

www.gateforumonline.com

5. In the following diagram, the point R is the center of the circle. The lines PQ and ZV are tangential to the circle. The relation among the areas of the squares, PXWR, RUVZ and SPQT is

- (A) Area of SPQT = Area of RUVZ = Area of PXWR
- (B) Area of SPQT = Area of PXWR Area of RUVZ
- (C) Area of PXWR = Area of SPQT Area of RUVZ
- (D) Area of PXWR = Area of RUVZ Area of SPQT

Click here to watch video explanation

Q.No. 6-10 Carry Two Marks Each

6. Healthy eating is a critical component of healthy aging. When should one start eating healthy? It turns out that it is never too early. For example, babies who start eating healthy in the first year are more likely to have better overall health as they get older.

Which one of the following is the CORRECT logical inference based on the information in the above passage?

- (A) Healthy eating is important for those with good health conditions, but not for others
- (B) Eating healthy can be started at any age, earlier the better
- (C) Eating healthy and better overall health are more correlated at a young age, but not older age
- (D) Healthy eating is more important for adults than kids

 Answer:
 (B)

 Click here to watch video explanation

7. P invested ₹ 5000 per month for 6 months of a year and Q invested ₹ x per month for 8 months of the year in a partnership business. The profit is shared in proportion to the total investment made in that

year. If at the end of that investment year, Q receives $\frac{4}{9}$ of the total profit, what is the value of x (in ₹)?

(A) 2500 (B) 3000 (C) 4687 (D) 8437

Answer: (B)

Answer:

(B)

GATEFORUM

Click here to watch video explanation

Click here to watch video explanation

Click here to watch video explanation

CIVIL ENGINEERING

Q. No. 11-35 Carry One Mark Each

11. Consider the following expression:

z = sin(y+it) + cos(y-it)

Where z,y and t are variables, and $i = \sqrt{-1}$ is s a complex number. The partial differential equation derived from the above expression is

(A)
$$\frac{\partial^2 z}{\partial t^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
 (B) $\frac{\partial^2 z}{\partial t^2} - \frac{\partial^2 z}{\partial y^2} = 0$ (C) $\frac{\partial z}{\partial t} - i\frac{\partial z}{\partial y} = 0$ (D) $\frac{\partial z}{\partial t} + i\frac{\partial z}{\partial y} = 0$

Answer: (A)

12. For the equation

GATEFORUM Engineering Success

$$\frac{\mathrm{d}^3 \mathbf{y}}{\mathrm{d}x^3} + \mathbf{x} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{3/2} + \mathbf{x}^2 \mathbf{y} = 0$$

The correct description is

(A) an ordinary differential equation of order 3 and degree 2.

(B) an ordinary differential equation of order 3 and degree 3.

(C) an ordinary differential equation of order 2 and degree 3.

(D) an ordinary differential equation of order 3 and degree 3/2.

Answer:(A)Click here to watch video explanation

13. The hoop stress at a point on the surface of a thin cylindrical pressure vessel is computed to be 30.0 MPa. The value of maximum shear stress at this point is

(A) 7.5 MPa (B) 15.0 MPa (C) 30.00 MPa (D) 22.5 MPa

Answer: (A or B)

@ All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission

J(0,0)

