

GATE PREVIOUS YEAR SOLVED PAPERS

Electronics & Telecommunications Previous Year Solved Papers

GATEFORUM Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.

For more details visit gateforumonline.com

GATEFORUM Engineering Success

|EC-GATE-2022|

GENERAL APTITUDE


Q. No. 1 - 5 Carry One Mark Each

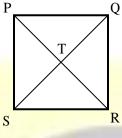
l.	Mr. X speaks	Japanese	Chinese.	
		(B) either / nor		
nsv	ver: (C)		Click	here to watch video explanation
•				oportion 5 : 2 : 4 : 3, respectively.
		re than S, what is the sha		
	(A) 500	(B) 1000	(C) 1500	(D) 2000
nsv	ver: (D)		Click	here to watch video explanation
•	-	tices marked as P, Q, R	and S (in that order ant	nclockwise).
	The side PQ is paral			
		hat, $PQ = 11 \text{ cm}$, $QR = 4$		P = 3 cm.
		distance between PQ an		
	(A) 1.80	(B) 2.40	(C) 4.20	(D) 5.76
nsv	ver: (B)		Click	here to watch video explanation
	The figure shows a	grid formed by a colle	ction of unit squares.	The unshaded unit square in the g
•	The figure shows a grid formed by a collection of unit squares. The unshaded unit square in the grepresents a hole.			
	What is the maximum number of squares without a "hole in the interior" that can be formed within the			
	4×4 grid using the	unit squares as building	blocks?	
		• •		
		• •	1 unit	
		• •	┢──┥⊻	
l ∢ → 1 unit				
	(A) 15	(B) 20	(C) 21	(D) 26
nsv	ver: (B)			here to watch video explanation
	·····			
	© All rights reserved by Thinkce	ell Learning Solutions Pvt. Ltd. No part o	f this booklet may be reproduced or uti	ilized in any form without the written permission

GATEFORUM Engineering Success

5. An art gallery engages a security guard to ensure that the items displayed are protected. The diagram below represents the plan of the gallery where the boundary walls are opaque. The location the security guard posted is identified such that all the inner space (shaded region in the plan) of the gallery is within the line of sight of the security guard.

If the security guard does not move around the posted location and has a 360° view, which one of the following correctly represents the set of ALL possible locations among the locations P, Q, R and S, where the security guard can be posted to watch over the entire inner space of the galle**ry**.

6. Mosquitoes pose a threat to human health. Controlling mosquitoes using chemicals may have undesired consequences. In Florida, authorities have used genetically modified mosquitoes to control the overall mosquito population. It remains to be seen if this novel approach has unforeseen consequences.


Which one of the following is the correct logical inference based on the information in the above passage?

- (A) Using chemicals to kill mosquitoes is better than using genetically modified mosquitoes because genetic engineering is dangerous
- (B) Using genetically modified mosquitoes is better than using chemicals to kill mosquitoes because they do not have any side effects
- (C) Both using genetically modified mosquitoes and chemicals have undesired consequences and can be dangerous
- (D) Using chemicals to kill mosquitoes may have undesired consequences but it is not clear if using genetically modified mosquitoes has any negative consequence

Answer:	(D)	Click here to watch video explanation
©	All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet ma	ay be reproduced or utilized in any form without the written permission

C	GATEFORUM Engineering Success	EC-GATE-2022	www.gateforumonline.com
7.	Consider the following in (i) $2x-1 > 7$ (ii) $2x-9 < 1$ Which one of the follow:	nequalities. Ing expressions below satisfies the above t	wo inequalities?
	(A) $x \leq -4$	(B) $-4 < x \le 4$ (C) $4 < x < 5$	(D) $x \ge 5$
Ans	swer: (C)	Click	here to watch video explanation
8.		−3), R(−2, −1), and S(2, −1) represent the	vertices of a quadrilateral.
	(A) 4	(B) $4\sqrt{2}$ (C) 8	(D) $8\sqrt{2}$
Ans	swer: (C)	Click	here to watch video explanation
9.	disciplinary committee I given below. Statement of P: R has c Statement of Q: S has c Statement of R: P did n Statement of S: Only or Statement of T: R is tell The investigating team h	opied in the exam. ot copy in the exam. e of us is telling the truth.	d the statements from the students as
	(A) R	(B) P (C) Q	(D) T
Ans	swer: (B)	Click	here to watch video explanation
	© All rights reserved by Thinkcell Learn	ing Solutions Pvt. Ltd. No part of this booklet may be reproduced or ut	tilized in any form without the written permission

10. Consider the following square with the four corners and the center marked as P, Q, R, S and T respectively.

Let X, Y and Z represent the following operations:

X: rotation of the square by 180 degree with respect to the S-Q axis.

Y: rotation of the square by 180 degree with respect to the P-R axis.

Z: rotation of the square by 90 degree clockwise with respect to the axis perpendicular, going into the screen and passing through the point T.

Consider the following three distinct sequences of operation (which are applied in the left to right order).

- 1. XYZZ
- **2.** XY

GATEFORUM

3. ZZZZ

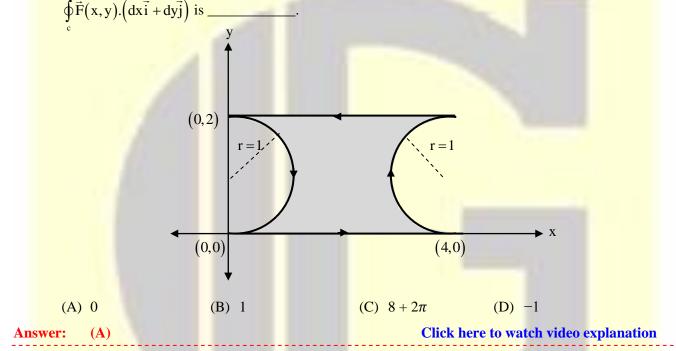
Which one of the following statements is correct as per the information provided above?

