General Aptitude

Q. No. 1-5 Carry One Mark Each

1. You should \qquad when to say \qquad .
(A) no / no
(B) no / know
(C) know / know
(D) know / no

Answer:
(D)
2. Two straight lines pass through the origin $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0,0)$. One of them passes through the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(1,3)$ and the other passes through the point $\left(\mathrm{x}, \mathrm{y}_{2}\right)=(1,2)$.
What is the area enclosed between the straight lines in the interval $[0,1]$ on the x-axis?
(A) 0.5
(B) 1.0
(C) 1.5
(D) 2.0

Answer: (A)
3. If
$p: q=1: 2$
$q: r=4: 3$
$r: s=4: 5$
and u is 50% more than s, what is the ratio $p: u$?
(A) $2: 15$
(B) $16: 15$
(C) $1: 5$
(D) 16:45

Answer: (D)
4. Given the statements:

- $\quad \mathrm{P}$ is the sister of Q .
- $\quad Q$ is the husband of R.
- R is the mother of S.
- $\quad \mathrm{T}$ is the husband of P .

Based on the above information, T is \qquad of S.
(A) the grandfather
(B) an uncle
(C) the father
(D) a brother

Answer
(B)
5. In the following diagram, the point R is the center of the circle. The lines PQ and ZV are tangential to the circle. The relation among the areas of the squares, PXWR, RUVZ and SPQT is

(A) Area of SPQT = Area of RUVZ = Area of PXWR
(B) Area of SPQT = Area of PXWR - Area of RUVZ
(C) Area of PXWR $=$ Area of SPQT - Area of RUVZ
(D) Area of PXWR $=$ Area of RUVZ - Area of SPQT

Answer:
(B)

Click here to watch video explanation

Q.No. 6-10 Carry Two Marks Each

6. Healthy eating is a critical component of healthy aging. When should one start eating healthy? It turns out that it is never too early. For example, babies who start eating healthy in the first year are more likely to have better overall health as they get older.

Which one of the following is the CORRECT logical inference based on the information in the above passage?
(A) Healthy eating is important for those with good health conditions, but not for others
(B) Eating healthy can be started at any age, earlier the better
(C) Eating healthy and better overall health are more correlated at a young age, but not older age
(D) Healthy eating is more important for adults than kids

Answer:
(B)

Click here to watch video explanation
7. $\quad \mathrm{P}$ invested ₹ 5000 per month for 6 months of a year and Q invested ₹ x per month for 8 months of the year in a partnership business. The profit is shared in proportion to the total investment made in that year. If at the end of that investment year, Q receives $\frac{4}{9}$ of the total profit, what is the value of x (in ₹)?
(A) 2500
(B) 3000
(C) 4687
(D) 8437

Answer: (B)
Click here to watch video explanation
© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission
8.

The above frequency chart shows the frequency distribution of marks obtained by a set of students in an exam.

From the data presented above, which one of the following is CORRECT?
(A) mean $>$ mode $>$ median
(B) mode $>$ median $>$ mean
(C) mode $>$ mean $>$ median
(D) median $>$ mode $>$ mean

Answer:
(B)

Click here to watch video explanation
9. In the square grid shown on the left, a person standing at P 2 position is required to move to P 5 position. The only movement allowed for a step involves, "two moves along one direction followed by one move in a perpendicular direction". The permissible directions for movement are shown as dotted arrows in the right. For example, a person at a given position Y can move only to the positions marked X on the right.
Without occupying any of the shaded squares at the end of each step, the minimum number of steps required to go from P2 to P5 is

Example : Allowed steps for a person at Y
(A) 4
(B) 5
(C) 6
(D) 7

Answer: (B)
Click here to watch video explanation
10.

Consider a cube made by folding a single sheet of paper of appropriate shape. The interior faces of the cube are all blank. However, the exterior faces that are not visible in the above view may not be blank.