► X

3a

6

G	ATEFORUM	CE-GATE-2022, SET-I <u>www.gateforumonline.com</u>
	(A) $x = 0, y = 3a$	(B) $x = 2a, y = 2a$
	(C) $x = -a, y = 2a$	(D) $x = -2a, y = a$
Answ	er: (A)	Click here to watch video explanation
17.	Four different soils are classi Which one of the following hydraulic conductivity?	ied as CH, ML, SP, and SW, as per the Unified Soil Classification System. options correctly represents their arrangement in the decreasing order of
	(A) SW, SP, ML, CH	(B) CH, ML, SP, SW
	(C) SP, SW, CH, ML	(D) ML, SP, CH, SW
Answ	rer: (A)	Click here to watch video explanation
Answ	(A) $\sigma'_v < \sigma'_h$ (B) (A) (A) (B)	$\sigma'_{v} > \sigma'_{h}$ (C) $\sigma'_{v} = \sigma'_{h}$ (D) $\sigma'_{v} + \sigma'_{h} = 0$ Click here to watch video explanation
19.	With respect to fluid flow, ma	atch the following in Column X with Column Y:
	Column X	Column Y
	(P) Viscosity	(I) Mach number
	(Q) Gravity	(II) Reynolds number
	(R) Compressibility	(III) Euler number
	(S) Pressure	(IV) Froude number
	Which one of the following c	ombinations is correct?
	(A) (P) – (II), (Q) – (IV), (I	(I) - (I), (S) - (III)
	(B) (P) – (III) (O) – (IV) (R) - (I) (S) - (II)

- (C) P) (IV), (Q) (II), (R) (I), (S) (III)
- (D) (P) (II), (Q) (IV), (R) (III), (S) (I)

Answer: (A)

Click here to watch video explanation

20	T. 4			
20. Let ψ represent soil suction here content θ increases, which one content ψ		iction head and K reg	present hydraulic cond ving statements is TRI	luctivity of the soil. If the soil moisture
	(A) ψ decreases and	K increases	(B) ψ increas	ses and K decreases
	(C) Both ψ and K dec	rease	(D) Both ψ ar	nd K increase
Answe	er: (A)		С	lick here to watch video explanation
21.	A rectangular channel from a steeper slope to	with Gradually Varian steep slope, the res	ed Flow (GVF) has a ulting GVF profile is	a changing bed slope. If the change is
	(A) S ₃			
	(B) S ₁			
	(C) S ₂			
	(D) either S_1 or S_2 , d	epending on the mag	nitude of the slopes	
Answe	er: (A)		С	lick here to watch video explanation
22.	The total hardness in a water, expressed in mill g/mol, 12 g/mol, and 16	aw water is 500 m ligram equivalent pe 5 g/mol, respectively	illigram per liter as C r liter, is (Consider the .)	CaCO ₃ . The total hardness of this rav e atomic weights of Ca, C, and O as 40
	(A) 10	(B) 100	(C) 1	(D) 5
Answe	er: (A)		С	lick here to watch video explanation
23.	An aerial photograph is focal length 152 mm. I the photograph is	taken from a flight a f the average ground	at a height of 3.5 km a l elevation is 460 m a	bove mean sea level, using a camera o bove mean sea level, then the scale o
23.	An aerial photograph is focal length 152 mm. I the photograph is (A) 1 : 20000 (C) 1 : 100000	taken from a flight a f the average ground	at a height of 3.5 km a l elevation is 460 m a (B) 1 : 20 (D) 1 : 2800	bove mean sea level, using a camera o bove mean sea level, then the scale o