(A) The sequence of operations (1) and (2) are equivalent

(B) The sequence of operations (1) and (3) are equivalent

- (C) The sequence of operations (2) and (3) are equivalent
- (D) The sequence of operations (1), (2) and (3) are equivalent

Answer: (B)


Click here to watch video explanation

www.gateforumonline.com

|EC-GATE-2022|

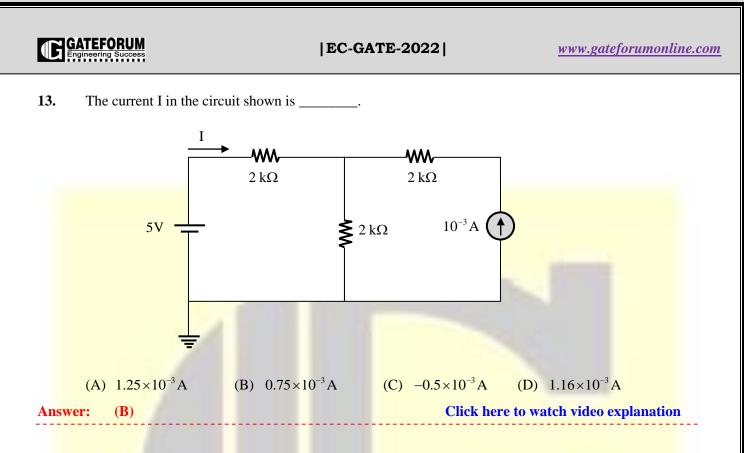
ELECTRONICS AND COMMUNICATIONS Q. No. 11 to 25 Carry One Mark Each

11. Consider the two-dimensional vector field $\vec{F}(x, y) = x\vec{i} + y\vec{j}$, where \vec{i} and \vec{j} denote the unit vectors along the x-axis and the y-axis, respectively. A contour C in the x-y plane, as shown in the figure, is composed of two horizontal lines connected at the two ends by two semicircular arcs of unit radius. The contour is traversed in the counter-clockwise sense. The value of the closed path integral $\vec{f} \vec{r}(x, y) = x\vec{i} + y\vec{j}$.

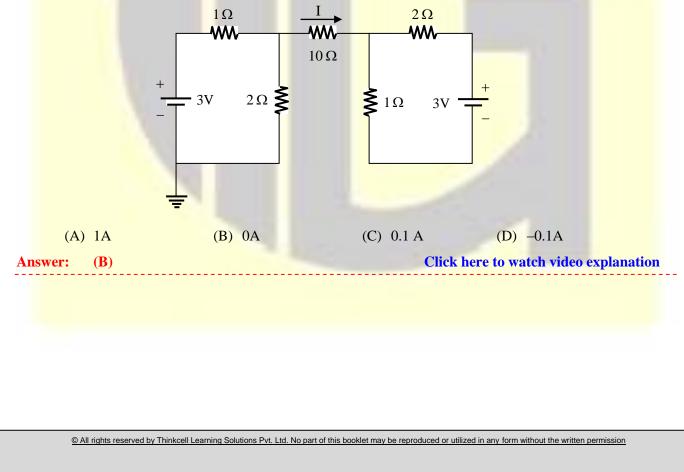
12. Consider a system of linear equations Ax = b, where

$$\mathbf{A} = \begin{bmatrix} 1 & -\sqrt{2} & 3 \\ -1 & \sqrt{2} & -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

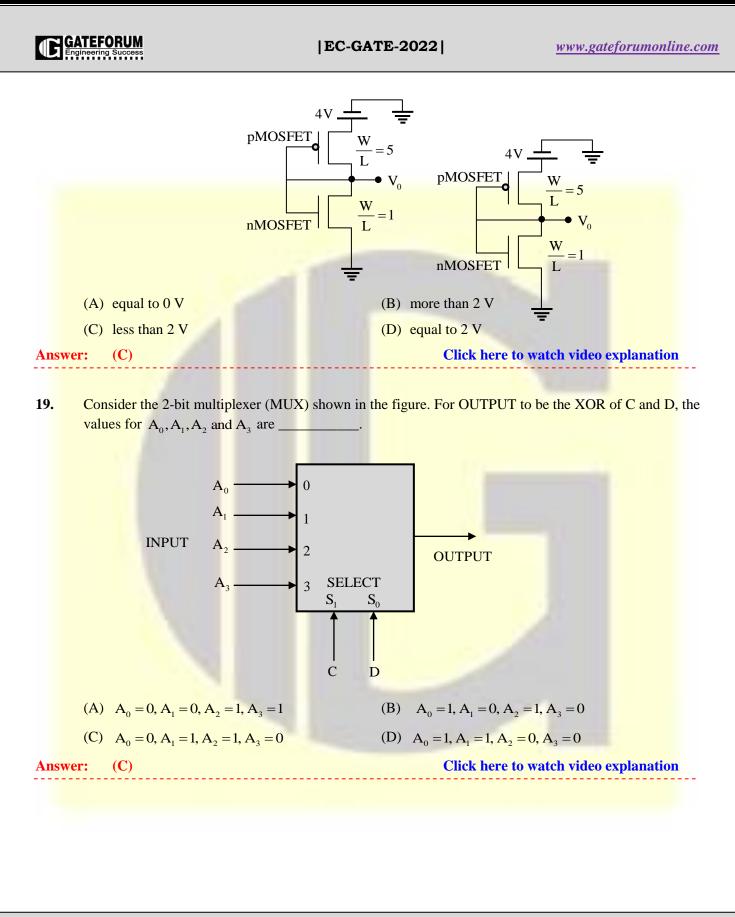
This system of equations admits ______.


