G	GATEFORUM Engineering Success	BT-GA1	re-2022	www.gateforumonline.com
		GENER	AL APTITUDI	E
		<u>Q. No. 1 - 5 Ca</u>	arry One Mark	<u>Each</u>
1.	You should	when to say		
	(A) no/no	(B) no / know	(C) know	/ know (D) know / no
Answ	ver: (D)			Click here to watch video explanat
2.	Two straight lines	pass through the origin	$(x_0, y_0) = (0, 0)$)). One of them passes through the p
	$(x_1, y_1) = (1, 3)$ and	the other passes through	the point (x, y_2)) = (1, 2).
	What is the area end	closed between the straight	nt lines in the int	terval [0, 1] on the <i>x</i> -axis?
	(A) 0.5	(B) 1.0	(C) 1.5	(D) 2.0
Answ	ver: (A)			Click here to watch video explanat
3.	If			
	<i>p</i> : <i>q</i> = 1 : 2			
	<i>q</i> : <i>r</i> = 4 : 3			
	<i>r:s</i> = 4 : 5			
	and <i>u</i> is 50% more	than <i>s</i> , what is the ratio <i>p</i>	:u?	
	(A) 2:15	(B) 16:15	(C) 1:5	(D) 16: 45
Answ	ver: (D)			Click here to watch video explanat
4.	Given the statemen			
	• P is the sister of			
	• Q is the husba			
	• R is the mothe			
	• T is the husbar			
		information, T is		
	(A) the grandfathe	r (B) an uncle	(C) the fa	
Answ	ver: (B)			Click here to watch video explanat

1

|BT-GATE-2022|

www.gateforumonline.com

5. In the following diagram, the point R is the center of the circle. The lines PQ and ZV are tangential to the circle. The relation among the areas of the squares, PXWR, RUVZ and SPQT is

- (A) Area of SPQT = Area of RUVZ = Area of PXWR
- (B) Area of SPQT = Area of PXWR Area of RUVZ
- (C) Area of PXWR = Area of SPQT Area of RUVZ
- (D) Area of PXWR = Area of RUVZ Area of SPQT

Answer: (B)

GATEFORUM

Click here to watch video explanation

Q.No. 6-10 Carry Two Marks Each

6. Healthy eating is a critical component of healthy aging. When should one start eating healthy? It turns out that it is never too early. For example, babies who start eating healthy in the first year are more likely to have better overall health as they get older.

Which one of the following is the CORRECT logical inference based on the information in the above passage?

- (A) Healthy eating is important for those with good health conditions, but not for others
- (B) Eating healthy can be started at any age, earlier the better
- (C) Eating healthy and better overall health are more correlated at a young age, but not older age
- (D) Healthy eating is more important for adults than kids

 Answer:
 (B)

 Click here to watch video explanation

7. P invested ₹ 5000 per month for 6 months of a year and Q invested ₹ x per month for 8 months of the year in a partnership business. The profit is shared in proportion to the total investment made in that

year. If at the end of that investment year, Q receives $\frac{4}{9}$ of the total profit, what is the value of x (in \gtrless)?

(A) 2500 (B) 3000 (C) 4687 (D) 8437

Answer: (B)

Click here to watch video explanation

GATEFORUM Engineering Success

|BT-GATE-2022|

www.gateforumonline.com

BIOTECHNICAL ENGINEERING

Q.No. 11–35 Carry One Mark Each

11. What is the order of the differential equation given below? $\frac{d^2y}{dx^2} - 6x = 3x^4 - 2x^3 + 2$ (A) 1 (B) 2 (C) 3 (D) 4 **Click here to watch video explanation** Answer: (B) If the eigenvalues of a 2×2 matrix P are 4 and 2, then the eigenvalues of the matrix P⁻¹ are 12. (B) 0.0625, 0.25 (C) 0.25, 0.5 (D) 2,4 (A) 0,0 Click here to watch video explanation Answer: **(C)**

Foradouble-pipeheatexchanger, the inside and outside heat transfer coefficients are 100 and 200 W m⁻² K⁻¹, 13. respectively. The thickness and thermalconductivity of the thin-walled inner pipe are 1 cm and 10 W m⁻¹ K^{-1} , respectively. The value of the overall heat transfercoefficientis $W m^{-2}K^{-1}$. (A) 0.016 (B) 42.5 (C) 62.5 (D) 310

Answer: (C)

14. Match the media component (Column I) with its role (Column II).

Column I		Column II
P. Sucrose	1.	Anti-foam agent
Q. Zinc chloride	2.	Nitrogen source
R. Ammonium sulphate	3.	Carbon source
S. Silicone oil	4.	Trace element
(A) P-1, Q-2, R-3, S-4		(B) P-2, Q-1, R-3, S-4
(C) P-3, Q-2, R-4, S-1		(D) P-3, Q-4, R-2, S-1
er: (D)		Click here t