Which one of the following represents a possible unfolding of the cube?
(A)

(C)

(B)

(D)

Answer: (*) (MTA)

Click here to watch video explanation

Biotechnical Engineering

Q.No. 11-35 Carry One Mark Each
11. What is the order of the differential equation given below?

$$
\frac{d^{2} y}{d x^{2}}-6 x=3 x^{4}-2 x^{3}+2
$$

(A) 1
(B) 2
(C) 3
(D) 4

Answer: (B)

Click here to watch video explanation

12. If the eigenvalues of a 2×2 matrix P are 4 and 2 , then the eigenvalues of the matrix P^{-1} are
(A) 0,0
(B) $0.0625,0.25$
(C) $0.25,0.5$
(D) 2, 4

Answer:
(C)

Click here to watch video explanation
13. Foradouble-pipeheatexchanger,theinsideandoutsideheattransfercoefficients are 100 and $200 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$, respectively. The thickness and thermalconductivity of the thin-walled inner pipe are 1 cm and $10 \mathrm{~W} \mathrm{~m}^{-1}$ K^{-1}, respectively. The value of the overall heat transfercoefficientis \qquad $\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-1}$.
(A) 0.016
(B) 42.5
(C) 62.5
(D) 310

Answer:

(C)

Click here to watch video explanation
14. Match the media component (Column I) with its role (Column II).

Column I			Column II
P.	Sucrose	1.	Anti-foam agent
Q.	Zinc chloride	2.	Nitrogen source
R.	Ammonium sulphate	3.	Carbon source
S.	Silicone oil	4.	Trace element

(A) P-1, Q-2, R-3, S-4
(B) P-2, Q-1, R-3, S-4
(C) P-3, Q-2, R-4, S-1
(D) P-3, Q-4, R-2, S-1

Answer:
(D)

Click here to watch video explanation
15. The binding free energy of a ligand to its receptor protein is $-11.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 300 K . What is the value of the equilibrium binding constant?
Use $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
(A) 0.01
(B) 1.0
(C) 4.6
(D) 100.5

Answer:
(D)

Click here to watch video explanation
16. The overall stoichiometry for an aerobic cell growth is

$$
3 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+2.5 \mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow 1.5 \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{~N}_{\mathrm{d}}+3 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

What is the elemental composition formula of the biomass?
(A) $\mathrm{C}_{9} \mathrm{H}_{18.2} \mathrm{O}_{5} \mathrm{~N}_{1.667}$
(B) $\mathrm{C}_{9} \mathrm{H}_{22.33} \mathrm{O}_{6} \mathrm{~N}_{1.667}$
(C) $\mathrm{C}_{10} \mathrm{H}_{18.2} \mathrm{O}_{5} \mathrm{~N}_{1.667}$
(D) $\mathrm{C}_{10} \mathrm{H}_{22.33} \mathrm{O}_{6} \mathrm{~N}_{1.667}$

Answer: (D)

Click here to watch video explanation

17. In binomial nomenclature, the name of a bacterial strain is written with the first letter of \qquad word(s) beingcapitalized.
(A) first
(B) second
(C) neither
(D) first and second

Answer: (A) Click here to watch video explanation
18. The type of nucleic acid present in λ-phage is
(A) Double stranded DNA
(B) Single stranded circular DNA
(C) Single stranded DNA
(D) Single stranded RNA

Answer: (A)
Click here to watch video explanation
19. Which of the following statements about reversible enzyme inhibitors are CORRECT?
P. Uncompetitive inhibitors bind only to the enzyme-substrate complex
Q. Non-competitive inhibitors bind only at a different site from the substrate
R. Competitive inhibitors bind to the same site as the substrate
(A) P and Q only
(B) P and R only
(C) Q and R only
(D) P, Q and R

Answer:
(D)

Click here to watch video explanation
20. Match the component of eukaryotic cells (Column I) with its respective function (Column II).