- (A) a unique solution for x
- (C) no solutions for x

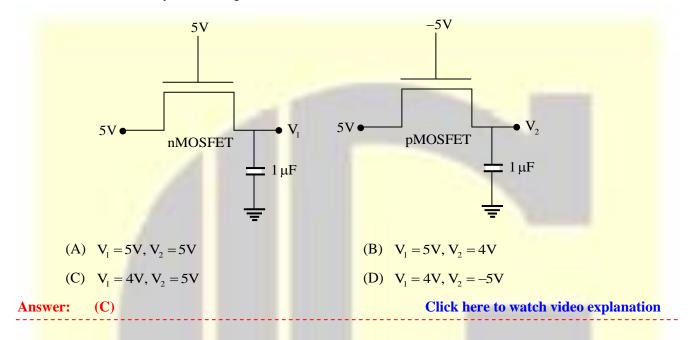
- (B) infinitely many solutions for x
- (D) exactly two solutions for x


Answer: (C)

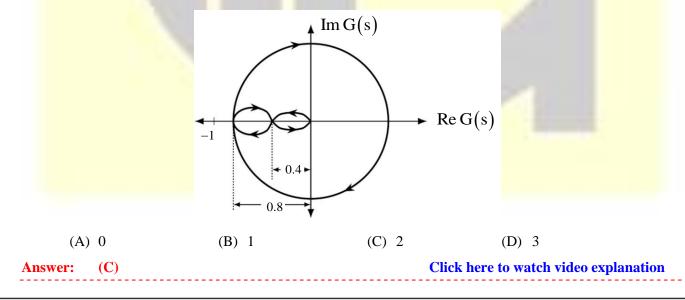
GATEFORUM


Click here to watch video explanation

14. Consider the circuit shown in the figure. The current I flowing through the 10Ω resistor is _____.



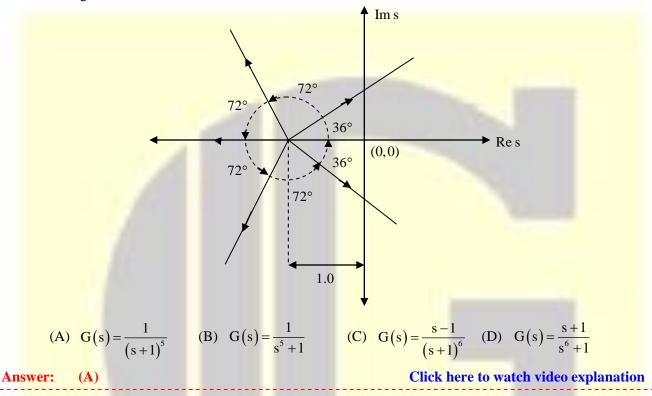
C	ATEFORUM gineering Success	EC-GATE-2022	www.gateforumonline.com
15.	The Fourier transform $X(j\omega)$ of the s	signal	
	$\mathbf{x}(\mathbf{t}) = \frac{\mathbf{t}}{\left(1 + \mathbf{t}^2\right)^2} \text{ is } \underline{\qquad}.$		
	(A) $\frac{\pi}{2j}\omega e^{- \omega }$ (B) $\frac{\pi}{2}\omega e^{- \omega }$	(C) $\frac{\pi}{2j}e^{- \omega }$ (D)	$\frac{\pi}{2}e^{- \omega }$
Answe	er: (A)	Click here to wa	itch video explanation
16.	10^{17} cm ⁻³ and the intrinsic carrier co μ m and 1 μ m, respectively. The left s photon energy greater than the bandg ONLY at x = 0 because of the laser. illumination. Under these conditions	rect bandgap p-type semiconductor. The oncentration is 10^{10} cm ⁻³ . Electron and he side of the bar (x = 0) is uniformly illum gap of the semiconductor. Excess electror. The steady state electron density at x = and ignoring electric field, the closest tron density at x = 2 µm, is	ole diffusion lengths are 2 ninated with a laser having on-hole pairs are generated 0 is 10^{14} cm ⁻³ due to laser approximation (among the
	(A) $0.37 \times 10^{14} \text{ cm}^{-3}$	(B) $0.63 \times 10^{13} \text{ cm}^{-3}$	
	(C) $3.7 \times 10^{14} \text{ cm}^{-3}$	(D) 10^3 cm^{-3}	
Answe	<mark>er: (A</mark>)	Click here to wa	atch video explanation
17.	$E_{c} - E_{Fn} = 200 \text{ meV}$, where E_{c} and Fermi level energy, respectively.	onductor with electron density $n = E_{Fn}$ denote the bottom of the conduction Assume thermal voltage as 26 meV 5×10^{16} cm ⁻³ , the closest approximation of	n band energy and electron and the intrinsic carrier
		V (C) 218 meV (D)	182 meV
Answe			atch video explanation
18.		the figure (substrates are connected to the L) ratio $\left(\frac{W}{L}\right)$ of the transistors are as s	
	have the same gate oxide capacitance	per unit area. For the pMOSFET, the th For the nMOSFET, the threshold voltage	reshold voltage is $-1V$ and
	electrons is $300 \text{ cm}^2/\text{V.s.}$ The steady	v state output voltage V ₀ is	·
		No part of this booklet may be reproduced or utilized in any form y	ville out the construction



GATEFORUM

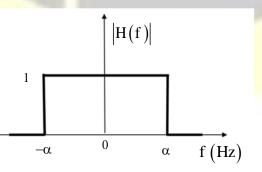
20. The ideal long channel nMOSFET and pMOSFET devices shown in the circuits have threshold voltages of 1 V and -1 V, respectively. The MOSFET substrates are connected to their respective sources. Ignore leakage currents and assume that the capacitors are initially discharged. For the applied voltages as shown, the steady state voltages are ______.