Click here to watch video explanation

The binding free energy of a ligand to its receptor protein is -11.5 kJ mol ⁻¹ at 300 K. What is the valu of the equilibrium binding constant?						
Use $R = 8.314 \text{ J mol}^{-1}$	K ⁻¹ .					
(A) 0.01	(B) 1.0	(C) 4.6	(D) 100.5			
(D)		Click	here to watch video explanation			
(D)		Click	here to watch video explanation			
In binomial nomenclat peingcapitalized. (A) first	ure, the name of a bacteri (B) second		h the first letter ofword(s (D) first and second			
peingcapitalized.	(B) second	(C) neither	h the first letter ofword(s) (D) first and second here to watch video explanation			
peingcapitalized. (A) first (A)	(B) second	(C) neither	(D) first and second			
peingcapitalized. (A) first (A)	 (B) second id present in λ – phage is 	 (C) neither Click (B) Single stranded 	(D) first and second here to watch video explanation d circular DNA			
 peingcapitalized. (A) first (A) (A) (A) (A) (A) (C) (C	 (B) second d present in λ – phage is DNA 	 (C) neither Click (B) Single stranded (D) Single stranded 	(D) first and second here to watch video explanation d circular DNA d RNA			
 peingcapitalized. (A) first (A) (A	 (B) second d present in λ – phage is DNA 	 (C) neither Click (B) Single stranded (D) Single stranded 	(D) first and second here to watch video explanation d circular DNA			
 peingcapitalized. (A) first (A) (A) The type of nucleic acidities (A) Double stranded I (C) Single stranded D (A) 	(B) second d present in λ – phage is DNA NA	 (C) neither Click (B) Single stranded (D) Single stranded Click 	(D) first and second here to watch video explanation d circular DNA d RNA here to watch video explanation			
peingcapitalized. (A) first (A) The type of nucleic aci (A) Double stranded I (C) Single stranded D (A) Which of the following	 (B) second id present in λ – phage is DNA NA g statements about reversil 	 (C) neither Click (B) Single stranded (D) Single stranded Click 	(D) first and second here to watch video explanation d circular DNA d RNA here to watch video explanation are CORRECT?			
peingcapitalized. (A) first (A) The type of nucleic aci (A) Double stranded I (C) Single stranded D (A) Which of the following P. Uncompetitive inl	(B) second (d present in λ – phage is DNA NA g statements about reversil hibitors bind only to the er	 (C) neither Click (B) Single stranded (D) Single stranded Click 	(D) first and second here to watch video explanation d circular DNA d RNA here to watch video explanation are CORRECT? olex			
peingcapitalized. (A) first (A) (A) The type of nucleic aci (A) Double stranded I (C) Single stranded D (A) Which of the following P. Uncompetitive inl Q. Non-competitive	(B) second Id present in λ – phage is DNA PNA g statements about reversil hibitors bind only to the en-	 (C) neither Click (B) Single stranded (D) Single stranded Click 	(D) first and second here to watch video explanation d circular DNA d RNA here to watch video explanation are CORRECT? olex			
peingcapitalized. (A) first (A) (A) The type of nucleic aci (A) Double stranded I (C) Single stranded D (A) Which of the following P. Uncompetitive inl Q. Non-competitive	(B) second (d present in λ – phage is DNA NA g statements about reversil hibitors bind only to the er	 (C) neither Click (B) Single stranded (D) Single stranded Click 	(D) first and second here to watch video explanation d circular DNA d RNA here to watch video explanation are CORRECT? olex			
	of the equilibrium bind Jse R = $8.314 \text{ J} \text{ mol}^{-1}$ A) 0.01 (D) The overall stoichiome $3C_6H_{12}O_6 + 2.5NH_3 + 300$ What is the elemental of A) $C_9H_{18.2}O_5N_{1.667}$	of the equilibrium binding constant? Jse R = 8.314 J mol ⁻¹ K ⁻¹ . A) 0.01 (B) 1.0 (D) The overall stoichiometry for an aerobic cell group $BC_6H_{12}O_6 + 2.5NH_3 + O_2 \rightarrow 1.5C_aH_bO_cN_d + 32$ What is the elemental composition formula of the A) $C_9H_{18.2}O_5N_{1.667}$ (B) $C_9H_{22.33}O_6N_{1.667}$	of the equilibrium binding constant? Jse R = 8.314 J mol ⁻¹ K ⁻¹ . A) 0.01 (B) 1.0 (C) 4.6 (D) Click Che overall stoichiometry for an aerobic cell growth is $3C_6H_{12}O_6 + 2.5NH_3 + O_2 \rightarrow 1.5C_aH_bO_cN_d + 3CO_2 + 5H_2O$ What is the elemental composition formula of the biomass? A) $C_9H_{18.2}O_5N_{1.667}$ (B) $C_9H_{22.33}O_6N_{1.667}$ (C) $C_{10}H_{18.2}O_5N_{1.667}$			

GATEFORUM **|BT-GATE-2022|** www.gateforumonline.com 20. Match the component of eukaryotic cells (Column I) with its respective function (Column II). **Column I Column II P.** Lysosome 1. Digestion of macromolecules 2. **Q.** Peroxisome Detoxification of harmful compounds **R.** Glyoxysome 3. Conversion of fatty acids to sugar S. Cytoskeleton 4. Involvement in cell motility (A) P-1, Q-2, R-3, S-4 (B) P-2, Q-1, R-3, S-4 (C) P-3, Q-1, R-2, S-4 (D) P-4, Q-3, R-1, S-2 **Answer: Click here to watch video explanation (A)** 21. In animal cells, the endogenously produced miRNAs silence gene expression by (A) base pairing with the 3'-untranslated region of specific mRNAs (B) blocking mRNA synthesis (C) binding to the operator site (D) base pairing with the 3' region of specific rRNAs Click here to watch video explanation Answer: **(A)** _____ 22. Terpenoids are made of _____ units (D) triacylglycerol (A) amino acid (B) carbohydrate (C) isoprene **Click here to watch video explanation Answer: (C)** 23. Match the microbial product (Column I) with its respective application (Column II). **Column I Column II P.** Methane **1.** Biosurfactant **Q.** Glycolipids 2. Bioplastic **R.** Polyhydroxy alkanoate **3.** Biofuel (A) P-1, Q-2, R-3 (B) P-2, Q-1, R-3 (C) P-3, Q-2, R-1 (D) P-3, Q-1, R-2 Click here to watch video explanation Answer: **(D)** _____