Column I		Column II	
P.	Lysosome	1.	Digestion of macromolecules
Q.	Peroxisome	2.	Detoxification of harmful compounds
R.	Glyoxysome	3.	Conversion of fatty acids to sugar
S.	Cytoskeleton	4.	Involvement in cell motility

(A) P-1, Q-2, R-3, S-4
(B) P-2, Q-1, R-3, S-4
(C) P-3, Q-1, R-2, S-4
(D) P-4, Q-3, R-1, S-2

Answer: (A)

Click here to watch video explanation

21. In animal cells, the endogenously produced miRNAs silence gene expression by
(A) base pairing with the 3^{\prime}-untranslated region of specific mRNAs
(B) blocking mRNA synthesis
(C) binding to the operator site
(D) base pairing with the 3^{\prime} region of specific rRNAs

Answer: (A)
Click here to watch video explanation
22. Terpenoids are made of \qquad units
(A) amino acid
(B) carbohydrate
(C) isoprene
(D) triacylglycerol

Answer:
(C)

Click here to watch video explanation
23. Match the microbial product (Column I) with its respective application (Column II).

Column I	Column II	
P. \quad Methane	1.	Biosurfactant
Q. \quad Glycolipids	2.	Bioplastic
R. \quad Polyhydroxy alkanoate	3.	Biofuel

(A) P-1, Q-2, R-3
(B) P-2, Q-1, R-3
(C) P-3, Q-2, R-1
(D) P-3, Q-1, R-2

Answer:
(D)

Click here to watch video explanation
24. Which of the following is NOT used for generating an optimal alignment of two nucleotide sequences?
(A) Gap penalties
(B) Match scores
(C) Mismatch scores
(D) Nucleotide composition

Answer: (D)
Click here to watch video explanation
25. The recognition sequences of four Type-II restriction enzymes (RE) are given below. The symbol (\downarrow) indicates the cleavage site. Identify the RE that generates sticky ends.
(A)
RE1-5 G ${ }^{\downarrow}$ GATCC 3 ,
(B) RE2-5 ${ }^{-} \mathrm{CTG}^{\downarrow}{ }^{\downarrow} \mathrm{CAG}{ }^{\prime}$
(C) RE3-5 $\mathrm{CCC}^{\downarrow}{ }_{\mathrm{GGG} 3}{ }^{\prime}$
(D) RE4-5 AG ${ }^{\downarrow}$ CT3'

Answer: (A)

Click here to watch video explanation

26. Among individuals in a human population, minor variations exist in nucleotide sequences of chromosomes. These variations can lead to gain or loss of sites for specific restriction enzymes. Which of the following technique is used to identify such variations?
(A) Polymerase dependent fragment insertion
(B) Real-time polymerase chain reaction
(C) Restriction fragment length polymorphism
(D) Reverse transcriptase polymerase chain reaction

Answer: (C)
Click here to watch video explanation
27. Assumingindependentassortmentandnorecombination,thenumberofdifferent combinations of maternal and paternal chromosomes in gametes of an organism with a diploid number of 12 is \qquad .

Answer:
(64)

Click here to watch video explanation
28. A microorganism is grown in a batch culture using glucose as a carbon source. The apparent growth yield is $0.5 \frac{\mathrm{~g} \text { biomass }}{\mathrm{g} \text { substrate }}$. The initial concentrations of biomass and substrate are $2 \mathrm{~g} \mathrm{~L}^{-1}$ and $200 \mathrm{~g} \mathrm{~L}^{-1}$, respectively. Assuming that there is no endogenous metabolism, the maximum biomass concentration that can be achieved is \qquad $\mathrm{g} \mathrm{L}^{-1}$.

Answer: (102)
Click here to watch video explanation
29. The degree of reduction of lactic $\operatorname{acid}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}\right)$ is \qquad Answer:
30. Consider an on linear algebraic equation, $\mathrm{x} \ln \mathrm{x}+\mathrm{x}-1=0$. Using the Newton- Raphson method, with the initial guess of $x_{0}=3$, the value of 0 after one iteration(roundedofftoonedecimalplace)is
\qquad .