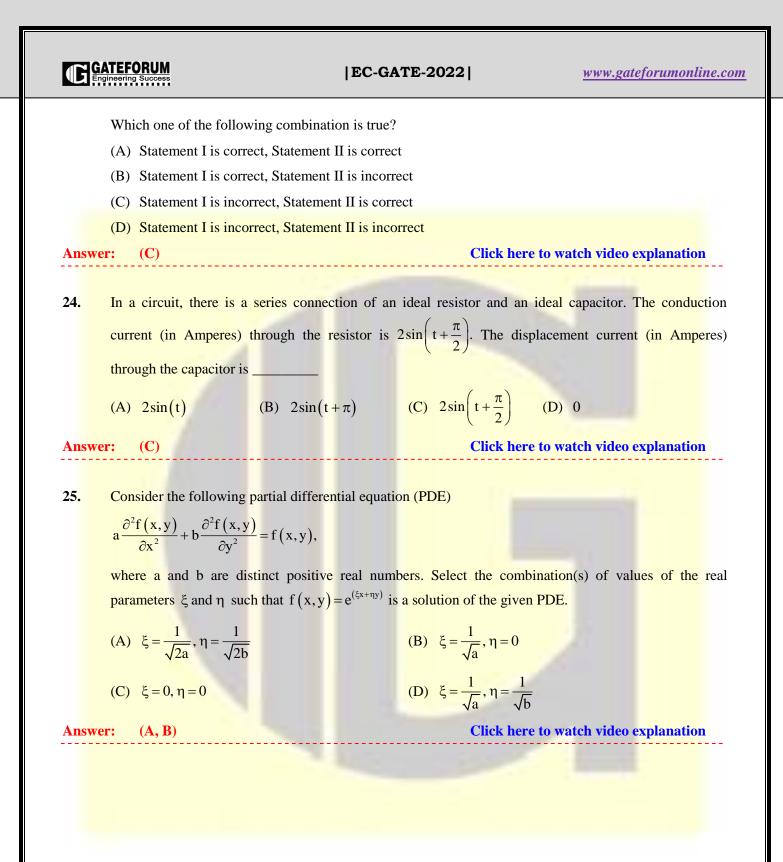
21. Consider a closed-loop control system with unity negative feedback and (*s*) in the forward path, where the gain K = 2. The complete Nyquist plot of the transfer function (*s*) is shown in the figure. Note that the Nyquist contour has been chosen to have the clockwise sense. Assume (*s*) has no poles on the closed right-half of the complex plane. The number of poles of the closed-loop transfer function in the closed right-half of the complex plane is ______.

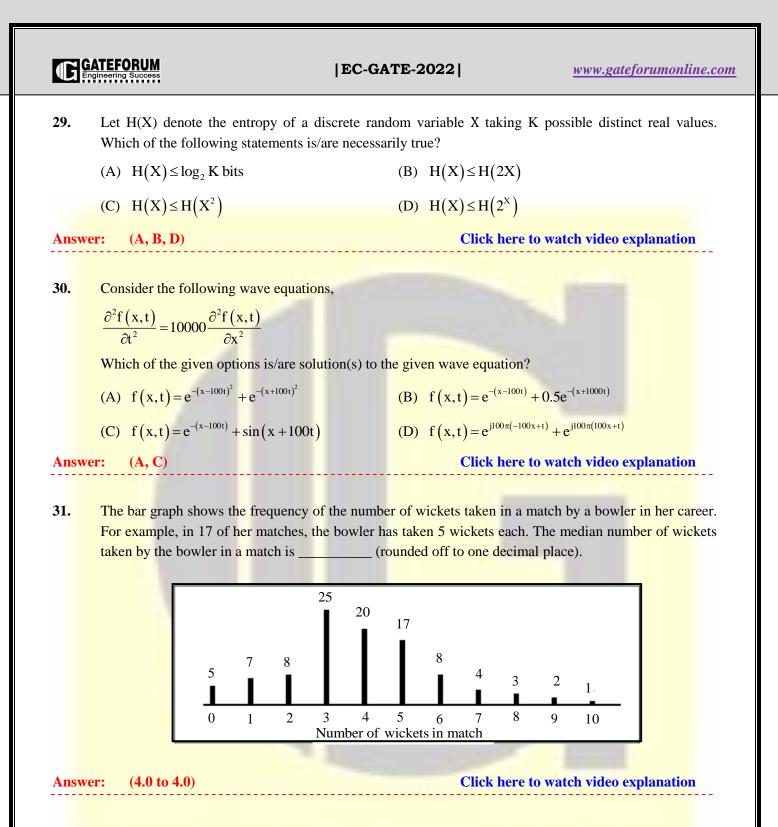

www.gateforumonline.com

EC-GATE-2022

22. The root-locus plot of a closed-loop system with unity negative feedback and transfer function (*s*) in the forward path is shown in the figure. Note that *K* is varied from 0 to ∞ .