U	GATEFORUM Engineering Success	CE-	GATE-2022, SET-I	www.gateforumonline.com
25.	The matrix M is defin	ned as		
	$\mathbf{M} = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$]		
	and has eigenvalues 5	and – 2 . The matrix	x Q is formed as	
	$\mathbf{Q} = \mathbf{M}^3 - 4\mathbf{N}$	$M^2 - 2M$		
	Which of the following	ng is/are the eigenval	lue(s) of matrix Q?	
	(A) 15	(B) 25	(C) –20	(D) -30
Answ	ver: (A, C)		Clic	k here to watch video explanation
26.	For wastewater comi	ng from a wood pu	lping industry, Chemical	Oxygen Demand (COD) and 5-day
	Biochemical Oxygen statement(s) is/are con	Demand (BOD ₅) w	vere determined. For this	wastewater, which of the following
	(A) $COD > BOD_5$		(B) COD≠BOD) ₅
	(C) $COD < BOD_5$		(D) COD = BOD	D ₅
Answ	ver: (A, B)		Clic	k here to watch video explanation
27.	Which of the followir	ng process(es) can be	e used fo <mark>r conversion of sa</mark>	It water into fresh water?
27.	Which of the followin	ng process(es) can be	e used for conversion of sa	It water into fresh water?
27.	Which of the followir (A) Microfiltration (C) Ultrafiltration	ng process(es) can be	e used for conversion of sa (B) Electrodialys (D) Reverse osm	lt water into fresh water? sis osis
27. Answ	Which of the followir (A) Microfiltration (C) Ultrafiltration ver: (B , D)	ng process(es) can be	e used for conversion of sa (B) Electrodialys (D) Reverse osm Clic	lt water into fresh water? sis osis :k here to watch video explanation
27. Answ	Which of the followir (A) Microfiltration (C) Ultrafiltration ver: (B , D)	ng process(es) can be	e used for conversion of sa (B) Electrodialys (D) Reverse osm Clic	It water into fresh water? sis osis ek here to watch video explanation
27. Answ	Which of the followin (A) Microfiltration (C) Ultrafiltration ver: (B , D)	ng process(es) can be	e used for conversion of sa (B) Electrodialys (D) Reverse osm Clic	lt water into fresh water? sis osis ek here to watch video explanation
27. Answ 28.	Which of the followin (A) Microfiltration (C) Ultrafiltration ver: (B, D) A horizontal curve is	ng process(es) can be to be designed in a	e used for conversion of sa (B) Electrodialys (D) Reverse osm Clic region with limited space	lt water into fresh water? sis osis :k here to watch video explanation . Which of the following measure(s)
27. Answ 28.	Which of the followin (A) Microfiltration (C) Ultrafiltration ver: (B, D) A horizontal curve is can be used to decrease (A) Decrease the day	ng process(es) can be to be designed in a se the radius of curva	e used for conversion of sa (B) Electrodialys (D) Reverse osm Clic region with limited space ature?	It water into fresh water? sis osis :k here to watch video explanation . Which of the following measure(s)
27. Answ 28.	 Which of the followin (A) Microfiltration (C) Ultrafiltration ver: (B, D) A horizontal curve is can be used to decrease (A) Decrease the des (B) Increase the sume 	ng process(es) can be to be designed in a se the radius of curva ign speed	e used for conversion of sa (B) Electrodialys (D) Reverse osm Clic region with limited space ature?	It water into fresh water? sis osis :k here to watch video explanation . Which of the following measure(s)
27. Answ 28.	 Which of the followin (A) Microfiltration (C) Ultrafiltration ver: (B, D) A horizontal curve is can be used to decrease (A) Decrease the desi (B) Increase the super (C) Increase the desi 	ng process(es) can be to be designed in a se the radius of curva ign speed erelevation.	e used for conversion of sa (B) Electrodialys (D) Reverse osm Clic region with limited space ature?	It water into fresh water? sis cosis ck here to watch video explanation . Which of the following measure(s)
27. Answ 28.	 Which of the followin (A) Microfiltration (C) Ultrafiltration ver: (B, D) A horizontal curve is can be used to decrease (A) Decrease the dess (B) Increase the super (C) Increase the desi (D) Restrict vehicles 	ng process(es) can be to be designed in a se the radius of curva ign speed erelevation. gn speed.	e used for conversion of sa (B) Electrodialys (D) Reverse osm Clic region with limited space ature?	It water into fresh water? sis osis ck here to watch video explanation . Which of the following measure(s)
27. Answ 28.	Which of the followir (A) Microfiltration (C) Ultrafiltration ver: (B, D) A horizontal curve is can be used to decreas (A) Decrease the des (B) Increase the supe (C) Increase the desi (D) Restrict vehicles	ng process(es) can be to be designed in a se the radius of curva ign speed erelevation. gn speed. with higher weight	e used for conversion of sa (B) Electrodialys (D) Reverse osm Clic region with limited space ature?	It water into fresh water? sis osis ck here to watch video explanation . Which of the following measure(s)

GATEFORUM Engineering Success

29. Consider the following recursive iteration scheme for different values of variable *P* with the initial guess $x_1 = 1$:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{P}{x_n} \right), \quad n = 1, 2, 3, 4, 5$$

For P = 2, x_5 is obtained to be 1.414, rounded-off to three decimal places. For P = 3, $_5$ is obtained to be 1.732, rounded-off to three decimal places.