(/ Answer: 25. T ir (/ Answer: 26. A cl o: (/	 A) Gap penalties C) Mismatch scores (D) The recognition sequences of findicates the cleavage site. Ident A) RE1 - 5 G[↓]GATCC 3' C) RE3 - 5 CCC[↓]GGG3' (A) Among individuals in a hun hromosomes. These variations f the following technique is use A) Polymerase dependent frag 	
((Answer: 25. T ir (2 (0 Answer: 26. A cl o: (2	 C) Mismatch scores (D) The recognition sequences of findicates the cleavage site. Ident A) RE1 - 5 G[↓]GATCC 3' C) RE3 - 5 CCC[↓]GGG3' (A) Among individuals in a hun hromosomes. These variations f the following technique is use A) Polymerase dependent frag 	(D) Nucleotide composition Click here to watch video explanation Cour Type-II restriction enzymes (RE) are given below. The symbol (\downarrow) tify the RE that generates sticky ends. (B) RE2 - 5 CTG ^{\downarrow} CAG3' (D) RE4 - 5 AG ^{\downarrow} CT3' Click here to watch video explanation nan population, minor variations exist in nucleotide sequences of can lead to gain or loss of sites for specific restriction enzymes. Which ed to identify such variations?
Answer: 25. T ir (2 (0 Answer: 26. A cl o: (2	 (D) The recognition sequences of findicates the cleavage site. Ident A) RE1 - 5' G[↓]GATCC 3' C) RE3 - 5' CCC[↓]GGG3' (A) Among individuals in a hun hromosomes. These variations f the following technique is use A) Polymerase dependent frag 	Click here to watch video explanation our Type-II restriction enzymes (RE) are given below. The symbol (\downarrow) tify the RE that generates sticky ends. (B) RE2 - 5 CTG ^{\downarrow} CAG3' (D) RE4 - 5 AG ^{\downarrow} CT3' Click here to watch video explanation nan population, minor variations exist in nucleotide sequences of can lead to gain or loss of sites for specific restriction enzymes. Which ed to identify such variations?
25. T ir (2 ((Answer: 26. A cl o: (2	The recognition sequences of f ndicates the cleavage site. Ident A) RE1 - 5 G↓GATCC 3' C) RE3 - 5 CCC↓GGG3' (A) Among individuals in a hun hromosomes. These variations f the following technique is use A) Polymerase dependent frag	four Type-II restriction enzymes (RE) are given below. The symbol (↓) tify the RE that generates sticky ends. (B) RE2 - 5 CTG [↓] CAG3' (D) RE4 - 5 AG [↓] CT3' Click here to watch video explanation nan population, minor variations exist in nucleotide sequences of can lead to gain or loss of sites for specific restriction enzymes. Which ed to identify such variations?
ir (4 ((Answer: 26. A cl o: (4	A) RE1 - 5 G↓GATCC 3' C) RE3 - 5 CCC↓GGG3' (A) Among individuals in a hun hromosomes. These variations f the following technique is use A) Polymerase dependent frag	tify the RE that generates sticky ends. (B) RE2 - 5 CTG \downarrow CAG3' (D) RE4 - 5 AG \downarrow CT3' Click here to watch video explanation nan population, minor variations exist in nucleotide sequences of can lead to gain or loss of sites for specific restriction enzymes. Which ed to identify such variations?
((Answer: 26. A cl o: (2	C) RE3 - 5 CCC↓GGG3' (A) Among individuals in a hun hromosomes. These variations f the following technique is use A) Polymerase dependent frag	 (D) RE4 - 5 AG[↓]CT3' Click here to watch video explanation nan population, minor variations exist in nucleotide sequences of can lead to gain or loss of sites for specific restriction enzymes. Which ed to identify such variations?
Answer: 26. A cl o: (2	(A) among individuals in a hun hromosomes. These variations f the following technique is use A) Polymerase dependent frag	Click here to watch video explanation nan population, minor variations exist in nucleotide sequences of can lead to gain or loss of sites for specific restriction enzymes. Which ed to identify such variations?
Answer: 26. A cl o: (2	(A) among individuals in a hun hromosomes. These variations f the following technique is use A) Polymerase dependent frag	Click here to watch video explanation nan population, minor variations exist in nucleotide sequences of can lead to gain or loss of sites for specific restriction enzymes. Which ed to identify such variations?
26. A cl o (2	Among individuals in a hun hromosomes. These variations f the following technique is use A) Polymerase dependent frag	can lead to gain or loss of sites for specific restriction enzymes. Which ed to identify such variations?
	 B) Real-time polymerase chain C) Restriction fragment length D) Reverse transcriptase polyr (C) 	n reaction n polymorphism
	e .	ntandnorecombination, the number of different combinations of maternal number of an organism with a diploid number of 12 is
Answer:	(64)	Click here to watch video explanation
y re	ield is $0.5 \frac{\text{g biomass}}{\text{g substrate}}$. The initial	a batch culture using glucose as a carbon source. The apparent growth itial concentrations of biomass and substrate are 2 g L ⁻¹ and 200 g L ⁻¹ , there is no endogenous metabolism, the maximum biomass concentration $g L^{-1}$.
Answer:	(102)	Click here to watch video explanation

