B) UDP, TO	CP, UDP and TCP
	(C) UDP, TCP, TCP	and UDP	(D) TCP, UI	DP, TCP and UDP
59.	Techniques that autom required for execution	natically move program are called	and data blocks ir	to physical main memory when they are
	(A) Main memory tec	hniques	(B) Cache m	emory techniques
	(C) Virtual memory t	echniques	(D) Associat	e memory techniques
60 <mark>.</mark>	Resistors of microproc	cessor (μP) which keep	os track of the exe	cution of program and which contain the
	memory address of ne	xt instruction to be exec	cuted is called	
	(A) Index resistor		(B) Program	counter
	(C) Memory address	resistor	(D) Instructi	on resistor
61.	OS that permits multip	bles programs to run sin	ultaneously using	single processor is referred as
	(A) Multitasking		(B) Multi us	er
	(C) Multithreading		(D) Multipro	ocessing
	© All rights reserved by Thinkcell Le	arning Solutions Pvt. Ltd. No part of th	is booklet may be reproduced	or utilized in any form without the written permission.

G	CATEFORUM	EE-ISR(D-2015	www.gateforumonline.com	
67.	If $x = \sqrt{-1}$ then the	x^{x} value of x^{x} is			
	(A) $e^{-\pi/2}$	(B) x	(C) $e^{\pi/2}$	(D) 1	
68.	For the function f (t) = $e^{-t/\tau}$, the Taylor series	approximation for $t <$	<τ is	
	(A) $1+\frac{t}{\tau}$	(B) $1-\frac{t}{2\tau^2}$	(C) $1-\frac{t}{\tau}$	(D) 1 + t	
69.	If the impedance of	an AC circuit is 10∠60° Ω	2 th <mark>en resistance in th</mark> e	circuit is	
	(A) 5Ω	(B) 10Ω	(C) 8.66Ω	(D) 15Ω	
70.	The dielectric streng	gth of air under normal co	ndition is		
	(A) 100 kV/cm	(B) 150 kV/cm	(C) 30 kV/cm	(D) 50 kV/cm	
	·				
71.	String efficiency of	100% means in string insu	lators		
	(A) Self capacitanc	e is zero	(B) Shunt capacit	tance is maximum	
	(C) Self capacitanc	e is maximum	(D) Shunt capacit	tance is zero	
	To limit comment also		Duralizers (VCD), the as		
12.	(A) Low vapour p	ressure and high conductiv	vity properties	intact material used has	
	(B) High vapour pressure and high conductivity properties				
	(C) High vapour pressure and low conductivity properties				
	(D) The inductance	e and capacitance of the sy	stem only		
73.	In a three phase fou	r wire unbalanced system	, the current in the neu	tral wire is 18 A. The magnitude of	
	zero sequence curre	nt is			
	(A) 18 A	(B) 6 A	(C) 9 A	(D) 3 A	