If P = 10, the numerical value of x_5 is _____(round off to three decimal places)

Answer:(3.100 to 3.200)Click here to watch video explanation

30. The Fourier cosine series of a function is given by:

$$f(x) = \sum_{n=0}^{\infty} f_n \cos nx$$

For $(x) = \cos^4 x$, the numerical value of $(f_4 + f_5)$ is ______. (round off to three decimal places).

Answer:	(0.120 to 0.130)	Click here to watch video explanation

31. An uncompacted heap of soil has a volume of 10000 m^3 and void ratio of 1.

If the soil is compacted to a volume of 7500 m^3 , then the corresponding void ratio of the compacted soil is ______. (round off to one decimal place)

Answer:(0.5 to 0.5)Click here to watch video explanation

32. A concentrated vertical load of 3000 kN is applied on a horizontal ground surface. Points P and Q are at depths 1 m and 2 m below the ground, respectively, along the line of application of the load. Considering the ground to be a linearly elastic, isotropic, semi-infinite medium, the ratio of the increase in vertical stress at P to the increase in vertical stress at Q is _____. (in integer)

Answer: (4 to 4)

Click here to watch video explanation

33. At a site, Static Cone Penetration Test was carried out. The measured point (tip) resistance q_c was 1000kPa at a certain depth. The friction ratio (f_r) was estimated as 1 % at the same depth. The value of sleeve (side) friction (in kPa) at that depth was _______. (in integer)

Answer: (10 to 10)

Click here to watch video explanation

 CE-GATE-2022, SET-I

 Image: Success

www.gateforumonline.com

34. During a particular stage of the growth of a crop, the consumptive use of water is 2.8 mm/day. The amount of water available in the soil is 50 % of the maximum depth of available water in the root zone. Consider the maximum root zone depth of the crop as 80 mm and the irrigation efficiency as 70 %. The interval between irrigation (in days) will be ______. (round off to the nearest integer)

Answer: (*) (**MTA**)

Answer

Click here to watch video explanation

35. The bearing of a survey line is N31°17′W. Its azimuth observed from north is _____ deg. (round off to two decimal places)

Answer: (328.60 to 328.80)

Click here to watch video explanation

Q. No. 36-65 Carry Two Marks Each

36. The Cartesian coordinates of a point P in a right-handed coordinate system are (1, 1, 1). The transformed coordinates of P due to a 45° clockwise rotation of the coordinate system about the positive x-axis are

(A) $(1,0,\sqrt{2})$	(B) $(1,0,-\sqrt{2})$
(C) $(-1,0,\sqrt{2})$	(D) $(-1,0,-\sqrt{2})$
: (A)	Click here to watch video explanation

37. A semi-circular bar of radius R m, in a vertical plane, is fixed at the end G, as shown in the figure. A horizontal load of magnitude P kN is applied at the end H. The magnitude of the axial force, shear force, and bending moment at point Q for $\theta = 45^{\circ}$, respectively, are

38. A weld is used for joining an angle section ISA 100 mm \times 100 mm \times 10 mm to a gusset plate of thickness 15 mm to transmit a tensile load. The permissible stress in the angle is 150 MPa and the permissible shear stress on the section through the throat of the fillet weld is 108 MPa. The location of the centroid of the angle is represented by C_{yy} in the figure, where C_{yy} = 28.4 mm. The area of cross-section of the angle is 1903 mm². Assuming the effective throat thickness of the weld to be 0.7 times the given weld size, the lengths L₁ and L₂ (rounded off to the nearest integer) of the weld required to transmit a load equal to the full strength of the tension member are, respectively

39. The project activities are given in the following table along with the duration and dependency.

Activities	Duration(days)	Depends on
Р	10	-
Q	12	-
R	5	Р
S	10	Q
Т	10	P,Q

Which one of the following combinations is correct?