Answer:
(1.3)

Click here to watch video explanation
31. The probability density function of a random variable Xis $\mathrm{p}(\mathrm{x})=2 e^{-2 x}$. The probability $\mathrm{P}(1 \leq \mathrm{X} \leq 2)$ (rounded off to two decimalplaces)is \qquad .
Answer:
(0.12)

Click here to watch video explanation
32. The maximum value of the function $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}-2 \mathrm{x}^{3}$ for $x>0$ is \qquad _.

Answer:
(1)

Click here to watch video explanation

33. The specific growth rate of a yeast having a doubling time of 0.693 h (rounded off to nearestinteger)is
\qquad h^{-1}.

Answer:
(1)

Click here to watch video explanation
34. Afermentationbrothofdensity $1000 \mathrm{kgm}^{-3}$ andviscosity $10^{-3} \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ ismixed in a 100 L fermenter using a 0.1 m diameter impeller, rotating at a speed of $2 \mathrm{~s}^{-1}$. The impeller Reynoldsnumberis \qquad .

Answer:
(20000)

Click here to watch video explanation

35. For a pure species, the slope of the melting line

$$
\frac{\mathrm{dp}}{\mathrm{dT}} \text { at }-2^{\circ} \mathrm{C} \text { is }-5.0665 \times 10^{6} \mathrm{PaK}^{-1}
$$

The difference between the molar volumes of the liquid and solid phase at
$-2{ }^{\circ} \mathrm{C}$ is $-4.5 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$.
The value of the latent heat of fusion (rounded off to nearest integer) is \qquad Jmol^{-1}.

Answer: (6179)
Click here to watch video explanation
\bigcirc All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission

Q.No. 36-65 Carry Two Marks Each

36. Which of the following conditions will contribute to the stability of a gene pool in a natural population?
P. Large population
Q. No net mutation
R. Non-random mating
S. No selection
(A) P only
(B) P and Q only
(C) P and R only
(D) P, Q and S only

Answer:
(D) Click here to watch video explanation
37. Match the media component used in mammalian cell culture (Column I) with its respective role (Column II).

Column I	Column II		
P.	Hydrocortisone	1.	Mitogen
Q.	Fibronectin	2.	Vitamin
R.	Epidermal growth factor	3.	Hormone
S.	Riboflavin	4.	Cell attachment

(A) P-3, Q-4, R-1, S-2
(B) P-3, Q-4, R-2, S-1
(C) P-4, Q-3, R-1, S-2
(D) P-4, Q-3, R-2, S-1

Answer: (A)
38. Match the cell type (Column I) with its function (Column II).

Column I		Column II	
P.	B cells	1.	Humoral immunity
Q.	Neutrophils	2.	Cytotoxicity
R.	T cells	3.	Histamine-associated allergy
S.	Mast cells	4.	Phagocytosis

(A) P-1, Q-2, R-3, S-4
(B) P-1, Q-4, R-2, S-3
(C) P-4, Q-3, R-1, S-2
(D) P-4, Q-3, R-2, S-1

Answer:
(B)
39. A 2×2 matrix P has an eigenvalue $\lambda_{1}=2$ with eigenvector $x_{1}=\binom{1}{0}$ and another eigenvalue $\lambda_{2}=5$, with eigenvector $\mathrm{x}_{2}=\binom{1}{1}$. The matrix P is
(A) $\left(\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right)$
(B) $\left(\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right)$
(C) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(D) $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$

Answer:
(B)

Click here to watch video explanation
40. Match the stationary phase (Column I) with its corresponding chromatography technique (Column II).

Column I	Column II
P. Protein A	1. Size exclusion chromatography
Q. Sephadex	2. Ion-exchange chromatography
R. Phenylsepharose	3. Affinity chromatography
S. Diethylaminoethyl cellulose	4. Hydrophobic interaction chromatography

(A) P-1, Q-4, R-2, S-3
(B) P-3, Q-1, R-4, S-2
(C) P-3, Q-4, R-2, S-1
(D) P-4, Q-1, R-3, S-2

Answer:
(B)