C	GATEFORUM Engineering Success	BT-GATE-2022	www.gateforumonline.com
29.	The degree of reduction of	f lactic acid($C_3H_6O_3$) is	
Ansy	vor: (1)		Click here to watch video explanation
30.	Consider an on linear a	lgebraic equation, $x \ln x + x - 1 = 0$.	Using the Newton- Raphson method,
	with the initial guess of	$x_0 = 3$, the value of \square after one in	teration(roundedofftoonedecimalplace)is
Ansy	wer: (1.3)		Click here to watch video explanation
31.	The probability density f		$p(x) = 2e^{-2x}$. The probability $P(1 \le X \le 2)$
Ansy	wer: (0.12)		Click here to watch video explanation
32.		e function $f(x) = 3x^2 - 2x^3$ for $x > 0$ is	
			Click here to watch video explanation
33 .	The specific growth rate of h ⁻¹ .	of a yeast having a dou <mark>bling time o</mark>	f 0.693 h (rounded off to nearestinteger)is
Ansv	wer: (1)		Click here to watch video explanation
34.		ity1000kgm ⁻³ andviscosity10 ⁻³ kgm ⁻¹ s ing at a speed of 2s ⁻¹ . The impeller R	s ⁻¹ ismixed in a 100 L fermenter using a 0.1 Reynoldsnumberis
Ansy	wer: (20000)		Click here to watch video explanation
35.	For a pure species, the slo	be of the melting line	
	$\frac{dp}{dT}$ at $-2^{\circ}C$ is -5.0665×1	0° PaK.	
		e molar volumes of the liquid and so	lid phase at
	-2 °C is -4.5×10^{-6} m ³ mc		
		t of fusion (rounded off to nearest in	
Ansv	wer: (6179)		Click here to watch video explanation

	Column I	Column II	
	P. Hydrocortisone	1. Mitogen	
	Q. Fibronectin	2. Vitamin	
	R. Epidermal growth factor	3. Hormone	
	S. Riboflavin	4. Cell attachment	
	(A) P-3, Q-4, R-1, S-2	(B) P-3, Q-4, R-2, S-1	
	(C) P-4, Q-3, R-1, S-2	(D) P-4, Q-3, R-2, S-1	
Answer	r: (A)	Click here to watch video explana	tion

38. Match the cell type (Column I) with its function (Column II).

	Column I	Column II 1. Humoral immunity	
P. B	cells		
Q. N	leutrophils	2.	Cytotoxicity
R. T	cells	3.	Histamine-associated allergy
S. M	fast cells	4.	Phagocytosis
(A) P-1	l, Q-2, R-3, S-4	(B) P-1, Q-4, R-2, S-3	
(C) P-4	4, Q-3, R-1, S-2		(D) P-4, Q-3, R-2
nswer: (B))		Clic

C CATEFORUM Engineering Success

|BT-GATE-2022|

www.gateforumonline.com

39.	A 2×2 matrix P ha	as an eigenvalue $\lambda_1 = 2$	with eigenvector $\mathbf{x}_1 = \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$ and another eigenvalue $\lambda_2 =$
	with eigenvector x_2	$= \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. The matrix P is		
	$(A) \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix}$	$(B) \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$	$(\mathbf{C}) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$(D) \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
Answ	ver: (B)		Clic	ck here to watch video explanatio
A115 w	(ci , (b)		Circ	

40. Match the stationary phase (Column I) with its corresponding chromatography technique (Column II).

Column I	Column II	
P. Protein A	1. Size exclusion chromatography	
Q. Sephadex	2. Ion-exchange chromatography	
R. Phenylsepharose	3. Affinity chromatography	
S. Diethylaminoethyl cellulose	4. Hydrophobic interaction chromatography	
(A) P-1, Q-4, R-2, S-3	(B) P-3, Q-1, R-4, S-2	
(C) P-3, Q-4, R-2, S-1	(D) P-4, Q-1, R-3, S-2	
nswer: (B)	Click here to watch video explana	

41. Which of the following statements are CORRECT for a controller?

- **P.** In a proportional controller, a control action is proportional to the error
- **Q.** In an integral controller, a control action is proportional to the derivative of the error
- **R.** There is no "offset" in the response of the closed-loop first-order process with a proportional controller
- **S.** There is no "offset" in the response of the closed-loop first-order process with a proportionalintegral controller
- (A) P and Q only (B) P and R only (C) P and S only (D) Q and S only

Answer: (C)