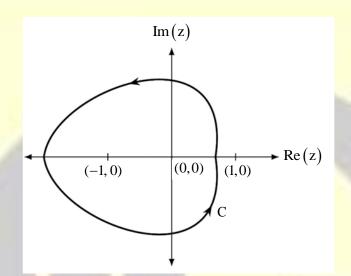

GATEFORUM


Select the transfer function (s) that results in the root-locus plot of the closed-loop system as shown in the figure.


23. The frequency response H(f) of a linear time-invariant system has magnitude as shown in the figure. Statement I: The system is necessarily a pure delay system for inputs which are bandlimited to $-\alpha \le f \le \alpha$.

Statement II: For any wide-sense stationary input process with power spectral density $S_x(f)$, the output power spectral density $S_y(f)$ obeys $S_y(f) = S_x(f)$ for $-\alpha \le f \le \alpha$.

	AIEFUKUM ngineering Success	EC-GA	TE-2022	www.gateforumonline.com
26.		magnitude of the voltage		figure. The 3 dB frequency is the B from the maximum value. Which
			$2 \text{ k}\Omega$	
				
	1 µF	1 kΩ	+15V	
	$V_{in} + \bullet$	M		
	^{▼in '}			•+
	_ ↓ _ ↓		-15V	
	(A) The circuit is a lov	w pass filter	(B) The circuit is a	high pass filter.
	(C) The 3 dB frequent	cy is 1000 rad/ s.	(D) The 3 dB frequ	uency is $\frac{1000}{3}$ rad/s
Answ	ver: (B, C)		Click he	re to watch video explanation
27.	Select the Boolean funder of the select the Boolean funder of the select the		+ yz, where x, y, a	nd z are Boolean variables, and +
	(A) $x + z + xy$	(B) $(x + y)(x + z)$	(C) $x + xy + yz$	(D) $x + xz + xy$
Answ				re to watch video explanation
28.	Select the correct state	ment(s) regarding CMOS	implementation of N	OT gates.
	(A) Noise Margin Hig	$h(NM_{_{ m H}})$ is always equal	l to the Noise Margi	n Low (NM _L), irrespective of the
	sizing of transisto	rs.		
	(B) Dynamic power c	onsumption during switch	ing is zero.	
	(C) For a logical high	input under steady state, t	he nMOSFET is in th	e linear regime of operation.
	(D) Mobility of electro	ons never influences the sy	witching speed of the	NOT gate.
				re to watch video explanation


G Engineering Success

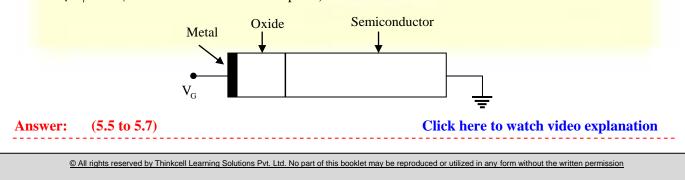
|EC-GATE-2022|

32. A simple closed path C in the complex plane is shown in the figure. If

$$\oint_{c} \frac{2^{z}}{z^{2}-1} dz = -i\pi A,$$

where $i = \sqrt{-1}$, then the value of A is _____(rounded off to two decimal places).

 Answer:
 (0.50 to 0.50)
 Click here to watch video explanation


33. Let $x_1(t) = e^{-t}u(t)$ and $x_2(t) = u(t) - u(t-2)$, where $u(\cdot)$ denotes the unit step function.

If y(t) denotes the convolution of $x_1(t)$ and $x_2(t)$, then $\lim_{x\to\infty} y(t) =$ ______ (rounded off to one decimal place).

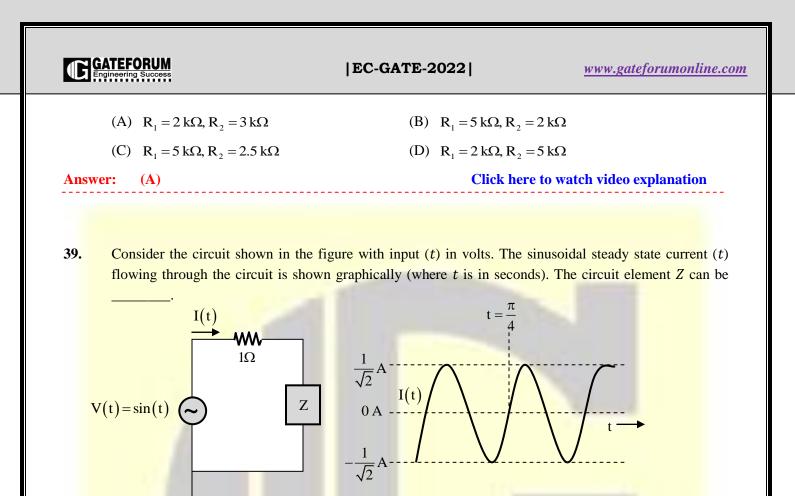
Answer: (0.0 to 0.0)

Click here to watch video explanation

34. An ideal MOS capacitor (p-type semiconductor) is shown in the figure. The MOS capacitor is under strong inversion with $V_G = 2V$. The corresponding inversion charge density (Q_{IN}) is $2.2 \,\mu\text{C/cm}^2$. Assume oxide capacitance per unit area as $C_{OX} = 1.7 \,\mu\text{F/cm}^2$. For $V_G = 4V$, the value of Q_{IN} is ______ $\mu\text{C/cm}^2$ (rounded off to one decimal place).