Click here to watch video explanation
41. Which of the following statements are CORRECT for a controller?
P. In a proportional controller, a control action is proportional to the error
Q. In an integral controller, a control action is proportional to the derivative of the error
R. There is no "offset" in the response of the closed-loop first-order process with a proportional controller
S. There is no "offset" in the response of the closed-loop first-order process with a proportionalintegral controller
(A) P and Q only
(B) P and R only
(C) Pand S only
(D) Q and S only

Answer: (C)
Click here to watch video explanation
42. Which of the following are CORRECT about protein structure?
P. Secondary structure is formed by a repeating pattern of interactions among the polypeptide backbone atoms
Q. Tertiary structure is the three-dimensional arrangement of the polypeptide backbone atoms only
R. Quaternary structure refers to an assembly of multiple polypeptide subunits
(A) P and Q only
(B) P and R only
(C) Q and R only
(D) P, Q and R

Answer: (B)

Click here to watch video explanation
43. The enzymes involved in ubiquitinylation of cell-cycle proteins are
(A) E_{1} and E_{2} only
(B) E_{1} and E_{3} only
(C) E_{1} and E_{4} only
(D) $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3}

Answer:
(D)

Click here to watch video explanation
44. The maximum parsimony method is used to construct a phylogenetic tree for a set of sequences. Which one of the following statements about the method is CORRECT?
(A) It predicts the tree that minimizes the steps required to generate the observed variations
(B) It predicts the tree that maximizes the steps required to generate the observed variations
(C) It predicts the tree with the least number of branch points
(D) It employs probability calculations to identify the tree

Answer:
(A)

Click here to watch video explanation
45. Which of the following spectroscopic technique(s) can be used to identify all the functional groups of an antibiotic contaminant in food?
P. Infrared
Q. Circular dichroism
R. Nuclear magnetic resonance
S. UV-Visible
(A) P only
(B) P and R only
(C) P, Q and R only
(D) P, Q, R and S

Answer: (B)
Click here to watch video explanation
46. Adenine can undergo a spontaneous change to hypoxanthine in a cell, leading to a DNA base pair mismatch. The CORRECT combination of enzymes that are involved in repairing this damage is
(A) Nuclease, DNA polymerase, DNA ligase
(B) Nuclease, DNA ligase, helicase
(C) Primase, DNA polymerase, DNA ligase
(D) Primase, helicase, DNA polymerase

Answer: (A)
Click here to watch video explanation
47. Consider the ordinary differential equation $\frac{d y}{d x}=f(x, y)=2 x^{2}-y^{2}$. If $y(1)=1$, the value (s) of $y(1.5)$, using the Euler's implicit method $\left[\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\mathrm{hf}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}\right)\right]$ with a step size of $\mathrm{h}=0.5$, is (are)
(A) $-1-5 \sqrt{0.3}$
(B) $-1+5 \sqrt{0.3}$
(C) $1+5 \sqrt{0.3}$
(D) $1-5 \sqrt{0.3}$

Answer:
(A, B)
Click here to watch video explanation
48. Which of the following statements are CORRECT for an enzyme entrapped in a spherical particle?
(A) Effectiveness factor is ratio of the reaction rate with diffusion-limitation to the reaction rate without diffusion-limitation
(B) Internal diffusion is rate-limiting at low values of Thiele modulus
(C) Effectiveness factor increases with decrease in Thiele modulus
(D) Internal diffusion-limitation can be reduced by decreasing the size of the particle

Answer: (A, C, D)
Click here to watch video explanation
49. Which of the following is(are) COMMON feature(s) for both aerobic and anaerobic bacterial cultures?
(A) Glycolysis
(B) NAD^{+}is the oxidising agent
(C) Oxidative phosphorylation
(D) Two net ATP molecules formed per glucose molecule

Answer: (A, B)
Click here to watch video explanation
50. Which of the following plot(s) is(are) CORRECT for an enzyme that obeys Michaelis-Menten kinetics, assuming [S] $\ll K_{\mathrm{m}}$?
$[\mathrm{S}]$ is the concentration of the substrate, K_{m} is the Michaelis constant, and v_{0} is the initial reaction velocity.
(A)

(B)

(C)

(D)