@ All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission

Click here to watch video explanation

C		ORUM Ig Success	BT-GAT	re-2022	www.gateforumonline.com			
42.	Wh	Which of the following are CORRECT about protein structure?						
	Р.	Secondary strue backbone atoms	•	repeating pattern of in	teractions among the polypeptide			
	Q.	Tertiary structur	re is the three-dimension	al arrangement of the po	lypeptide backbone atoms only			
	R.	Quaternary struc	cture refers to an assemb	ly of multiple polypeptic	de subunits			
	(A)	- •	(B) P and R only	· · · •				
Ans	wer:	(B)		Click	c here to watch video explanation			
43 <mark>.</mark>	The	e enzymes involve	ed in ubiquitinylation of	cell-cycle proteins are				
	(A)		(B) E_1 and E_3 only					
Ans	wer:	(D)		Click	x here to watch video explanation			
44.		The maximum parsimony method is used to construct a phylogenetic tree for a set of sequences. Which one of the following statements about the method is CORRECT?						
	(A)	It predicts the tr	ee that minimizes the ste	eps required to generate t	he observed variations			
	(B)	It predicts the tr	ree that maximizes the ste	eps required to generate	the observed variations			
	(C)	It predicts the tr	ee with the least number	of branch points				
	(D)	It employs prob	ability calculations to ide	entify the tree				
Ans	wer:			Click	x here to watch video explanation			
45.			ing spectroscopic technic		ntify all the functional groups of an			
	Р.	Infrared						
	Q.	Circular dichroi	sm					
	R.	Nuclear magnet	ic resonance					
	S.	UV-Visible						
	(A)	P only		(B) P and R only				
	(C)	P, Q and R only	,	(D) P, Q, R and S				
Ans	wer:	(B)		Click	x here to watch video explanation			

C	GATEFORUM Engineering Success	BT-GATE-2022	www.gateforumonline.com
46.	÷ ^	neous change to hypoxanthine is bination of enzymes that are invol	n a cell, leading to a DNA base pair ved in repairing this damage is
	(A) Nuclease, DNA polymerase	e, DNA ligase (B) Nuclease,	DNA ligase, helicase
	(C) Primase, DNA polymerase,	DNA ligase (D) Primase, h	elicase, DNA polymerase
Answ	ver: (A)		lick here to watch video explanation
47 <mark>.</mark>	Consider the ordinary different	ial equation $\frac{dy}{dx} = f(x, y) = 2x^2 - $	y^2 . If $y(1)=1$, the value (s) of $y(1.5)$,
	using the Euler's implicit method	$d\left[y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})\right]$ wit	h a step size of h=0.5, is (are)
	(A) $-1-5\sqrt{0.3}$	(B) $-1+5\sqrt{0.3}$	3
	(C) $1+5\sqrt{0.3}$	(D) $1-5\sqrt{0.3}$	
Answ	ver: (A, B)	C	lick here to watch video explanation
48 .	Which of the following statemen	its are CORRECT for an enzyme	entrapped in a spherical particle?
	(A) Effectiveness factor is ratio diffusion-limitation	of the reaction rate with diffusion	n-limitation to the reaction rate without
	(B) Internal diffusion is rate-lin	niting at low values of Thiele mod	lulus
	(C) Effectiveness factor increas	es with decrease in Thiele modul	15
	(D) Internal diffusion-limitation	a can be reduced by decreasing the	e size of the particle
Answ	wer: (A, C, D)	С	lick here to watch video explanation
49 <mark>.</mark>		OMMON feature(s) for both aero	bic and anaerobic bacterial cultures?
	(A) Glycolysis		
	(B) NAD^+ is the oxidising agen	t	
	(C) Oxidative phosphorylation		
	(D) Two net ATP molecules for		
Answ	wer: (A, B)	C	lick here to watch video explanation

 GATEFORUM
 |BT-GATE-2022|

 Engineering Success
 |

50. Which of the following plot(s) is(are) CORRECT for an enzyme that obeys Michaelis-Menten kinetics, assuming $[S] \ll K_m$?

[S] is the concentration of the substrate, K_m is the Michaelis constant, and v_0 is the initial reaction velocity.

- **51.** Which of the following statement(s) is(are) CORRECT regarding the lac operon in E. coli when grown in the presence of glucose and lactose?
 - (A) At low glucose level, the operon is activated
 - (B) At high glucose level, the operon is activated to enable the utilization of lactose
 - (C) The lac repressor binds to operator region inactivating the operon
 - (D) Binding of lactose to the lac repressor induces the operon

Answer: (A, C)

Click here to watch video explanation

- **52.** Emerging viruses such as SARS-CoV2 cause epidemics. Which of the following process(es) contribute to the rise of such viruses?
 - (A) Mutation of existing virus
 - (B) Jumping of existing virus from current to new hosts
 - (C) Spread of virus in the new host population
 - (D) Replication of virus outside a host

Answer: (A, B, C)