GATEFORUM Engineering Success

GATE REFRESHER COURSE


Electronics & Telecommunications Engineering

GATEFORUM Pioneers in Digital courses for GATE since 2008 offers **GATE refresher course** giving you access to video solutions for previous 11 years GATE questions and Topic-wise formula Compendium (Handbook).

Enroll now and get 20% discount use Promo Code GATEPAPERS

For more details visit gateforumonline.com

G	GATEFORUM Engineering Success	EC-GATE-2022	www.gateforumonline.com
35.	•	nate QPSK and 16-QAM symbols. If symbols per second, the raw (uncoded ecimal place).	•
Ansv	wer: (2.99 to 3.01)	Click here	to watch video explanation
	<u>Q. N</u>	o. 36 o 65 Carry Two Mark Each	
36.	The function $f(x) = 8\log_e x - x^2$	+3 attains its minimum over the interv	val[1, e] at x =
	(Here log _e x is the natural logari	thm of x,)	
	(A) 2 (B) 1	(C) e	(D) $\frac{1+e}{2}$
Ansv	wer: (B)	Click here	to watch video explanation
37.		imbers and v_1, v_2 be two non-zero real ${}_1^T v_1 = 1$, and $v_2^T v_2 = 1$. Let A be the 3 ×	
	(A) 0,α,β		
	(C) $0, \frac{\alpha+\beta}{2}, \sqrt{\alpha\beta}$	(B) $0, \alpha + \beta, \alpha - \beta$ (D) $0, 0\sqrt{\alpha^2 + \beta^2}$	
Ansv	ver: (A)	Click here	to watch video explanation
38.	For the circuit shown, the locus of The values of R_1 and R_2 are:	of the impedance $Z(j\omega)$ is plotted as a	ω increases from zero to infinity.
	•		
	$Z(j\omega)$	$C = \begin{bmatrix} -Im(Z)k\Omega \\ 1.5 \\ 0 \\ 0 \\ \infty \end{bmatrix}$	$\omega = 0$
		0	
	•	0 2 Re(3 4 5 Z)kΩ

40. Consider an ideal long channel nMOSFET (enhancement-mode) with gate length 10 µm and width 100 µm. The product of electron mobility (μ_n) and oxide capacitance per unit area (C_{OX}) is $\mu_n C_{OX} = 1 \text{ mA/V}^2$. The threshold voltage of the transistor is 1V. For a gate-to-source voltage $V_{GS} = [2 - \sin(2t)]V$ and drain-to-source voltage $V_{DS} = 1V$ (substrate connected to the source), the maximum value of the drain-to-source current is _____. (A) 40 mA (B) 20 mA (C) 15 mA (D) 5 mA Answer: (C) Click here to watch video explanation

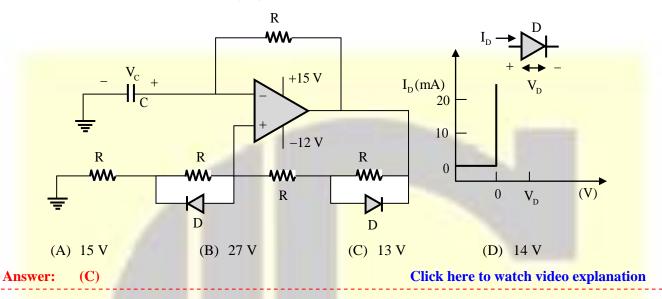
(B) an inductor of 1 H

(D) an inductor of $\sqrt{3}$ H

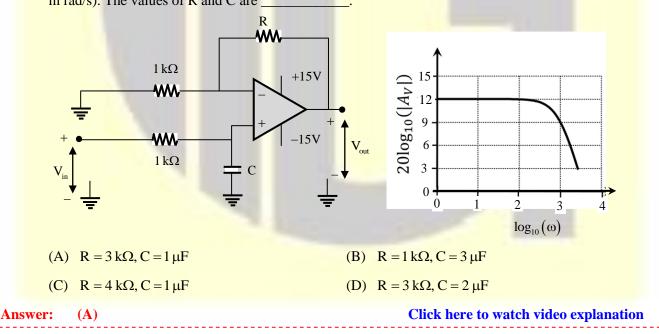
Click here to watch video explanation

(A) a capacitor of 1 F

(C) a capacitor of $\sqrt{3}$ F

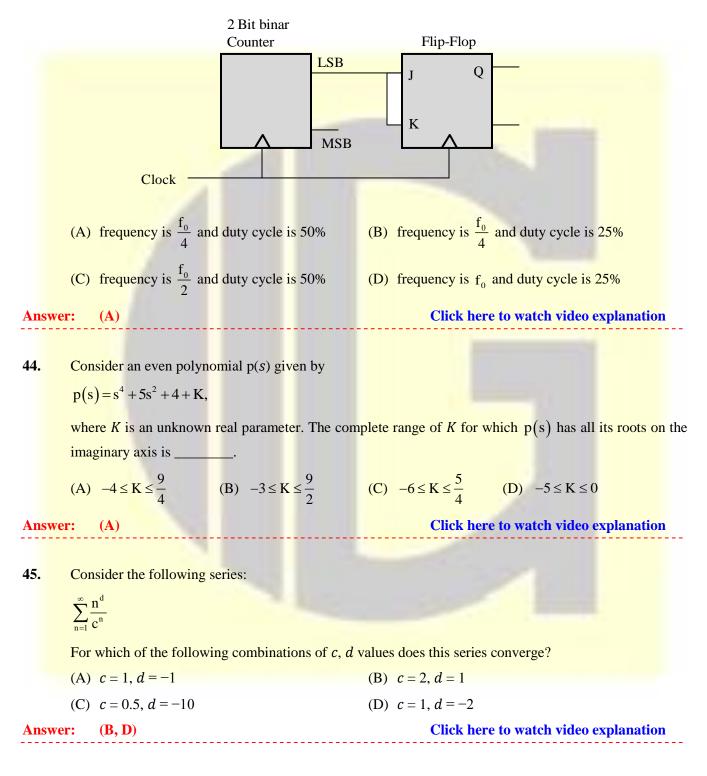

(B)