Answer: (A, D)
Click here to watch video explanation
51. Which of the following statement(s) is(are) CORRECT regarding the lac operon in E. coli when grown in the presence of glucose and lactose?
(A) At low glucose level, the operon is activated
(B) At high glucose level, the operon is activated to enable the utilization of lactose
(C) The lac repressor binds to operator region inactivating the operon
(D) Binding of lactose to the lac repressor induces the operon

Answer: (A, C)
Click here to watch video explanation
52. Emerging viruses such as SARS-CoV2 cause epidemics. Which of the following process(es) contribute to the rise of such viruses?
(A) Mutation of existing virus
(B) Jumping of existing virus from current to new hosts
(C) Spread of virus in the new host population
(D) Replication of virus outside a host

Answer: (A, B, C)
Click here to watch video explanation
53. Introduction of foreign genes into plant cells can be carried out using
(A) Agrobacterium
(B) CaCl_{2} mediated plasmid uptake
(C) Electroporation
(D) Gene gun

Answer: (A, C, D)
Click here to watch video explanation
54. Which of the following statement(s) regarding trafficking in eukaryotic cells is(are) CORRECT?
(A) Dynamin binds GTP and is involved in vesicle budding
(B) Dynamin is involved in cytoskeletal remodeling
(C) Dynein binds ATP and is involved in movement of organelles along microtubules
(D) Dynein binds GTP and is involved in movement of organelles along microtubules

Answer: (A, C)
Click here to watch video explanation
55. Consider a random variable X with mean $\mu_{X}=0.1$ and variance $\sigma_{x}^{2}=0.2$. A new random variable $\mathrm{Y}=2 \mathrm{X}+1$ is defined. The variance of the random variable Y (rounded off to one decimal place) is
\qquad .

Answer:
(0.8)

Click here to watch video explanation
56. For $x_{1}>0$ and $x_{2}>0$, the value of $\lim _{x_{1} \rightarrow x_{2}} \frac{x_{1}-x_{2}}{x_{2} \ln \left(\frac{x_{1}}{x_{2}}\right)}$ is \qquad

Answer:
(1)

Click here to watch video explanation
57. Figure below depicts simplified metabolic and transport reactions taking place in the production of B from A in a cell. The subscript ' i ' refers to intracellular metabolites. r_{j} is the $j^{\text {th }}$ reaction flux in $\frac{\mathrm{g}}{(\mathrm{g} \text { dry mass }) \mathrm{h}}$. Under pseudo-steady-state condition, the following reaction fluxes are available.
$r_{1}=4, r_{3}=1$ and $r_{6}=1$.

58. The amount of biomass in a reactor at the end of the batch process is 50 g . Fed-batch operation is initiated by feeding the substrate solution at a constant rate of $1 \mathrm{~L} \mathrm{~h}^{-1}$. The concentration of substrate in the feed is $50 \mathrm{~g} \mathrm{~L}^{-1}$. The maximum biomass yield $\left(\mathrm{Y}_{\mathrm{XS}}^{\mathrm{M}}\right)$ is $0.4 \frac{\mathrm{~g} \text { biomass }}{\mathrm{g} \text { substrate }}$. Assuming the system is at quasi-steady state, the maximum amount of biomass after 5 h of feeding is \qquad g.

Answer: (150)

Click here to watch video explanation

59. An enzyme catalyzes the conversion of substrate A into product B. The rate equation for this reaction is $-\mathrm{r}_{\mathrm{A}}=\frac{\mathrm{C}_{\mathrm{A}}}{5+\mathrm{C}_{\mathrm{A}}} \mathrm{mol} \mathrm{L}^{-1} \min ^{-1}$

Substrate A at an initial concentration of $10 \mathrm{~mol} \mathrm{~L}^{-1}$ enters an ideal mixed flow reactor (MFR) at a flow rate of $10 \mathrm{~L} \mathrm{~min}^{-1}$. The volume of the MFR required for 50% conversion of substrate toproductis
\qquad L.