Click here to watch video explanation

53. Introduction of foreign genes into plant cells can be carried out using (A) Agrobacterium (B) CaCl ₂ mediated plasmid uptake (C) Electroporation (D) Gene gun Answer: (A, C, D) Click here to watch video explanation 54. Which of the following statement(s) regarding trafficking in eukaryotic cells is(are) CORRECT? (A) Dynamin binds GTP and is involved in vesicle budding. (B) Dynamin is involved in cytoskeletal remodeling (C) Dynein binds ATP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules Answer: (A, C) Click here to watch video explanation 55. Consider a random variable X with mean $\mu_x = 0.1$ and variance $\sigma_z^2 = 0.2$. A new random variable Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_1>0$ and $x_2>0$, the value of $\lim_{x_1 \to x_2} \frac{x_1 - x_2}{x_2 \ln \left(\frac{x_1}{x_2}\right)}$ is Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript '1' refers to intracellular metabolites. r_j is the j th reaction flux in $\frac{g}{(g dry mass)h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_i = 4, r_5 = 1 and r_6 = 1$. The transport flux of B, r_x is $\underline{\frac{g}{(g dry mass)h}}$. Answer: (2) Click here to watch video explanation	€	ATEFORUM gineering Success	BT-GATE-2022	<u>www.gateforumonline.com</u>
(c) Electroporation (D) Gene gun Answer: (A, C, D) Click here to watch video explanation 54. Which of the following statement(s) regarding trafficking in eukaryotic cells is(are) CORRECT? (A) Dynamin binds GTP and is involved in vesicle budding (B) Dynamin is involved in cytoskeletal remodeling (C) Dynein binds ATP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules Answer: (A, C) Click here to watch video explanation 55. Consider a random variable X with mean $\mu_X = 0.1$ and variance $\sigma_i^2 = 0.2$. A new random variable Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_1>0$ and $x_2>0$, the value of $\lim_{x_1 \to x_2} \frac{x_1 - x_2}{x_2 \ln \left(\frac{x_1}{x_2}\right)}$ is Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolics and transport reactions taking place in the production of B from A in a cell. The subscript 'i' refers to intracellular metabolites. r_1 is the j th reaction flux in $\frac{g}{(g dry mass)h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_1 = 4, r_1 = 1$ and $r_6 = 1$. The transport flux of B, r_4 is $\underline{-\frac{g}{(g dry mass)h}}$. Click here to watch video explanation Click here to watch video explanation Click here to watch video explanation The transport flux of B, r_4 is $\underline{-\frac{g}{(g dry mass)h}}$.	53.	Introduction of foreign gene	s into plant cells can be carried out us	sing
Answer: (A, C, D) Click here to watch video explanation 54. Which of the following statement(s) regarding trafficking in eukaryotic cells is(are) CORRECT? (A) Dynamin binds GTP and is involved in vesicle budding (B) Dynamin is involved in cytoskeletal remodeling (C) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules Answer: (A, C) Click here to watch video explanation 55. Consider a random variable X with mean $\mu_X = 0.1$ and variance $\sigma_1^2 = 0.2$. A new random variable Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) 56. For $x_1 > 0$ and $x_2 > 0$, the value of $\lim_{x_1 \to x_2} \frac{x_1 - x_2}{x_2 \ln \left(\frac{x_1}{x_2}\right)}$ is Answer: (1) 57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript '1' refers to intracellular metabolites. r_j is the j th reaction flux in $\frac{g}{(g dy mass)h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_j = 4, r_j = 1 \text$		(A) Agrobacterium	(B) $CaCl_2$ me	diated plasmid uptake
54. Which of the following statement(s) regarding trafficking in eukaryotic cells is(are) CORRECT? (A) Dynamin binds GTP and is involved in vesicle budding (B) Dynamin is involved in cytoskeletal remodeling (C) Dynein binds ATP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules Answer: (A, C) Click here to watch video explanation 55. Consider a random variable X with mean $\mu_X = 0.1$ and variance $\sigma_x^2 = 0.2$. A new random variable Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_1>0$ and $x_2>0$, the value of $\lim_{x_1 \to x_2} \frac{x_1 - x_2}{x_2 \ln(\frac{x_1}{x_2})}$ is Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript 'i' refers to intracellular metabolites. r_j is the j th reaction flux in $\frac{g}{(g dry mass)h}$. Under pseudo-steady-state condition, the $r_1 = 4, r_2 = 1 \text{ and } r_6 = 1$. The transport flux of B, r_1 is $\underline{\qquad \frac{g}{(g dry mass)h}}$. Click here to watch video explanation Answer: (2)		(C) Electroporation	(D) Gene gun	I. Contraction of the second se
(A) Dynamin binds GTP and is involved in vesicle budding (B) Dynamin is involved in cytoskeletal remodeling (C) Dynein binds ATP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in microtubules (D) Dynein bi	Answe	er: (A, C, D)		Click here to watch video explanation
(B) Dynamin is involved in cytoskeletal remodeling (C) Dynein binds ATP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules Answer: (A, C) Click here to watch video explanation 55. Consider a random variable X with mean $\mu_X = 0.1$ and variance $\sigma_x^2 = 0.2$. A new random variable Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_1>0$ and $x_2>0$, the value of $\lim_{x_1 \to x_2} \frac{x_1 - x_2}{x_2 \ln \left(\frac{x_1}{x_2}\right)}$ is Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolics x_1 is the j th reaction flux in $\frac{g}{(g \text{ dry mass})h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_1 = 4, r_3 = 1 \text{ and } r_6 = 1$. The transport flux of B, r_4 is $\underline{\qquad \frac{g}{(g \text{ dry mass})h}}$. Answer: (2) Click here to watch video explanation	54.	Which of the following state	ement(s) regarding trafficking in euka	aryotic cells is(are) CORRECT?
(C) Dynein binds ATP and is involved in movement of organelles along microtubules (D) Dynein binds GTP and is involved in movement of organelles along microtubules Answer: (A, C) Click here to watch video explanation 55. Consider a random variable X with mean $\mu_X = 0.1$ and variance $\sigma_x^2 = 0.2$. A new random variable Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_1>0$ and $x_2>0$, the value of $\lim_{x_1\to x_2} \frac{x_1-x_2}{x_2 \ln(\frac{x_1}{x_2})}$ is Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript 'i' refers to intracellular metabolites. r_1 is the j th reaction flux in $\frac{g}{(g dry mass)h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_1 = 4, r_3 = 1 \text{ and } r_6 = 1$. The transport flux of B, r_4 is $\qquad \qquad $		(A) Dynamin binds GTP an	d is involved in vesicle budding	
(b) Bynein binds GTP and is involved in movement of organelles along microtubules Answer: (A, C) Click here to watch video explanation 55. Consider a random variable X with mean $\mu_X = 0.1$ and variance $\sigma_x^2 = 0.2$. A new random variable Y = 2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_1 > 0$ and $x_2 > 0$, the value of $\lim_{x_1 \to x_2} \frac{x_1 - x_2}{x_2 \ln \left(\frac{x_1}{x_2}\right)}$ is Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript 'i' refers to intracellular metabolites. r_i is the j th reaction flux in $\frac{g}{(g \text{ dry mass})h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_i = 4, r_3 = 1 \text{ and } r_6 = 1.$ The transport flux of B, r_4 is $\frac{g}{(g \text{ dry mass})h}$. Click here to watch video explanation		(B) Dynamin is involved in	cytoskeletal remodeling	
Answer: (A, C) Click here to watch video explanation 55. Consider a random variable X with mean $\mu_X = 0.1$ and variance $\sigma_x^2 = 0.2$. A new random variable Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_1 > 0$ and $x_2 > 0$, the value of $\lim_{x_1 \to x_2} \frac{x_1 - x_2}{x_2 \ln \left(\frac{x_1}{x_2}\right)}$ is Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript 'i' refers to intracellular metabolites. r_j is the j th reaction flux in $\frac{g}{(g dry mass)h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_i = 4, r_i = 1 \text{ and } r_6 = 1$. The transport flux of B, r_4 is $\underline{\qquad \left(\frac{g}{(g dry mass)h}\right)}$. Click here to watch video explanation Click here to watch video explanation		(C) Dynein binds ATP and	is involved in movement of organelle	es along microtubules
55. Consider a random variable X with mean $\mu_{X} = 0.1$ and variance $\sigma_{x}^{2} = 0.2$. A new random variable Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_{1}>0$ and $x_{2}>0$, the value of $\lim_{x_{1}\to x_{2}} \frac{x_{1}-x_{2}}{x_{2}\ln(\frac{x_{1}}{x_{2}})}$ is Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript '1' refers to intracellular metabolites. r_{j} is the j th reaction flux in $\frac{g}{(g dry mass)h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_{j} = 4, r_{3} = 1 \text{ and } r_{6} = 1$. The transport flux of B, r_{4} is $\underline{\qquad \left(\frac{g}{(g dry mass)h}\right)}$. Click here to watch video explanation Click here to watch video explanation		(D) Dynein binds GTP and	is involved in movement of organelle	es along microtubules
55. Consider a random variable X with mean $\mu_{X} = 0.1$ and variance $\sigma_{x}^{2} = 0.2$. A new random variable Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_{1}>0$ and $x_{2}>0$, the value of $\lim_{x_{1}\to x_{2}} \frac{x_{1} - x_{2}}{x_{2} \ln \left(\frac{x_{1}}{x_{2}}\right)}$ is Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript 'i' refers to intracellular metabolites. r_{j} is the j th reaction flux in $\frac{g}{(g dry mass)h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_{j} = 4, r_{3} = 1 \text{ and } r_{6} = 1.$ The transport flux of B, r_{4} is $\underline{\qquad} \frac{g}{(g dry mass)h}$. Click here to watch video explanation Click here to watch video explanation	Answe	er: (A, C)		Click here to watch video explanation
Y=2X+1 is defined. The variance of the random variable Y (rounded off to one decimal place) is Answer: (0.8) Click here to watch video explanation 56. For $x_1>0$ and $x_2>0$, the value of $\lim_{x_1\to x_2} \frac{x_1-x_2}{x_2 \ln\left(\frac{x_1}{x_2}\right)}$ is				
Answer: (1) Click here to watch video explanation 57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript 'i' refers to intracellular metabolites. r_j is the j th reaction flux in $\frac{g}{(g dry mass)h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_1 = 4, r_3 = 1$ and $r_6 = 1$. The transport flux of B, r_4 is $\frac{g}{(g dry mass)h}$. Answer: (2)				
57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript 'i' refers to intracellular metabolites. r_j is the j th reaction flux in $\frac{g}{(g dry mass)h}$. Under pseudo-steady-state condition, the following reaction fluxes are available. $r_j = 4, r_3 = 1$ and $r_6 = 1$. The transport flux of B, r_4 is $\frac{g}{(g dry mass)h}$.			$x_1 \rightarrow x_2 x_2 \ln\left(\frac{x_1}{x_2}\right)$	
The transport flux of B, r_4 is $\frac{g}{(g dry mass)h}$. Answer: (2)	Answe	er: (1)		Click here to watch video explanation
following reaction fluxes are available. $r_1 = 4, r_3 = 1 \text{ and } r_6 = 1.$ The transport flux of B, r_4 is $\frac{g}{(g \text{ dry mass})h}$.	57.	taking place in the produ-	ction of B from A in a cell. The	e r ₄
following reaction fluxes are available. $r_1 = 4, r_3 = 1 \text{ and } r_6 = 1.$ The transport flux of B, r_4 is $\frac{g}{(g \text{ dry mass})h}$. Answer: (2)		flux in $\frac{g}{(g dry mass)h}$. Und	er pseudo-steady-state condition, the	e r_1 r_2 r_6 Cell
The transport flux of B, r_4 is $\frac{g}{(g \text{ dry mass})h}$.		following reaction fluxes are	e available.	$A \rightarrow A_i \qquad D_i$
Answer: (2) Click here to watch video explanation		$r_1 = 4, r_3 = 1 \text{ and } r_6 = 1.$		
Answer: (2) Click here to watch video explanation		The transport flux of B, r_4 is	$\frac{g}{(g dry mass)h}.$	C
	Answe	ar: (2)	()	Click here to watch video explanation
		(-)		