- (A) Total duration of the project = 22 days, Critical path is $Q \rightarrow S$
- (B) Total duration of the project = 20 days, Critical path is $Q \rightarrow T$
- (C) Total duration of the project = 22 days, Critical path is $P \rightarrow T$
- (D) Total duration of the project = 20 days, Critical path is $P \rightarrow R$

Answer: (A)

GATEFORUM

Click here to watch video explanation

40. The correct match between the physical states of the soils given in Group I and the governing conditions given in Group II is

	Group I	Group II	
	1.normally consolidated soil	P. sensitivity > 16	
	2. quick clay	Q.dilation angle $= 0$	
	3.sand in critical state	R. liquid limit > 50	
	4. clay of high plasticity	S. over consolidation ratio $= 1$	
	(A) 1-S, 2-P, 3-Q, 4-R	(B) 1-Q, 2	2-S, 3-P, 4-R
	(C) 1-Q, 2-P, 3-R, 4-S	(D) 1-S, 2	-Q, 3-P, 4-R
An	iswer: (A)		Click here to watch video explanation

41. As per Rankine's theory of earth pressure, the inclination of failure planes is $\left(45 + \frac{\phi}{2}\right)^{\circ}$ with respect to the direction of the minor principal stress. The above statement is correct for which one of the following

options?

- (A) Only the active state and not the passive state
- (B) Only the passive state and not the active state
- (C) Both active as well as passive states
- (D) Neither active nor passive state

Answer: (C)

GATEFORUM

Click here to watch video explanation

Click here to watch video explanation

42. Henry's law constant for transferring O_2 from air into water, at room temperature, is $1.3 \frac{\text{mmol}}{\text{liter} - \text{atm}}$. Given that the partial pressure of O_2 in the liter-atm atmosphere is 0.21 atm, the concentration of dissolved oxygen (mg/liter) in water in equilibrium with the atmosphere at room temperature is (Consider the molecular weight of O_2 as 32 g/mol)

(A) 8.7 (B) 0.8 (C) 198.1 (D) 0.2

Answer: (A)

44. Consider the four points P, Q, R, and S shown in the Greenshields fundamental speed-flow diagram. Denote their corresponding traffic densities by $k_{\rm P}, k_{\rm Q}, k_{\rm R}$ and $k_{\rm S}$ respectively. The correct order of these

Let max $\{a, b\}$ denote the maximum of two real numbers a and b. Which of the following statement(s) 45. is/are TRUE about the function $(x) = \max\{3 - x, x - 1\}$?

- (A) It is continuous on its domain.
- (B) It has a local minimum at x = 2.
- (C) It has a local maximum at x = 2.
- (\mathbf{A}, \mathbf{B})

Answer:

(D) It is differentiable on its domain.

Click here to watch video explanation

G Engineering Success

46. A horizontal force of P kN is applied to a homogeneous body of weight 25 kN, as shown in the figure. The coefficient of friction between the body and the floor is 0.3. Which of the following statement(s) is/are correct?

- (A) The motion of the body will occur by overturning.
- (B) Sliding of the body never occurs.
- (C) No motion occurs for $P \le 6$ kN.
- (D) The motion of the body will occur by sliding only.