Answer:

(100)

Click here to watch video explanation
60. Liquid-phase mass transfer coefficient $\left(\mathrm{k}_{\mathrm{L}}\right)$ is measured in a stirred tank vessel using steady-state method by sparging air. Oxygen uptake by the microorganism is measured. The bulk concentration of O_{2} is 10^{-4} $\mathrm{mol} \mathrm{L} \mathrm{L}^{-1}$. Solubility of O_{2} in water at $25^{\circ} \mathrm{C}$ is $10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$.
If the oxygen consumption rate is $9 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, and interfacial area is $100 \mathrm{~m}^{2} / \mathrm{m}^{3}$, the value of k_{L} is
\qquad $\mathrm{cm} \mathrm{s}^{-1}$.

Answer: (1)
Click here to watch video explanation
61. Consider a piston-cylinder assembly shown in the figure below. The walls ofthe cylinder are insulated. The cylinder contains 1 mole of an ideal gas at 300 Kand the piston is held initially at the position z_{1} using a stopper. After the stopper is removed, the piston suddenlyrises against atmospheric pressure $\left(1.013 \times 10^{5} \mathrm{P}(\mathrm{A})\right.$ to the new position z_{2} where it is held by anotherstopper.
The heat capacity $\left(\mathrm{C}_{\mathrm{v}}\right)$ of the gas is $12.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The cross-sectional area of the cylinder is $10^{-3} \mathrm{~m}^{2}$. Assume the piston is weightless and frictionless.
If $\square_{2}-\square_{1}=1 \mathrm{~m}$, thefinaltemperatureofthegas(roundedofftonearestinteger) is K.

Answer: (292)

Click here to watch video explanation
62. Consider the growth of S. cerevisiae under aerobic condition in a bioreactor and the specific growth rate of yeast is $0.5 \mathrm{~h}^{-1}$. The overall reaction of the process is
$2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+0.2 \mathrm{NH}_{3}+10.35 \mathrm{O}_{2} \rightarrow \mathrm{CH}_{1.8} \mathrm{O}_{0.5} \mathrm{~N}_{0.2}+0.2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+10.6 \mathrm{CO}_{2}+10.8 \mathrm{H}_{2} \mathrm{O}$
The heat of combustion values for different compounds are tabulated below with the reference to CO_{2}, $\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$, and N_{2} at standard conditions.

Compound

$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

Heat of combustion

($\mathrm{kJ} \mathrm{mol}^{-1}$)
2802
383
560
1366

The specific rate of heat production (rounded off to nearest integer) is \qquad $\mathrm{kJ} \mathrm{mol}{ }^{-1} \mathrm{~h}^{-1}$.
63. A pilot sterilization was carried out in a vessel containing $100 \mathrm{~m}^{3}$ medium with an initial spore concentration of 10^{8} spores $/ \mathrm{ml}$. The accepted level of contamination after sterilization is 1 spore in the entire vessel. The specific death rate constant for the spore is $2 \mathrm{~min}^{-1}$ at $121^{\circ} \mathrm{C}$. Assuming no death takes place during the heating and cooling cycles, the holding time at $121^{\circ} \mathrm{C}$ (rounded off to nearest integer) is
\qquad min.
64. A circular plasmid has three different but unique restriction sites for enzymes ' a ', ' b ' and ' c.' When enzymes ' a ' and ' b ' are used together, two fragments of equal size are generated. Enzyme ' c ' creates fragments of equal size only from one of the fragments generated by those cleaved by ' a ' and ' b '. The plasmid is treated with a mixture of ' a ', ' b ' and ' c ' and analysed by agarose gel electrophoresis. The number of bands observed in the gel is \qquad _.

Answer:
(2 to 2)

Click here to watch video explanation

65. A bacterial strain is grown in nutrient medium at $37{ }^{\circ} \mathrm{C}$ under aerobic conditions. The medium is inoculated with 10^{2} cells from a seed culture. If the number of cells in the culture is 10^{5} after 10 hours of growth, the doubling time of the strain (rounded off to nearest integer) is \qquad h.

Answer:
(1)

Click here to watch video explanation