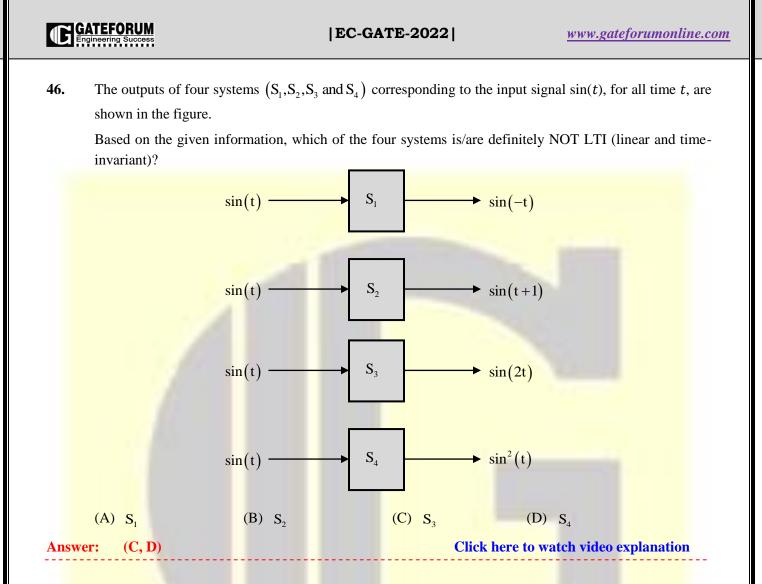
Answer:


GATEFORUM

ſG

41. For the following circuit with an ideal OPAMP, the difference between the maximum and the minimum values of the capacitor voltage (V_c) is _____.

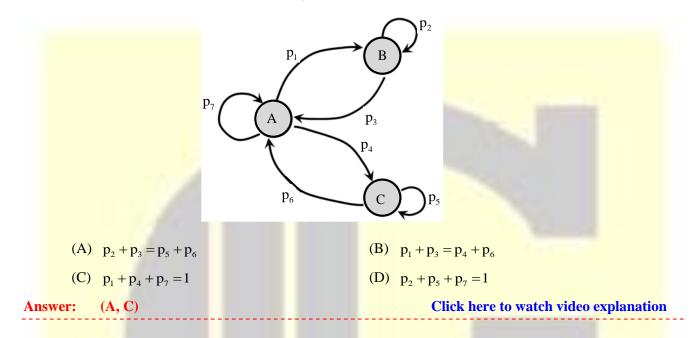



42. A circuit with an ideal OPAMP is shown. The Bode plot for the magnitude (in dB) of the gain transfer function $(A_v(j\omega) = V_{out}(j\omega)/V_{in}(j\omega))$ of the circuit is also provided (here, ω is the angular frequency in rad/s). The values of R and C are _____.

G GATEFORUM Engineering Success

43. For the circuit shown, the clock frequency is f_0 and the duty cycle is 25%. For the signal at the Q output of the Flip-Flop, _____.

47. Select the CORRECT statement(s) regarding semiconductor devices.


(A) Electrons and holes are of equal density in an intrinsic semiconductor at equilibrium.

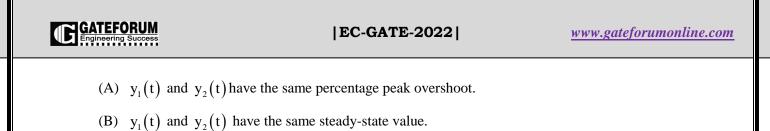
- (B) Collector region is generally more heavily doped than Base region in a BJT.
- (C) Total current is spatially constant in a two terminal electronic device in dark under steady state condition.
- (D) Mobility of electrons always increases with temperature in Silicon beyond 300 K.

Answer:	(A , C)	Click here to watch video explanation

C GATEFORUM Engineering Success

48. A state transition diagram with states *A*, *B*, and *C*, and transition probabilities $p_1, p_2, ..., p_7$ is shown in the figure (e.g., p_1 denotes the probability of transition from state *A* to *B*). For this state diagram, select the statement(s) which is/are universally true.