Answer: (A, C or A, B, C)	Click here to watch video explanation
---------------------------	---------------------------------------

- **47.** In the context of cross-drainage structures, the correct statement(s) regarding the relative positions of a natural drain (stream/river) and an irrigation canal, is/are
 - (A) In an aqueduct, natural drain water goes under the irrigation canal, whereas in a super-passage, natural drain water goes over the irrigation canal.
 - (B) In a level crossing, natural drain water goes through the irrigation canal.
 - (C) In an aqueduct, natural drain water goes over the irrigation canal, whereas in a super-passage, natural drain water goes under the irrigation canal.
 - (D) In a canal syphon, natural drain water goes through the irrigation canal.

Answer:	(A , B)	Click here to watch video explanation

48. Consider the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4(x+2) - y$$

For the initial condition y = 3 at x = 1, the value of y at x = 1.4 obtained using Euler's method with a step-size of 0.2 is _____. (round off to one decimal place)

Answer: (6.3 to 6.5)

Click here to watch video explanation

49. A set of observations of independent variable (x) and the corresponding dependent variable (y) is given below.

x	5	2	4	3
У	16	10	13	12

Based on the data, the coefficient a of the linear regression model

y = a + bx

is estimated as 6.1.

The coefficient b is ______. (round off to one decimal place)

Answer:(1.9 to 1.9)Click here to watch video explanation

50. The plane truss shown in the figure is subjected to an external force P. It is given that P = 70 kN, a = 2m, and b = 3 m.

The magnitude (absolute value) of force (in kN) in member EF is _____. (round off to the nearest integer)

Answer:	(28 to 32)	Click here to watch video explanation

51. Consider the linearly elastic plane frame shown in the figure. Members HF, FK and FG are welded together at joint F. Joints K, G and H are fixed supports. A counter-clockwise moment M is applied at joint F. Consider flexural rigidity $EI = 10^5 \text{ kN-m}^2$ for each member and neglect axial deformations.

If the magnitude (absolute value) of the support moment at H is 10 kN-m, the magnitude (absolute value) of the applied moment M (in kN-m) to maintain static equilibrium is ______. (round off to the nearest integer)

Answer: (57 to 63)

GATEFORUM

Click here to watch video explanation

52. Consider a simply supported beam PQ as shown in the figure. A truck having 100 kN on the front axle and 200 kN on the rear axle, moves from left to right. The spacing between the axles is 3 m. The maximum bending moment at point R is ______ kNm. (in integer)

GATEFORUM Engineering Success

|CE-GATE-2022, SET-I|

www.gateforumonline.com

53. A reinforced concrete beam with rectangular cross section (width = 300 mm, effective depth = 580 mm) is made of M30 grade concrete. It has 1% longitudinal tension reinforcement of Fe 415 grade steel. The design shear strength for this beam is 0.66 N/mm². The beam has to resist a factored shear force of 440kN. The spacing of two-legged, 10 mm diameter vertical stirrups of Fe 415 grade steel is mm. (round off to the nearest integer)

Answer: (100 to 102)

Answer:

Click here to watch video explanation

54. A square concrete pile of 10 m length is driven into a deep layer of uniform homogeneous clay. Average unconfined compressive strength of the clay, determined through laboratory tests on undisturbed samples extracted from the clay layer, is 100 kPa. If the ultimate compressive load capacity of the driven pile is 632 kN, the required width of the pile is _____ mm. (in integer)

(Bearing capacity factor $N_c = 9$; adhesion factor $\alpha = 0.7$)

Click here to watch video explanation

55. A raft foundation of $30 \text{ m} \times 25 \text{ m}$ is proposed to be constructed at a depth of 8 m in a sand layer. A 25 m thick saturated clay layer exists 2 m below the base of the raft foundation. Below the clay layer, a dense sand layer exists at the site. A 25 mm thick undisturbed sample was collected from the mid-depth of the clay layer and tested in a laboratory oedometer under double drainage condition. It was found that the soil sample had undergone 50 % consolidation settlement in 10 minutes.