	GALEFURUM Engineering Success	EE-ISRO-2015	www.gateforumonline.com					
74.	The positive (Z_1) , negative (Z_2) and zero (Z_0) sequence impedance of a solidly grounded system							
	under steady state condition always follow the relation							
	(A) $Z_1 > Z_2 > Z_0$	(B) $Z_1 > Z_2 < Z_0$						
	(C) $Z_1 < Z_2 < Z_0$	(D) $Z_0 > Z_1 > Z_2$						
5.	Eddy current loss in core of a trans	former is						
	(A) Directly proportional to resist	ivity of core material						
	(B) Directly proportional to squar	e of resistivity of core material						
	(C) Inversely proportional to squa	re of resistivity of core material						
	(D) Inversely proportional to resist	tivity of core material						
6.	The square root of $64 \angle 36^{\circ}$							
	(A) $8 \angle 6^{\circ}$ (B) $8 \angle 1$	8° <mark>(C) 8∠36° (</mark> I	D) 8∠8°					
7.	Match the correct pairs:							
	Numerical integration scheme	Order of fitting polynomials						
	P. Simpson's 3/8 rule	1. First order	- 20 C					
	P. Simpson's 3/8 ruleQ. Trapezoidal rule	1. First order 2. Second order	2					
	 P. Simpson's 3/8 rule Q. Trapezoidal rule R. Simpson's 1/3 rule 	1. First order 2. Second order 3. Third order						
	 P. Simpson's 3/8 rule Q. Trapezoidal rule R. Simpson's 1/3 rule (A) P-2, Q-1, R-3 	1.First order2.Second order3.Third order(B)P-1, Q-2, R-3						
	 P. Simpson's 3/8 rule Q. Trapezoidal rule R. Simpson's 1/3 rule (A) P-2, Q-1, R-3 (C) P-3, Q-2, R-1 	1. First order 2. Second order 3. Third order (B) P-1, Q-2, R-3 (D) P-3, Q-1, R-2						
	 P. Simpson's 3/8 rule Q. Trapezoidal rule R. Simpson's 1/3 rule (A) P-2, Q-1, R-3 (C) P-3, Q-2, R-1 	1.First order2.Second order3.Third order(B)P-1, Q-2, R-3 (D)(D)P-3, Q-1, R-2						
	 P. Simpson's 3/8 rule Q. Trapezoidal rule R. Simpson's 1/3 rule (A) P-2, Q-1, R-3 (C) P-3, Q-2, R-1 	1. First order2. Second order3. Third order(B) P-1, Q-2, R-3 (D) P-3, Q-1, R-2						
78.	 P. Simpson's 3/8 rule Q. Trapezoidal rule R. Simpson's 1/3 rule (A) P-2, Q-1, R-3 (C) P-3, Q-2, R-1 What is Laplace Transform of (single) 	1. First order 2. Second order 3. Third order (B) P-1, Q-2, R-3 (D) P-3, Q-1, R-2 h (at))?						
78 <mark>.</mark>	P. Simpson's 3/8 rule Q. Trapezoidal rule R. Simpson's 1/3 rule (A) P-2, Q-1, R-3 (C) P-3, Q-2, R-1 What is Laplace Transform of (sin (A) $\frac{s}{\sqrt{2}+2}$ (B) $\frac{1}{\sqrt{2}}$	1. First order2. Second order3. Third order(B) P-1, Q-2, R-3 (D) P-3, Q-1, R-2(b) P-3, Q-1, R-2(c) $\frac{a}{(2+2)}$ (c) $\frac{a}{(2+2)}$	$(1) \frac{S}{(2-2)}$					
78.	P.Simpson's 3/8 ruleQ.Trapezoidal ruleR.Simpson's 1/3 rule(A)P-2, Q-1, R-3(C)P-3, Q-2, R-1What is Laplace Transform of (sin(A) $\frac{s}{(s^2 + a^2)}$ (B) $\frac{s}{(s^2 - a^2)}$	1.First order2.Second order3.Third order(B)P-1, Q-2, R-3 (D)P-3, Q-1, R-2(a)(C) $\frac{a}{(s^2 + a^2)}$	D) $\frac{s}{(s^2 - a^2)}$					
78.	P.Simpson's 3/8 ruleQ.Trapezoidal ruleR.Simpson's 1/3 rule(A)P-2, Q-1, R-3(C)P-3, Q-2, R-1What is Laplace Transform of (sin $\left(A\right)$ $\frac{s}{\left(s^2 + a^2\right)}$ (B) $\frac{s}{\left(s^2\right)}$	1.First order2.Second order3.Third order(B)P-1, Q-2, R-3 (D)P-3, Q-1, R-2(a)(C) $\frac{a}{(s^2 + a^2)}$ (I)(I)	$(s) = \frac{s}{(s^2 - a^2)}$					
'8.	P.Simpson's 3/8 ruleQ.Trapezoidal ruleR.Simpson's 1/3 rule(A)P-2, Q-1, R-3(C)P-3, Q-2, R-1What is Laplace Transform of (sin $\left(A\right) \frac{s}{\left(s^2 + a^2\right)}$ (B) $\left(A\right)$ $\frac{s}{\left(s^2 + a^2\right)}$	1.First order2.Second order3.Third order(B)P-1, Q-2, R-3 (D)P-3, Q-1, R-2(a)(C) $\frac{a}{(s^2 + a^2)}$ (C) $\frac{a}{(s^2 + a^2)}$	$(s) = \frac{s}{(s^2 - a^2)}$					
78.	P. Simpson's 3/8 rule Q. Trapezoidal rule R. Simpson's 1/3 rule (A) P-2, Q-1, R-3 (C) P-3, Q-2, R-1 What is Laplace Transform of (sin (A) $\frac{s}{(s^2 + a^2)}$ (B) $\frac{1}{(s^2 + a^2)}$	1. First order2. Second order3. Third order(B) P-1, Q-2, R-3 (D) P-3, Q-1, R-2(b) P-3, Q-1, R-2(c) $\frac{a}{(s^2 + a^2)}$ (I	D) $\frac{s}{(s^2 - a^2)}$					

GATEFORUM Engineering Success

| EE-ISRO-2015|

- **79.** If a phasor is multiplied by j then
 - (A) Only its magnitude changes
 - (B) Only its direction changes
 - (C) Both magnitude and direction changes
 - (D) Both magnitude and direction remains unchanged

80. If two complex numbers are equal

- (A) Only their magnitude will be equal
- (B) Only their angles will be equal
- (C) Their in phase and quadrature components will be separately equal
- (D) Only their angles will not be equal

Soc