GATEFORUM **|BT-GATE-2022|** www.gateforumonline.com 58. The amount of biomass in a reactor at the end of the batch process is 50 g. Fed-batch operation is initiated by feeding the substrate solution at a constant rate of 1 L h⁻¹. The concentration of substrate in the feed is 50 g L⁻¹. The maximum biomass yield (Y_{xs}^M) is $0.4 \frac{\text{g biomass}}{\text{g substrate}}$. Assuming the system is at quasi-steady state, the maximum amount of biomass after 5h of feeding is _____ g. **Click here to watch video explanation** (150)**Answer:** 59. An enzyme catalyzes the conversion of substrate A into product B. The rate equation for this reaction is $-r_{A} = \frac{C_{A}}{5+C_{A}} \mod L^{-1} \min^{-1}$ Substrate A at an initial concentration of 10 mol L^{-1} enters an ideal mixed flow reactor (MFR) at a flow rate of 10 L min⁻¹. The volume of the MFR required for 50% conversion of substrate toproductis ____L. (100)**Click here to watch video explanation Answer:** 60. Liquid-phase mass transfer coefficient (k_L) is measured in a stirred tank vessel using steady-state method by sparging air. Oxygen uptake by the microorganism is measured. The bulk concentration of O_2 is 10^{-4} mol L⁻¹. Solubility of O_2 in water at 25 °C is 10⁻³ mol L⁻¹. If the oxygen consumption rate is 9×10^{-4} mol L⁻¹ s⁻¹, and interfacial area is $100 \text{ m}^2/\text{m}^3$, the value of k_L is cm s⁻¹. Click here to watch video explanation (1) Answer:

|BT-GATE-2022|

www.gateforumonline.com

61. Consider a piston-cylinder assembly shown in the figure below. The walls of the cylinder are insulated. The cylinder contains 1 mole of an ideal gas at 300 Kand the piston is held initially at the position z_1 using a stopper. After the stopper is removed, the piston suddenlyrises against atmospheric pressure $(1.013 \times 10^5 \text{ P(A)})$ to the new position z_2 where it is held by anotherstopper.

The heat capacity (C_v) of the gas is 12.5 J mol⁻¹ K⁻¹. The cross-sectional area of the cylinder is 10^{-3} m². Assume the piston is weightless and frictionless.

If $\mathbb{Z}_2 - \mathbb{Z}_1 = 1$ m, the final temperature of the gas (rounded of ft one are stinteger) is <u>K</u>.

Answer: (292)

GATEFORUM

Click here to watch video explanation

62. Consider the growth of *S. cerevisiae* under aerobic condition in a bioreactor and the specific growth rate of yeast is 0.5 h^{-1} . The overall reaction of the process is

The heat of combustion values for different compounds are tabulated below with the reference to CO_2 , H_2O , O_2 , and N_2 at standard conditions.

Compound	Heat of combustion	
	(kJ mol ⁻¹)	
$C_6H_{12}O_6$	2802	
NH ₃	383	
CH _{1.8} O _{0.5} N _{0.2}	560	
C_2H_6O	1366	
The specific rate of heat production (rounded off to nearest integer) is $kJ mol^{-1} h^{-1}$.		

Answer:	(2424)	Click here to watch video explanation

|BT-GATE-2022|

www.gateforumonline.com

63. A pilot sterilization was carried out in a vessel containing 100 m³ medium with an initial spore concentration of 10⁸ spores/ml. The accepted level of contamination after sterilization is 1 spore in the entire vessel. The specific death rate constant for the spore is 2 min⁻¹ at 121 °C. Assuming no death takes place during the heating and cooling cycles, the holding time at 121 °C (rounded off to nearest integer) is min.

Answer: (18)

Click here to watch video explanation

64. A circular plasmid has three different but unique restriction sites for enzymes 'a', 'b' and 'c.' When enzymes 'a' and 'b' are used together, two fragments of equal size are generated. Enzyme 'c' creates fragments of equal size only from one of the fragments generated by those cleaved by 'a' and 'b'. The plasmid is treated with a mixture of 'a', 'b' and 'c' and analysed by agarose gel electrophoresis. The number of bands observed in the gel is ______.

Answer: (2 to 2)

Click here to watch video explanation

65. A bacterial strain is grown in nutrient medium at 37 °C under aerobic conditions. The medium is inoculated with 10^2 cells from a seed culture. If the number of cells in the culture is 10^5 after 10 hours of growth, the doubling time of the strain (rounded off to nearest integer) is _____ h.

Answer:	(1)	Click here to watch video explanation

 $\star \star \star$