The time (in days) required for 25 % consolidation settlement of the raft foundation will be ______. (round off to the nearest integer)

Answer: (1730 to 1740)

(400 to 400)

Click here to watch video explanation

56. A two-hour duration storm event with uniform excess rainfall of 3 cm occurred on a watershed. The ordinates of streamflow hydrograph resulting from this event are given in the table.

Time	0	1	2	2	4	5	6	7
(hours)	0	1	2	3	4	5	0	/
Streamflow	10	16	24	40	21	25	16	10
(m^3 / s)	10	10	54	40	51	23	10	10

Considering a constant baseflow of 10 m^3/s , the peak flow ordinate (in m^3/s) of one-hour unit hydrograph for the watershed is ______. (in integer)

Answer: (12 to 12)

Click here to watch video explanation

@ All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission

.....

www.gateforumonline.com

57. Two reservoirs are connected by two parallel pipes of equal length and of diameters 20 cm and 10 cm, as shown in the figure (not drawn to scale). When the difference in the water levels of the reservoirs is 5 m, the ratio of discharge in the larger diameter pipe to the discharge in the smaller diameter pipe is ________. (round off to two decimal places)

(Consider only loss due to friction and neglect all other losses. Assume the friction factor to be the same for both the pipes)

Answer: (5.60 to 5.70)

GATEFORUM

Click here to watch video explanation

58. Depth of water flowing in a 3 m wide rectangular channel is 2 m. The channel carries a discharge of $12m^3/s$. Take g = 9.8 m/s².

The bed width (in m) at contraction, which just causes the critical flow, is ______ without changing the upstream water level. (round off to two decimal places)

Answer: (2.05 to 2.35)

Click here to watch video explanation

59. A wastewater sample contains two nitrogen species, namely ammonia and nitrate. Consider the atomic weight of N, H, and O as 14 g/mol, 1 g/mol, and 16 g/mol, respectively. In this wastewater, the concentration of ammonia is 34 mg NH₃/liter and that of nitrate is 6.2 mg NO_3^- / liter. The total nitrogen concentration in this wastewater is _____ milligram nitrogen per liter. (round off to one decimal place)

Answer: (29.0 to 30.0)

Click here to watch video explanation

GATEFORUM Engineering Success

|CE-GATE-2022, SET-I|

www.gateforumonline.com

60. A 2 % sewage sample (in distilled water) was incubated for 3 days at 27 °C temperature. After incubation, a dissolved oxygen depletion of 10 mg/L was recorded. The biochemical oxygen demand (BOD) rate constant at 27 °C was found to be 0.23 day^{-1} (at base e).

The ultimate BOD (in mg/L) of the sewage will be_____. (round off to the nearest integer)

Answer: (1000 to 1005)

Click here to watch video explanation

61. A water treatment plant has a sedimentation basin of depth 3 m, width 5 m, and length 40 m. The water inflow rate is 500 m³ /h. The removal fraction of particles having a settling velocity of 1.0 m/h is ______. (round off to one decimal place) (Consider the particle density as 2650 kg/m³ and liquid density as 991 kg/m³)

Answer: (0.38 to 0.42)

Click here to watch video explanation

62. A two-phase signalized intersection is designed with a cycle time of 100 s. The amber and red times for each phase are 4 s and 50 s, respectively. If the total lost time per phase due to start-up and clearance is 2s, the effective green time of each phase is _____s. (in integer)

Answer: (48 to 48)

Click here to watch video explanation

63. At a traffic intersection, cars and buses arrive randomly according to independent Poisson processes at an average rate of 4 vehicles per hour and 2 vehicles per hour, respectively. The probability of observing at least 2 vehicles in 30 minutes is _____. (round off to two decimal places)

Answer: (0.78 to 0.82)

Click here to watch video explanation

64. The vehicle count obtained in every 10 minute interval of a traffic volume survey done in peak one hour is given below.

Time Interval (in minutes)	Vehicle Count
0-10	10
10-20	11
20-30	12
30-40	15
40-50	13
50-60	11