- **49.** Consider a Boolean gate (D) where the output Y is related to the inputs A and B as, $Y = A + \overline{B}$, where + denotes logical OR operation. The Boolean inputs '0' and '1' are also available separately. Using instances of only D gates and inputs '0' and '1', ______ (select the correct option(s)).
 - (A) NAND logic can be implemented
 - (B) OR logic cannot be implemented
 - (C) NOR logic can be implemented
 - (D) AND logic cannot be implemented


Answer: (A, C)

Click here to watch video explanation

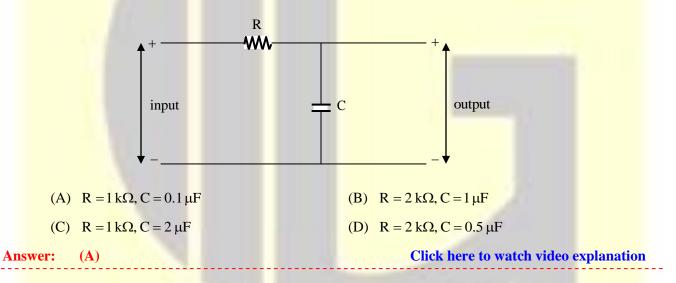
50. Two linear time-invariant systems with transfer functions

$$G_1(s) = \frac{10}{s^2 + s + 1}$$
 and $G_2(s) = \frac{10}{s^2 + s\sqrt{10} + 10}$

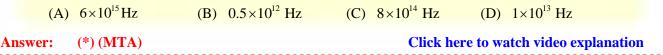
have unit step responses $y_1(t)$ and $y_2(t)$, respectively. Which of the following statements is/are true?

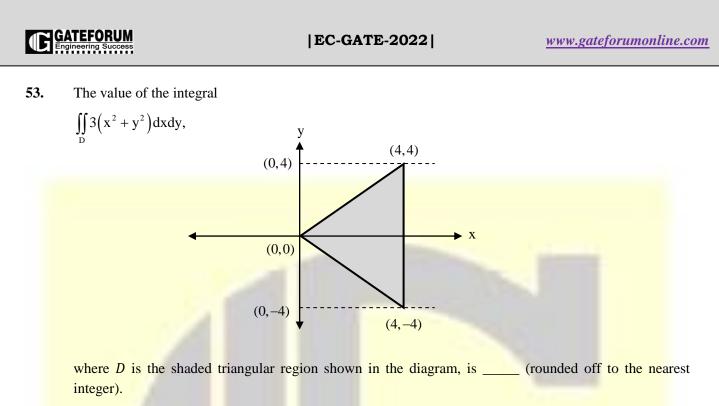
- (C) $y_1(t)$ and $y_2(t)$ have the same damped frequency of oscillation.
- (D) $y_1(t)$ and $y_2(t)$ have the same 2% settling time.

Answer: (A)


Click here to watch video explanation

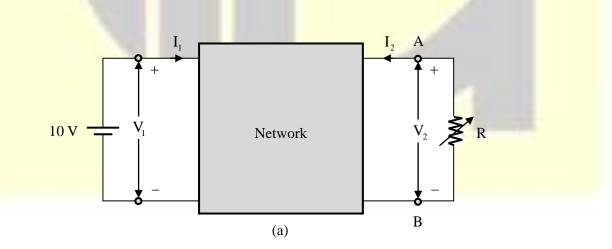
51. Consider an FM broadcast that employs the pre-emphasis filter with frequency response

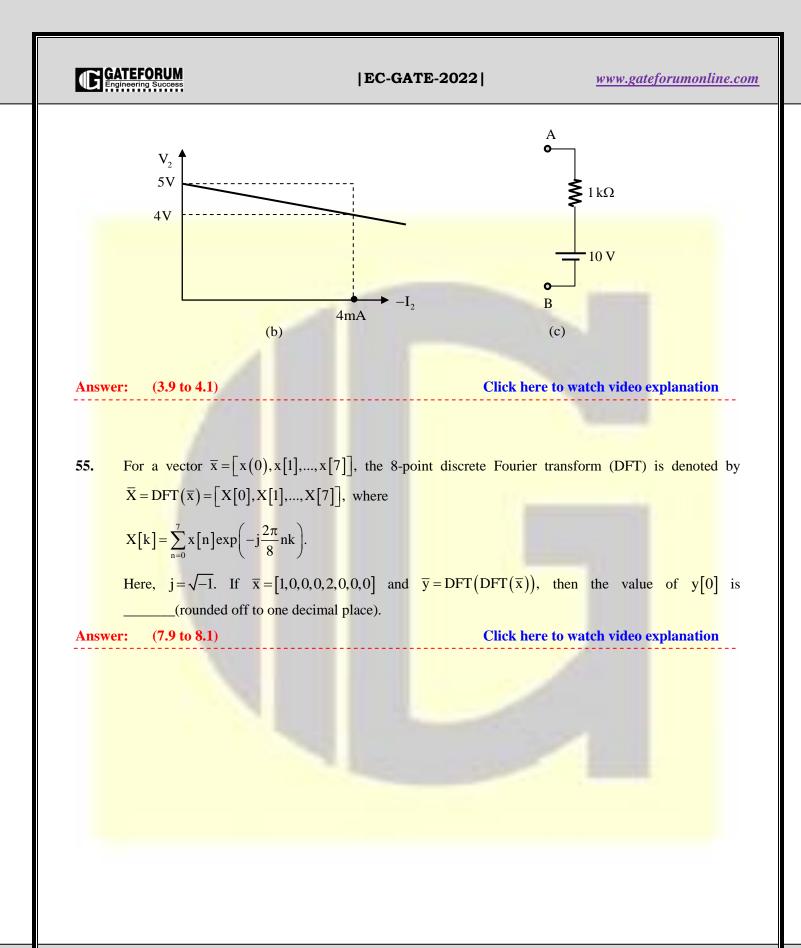

 $H_{pe}(\omega) = 1 + \frac{j\omega}{\omega_0},$


Where $\omega_0 = 10^4$ rad/sec.

For the network shown in the figure to act as a corresponding de-emphasis filter, the appropriate pair(s) of (R, C) values is/are _____.

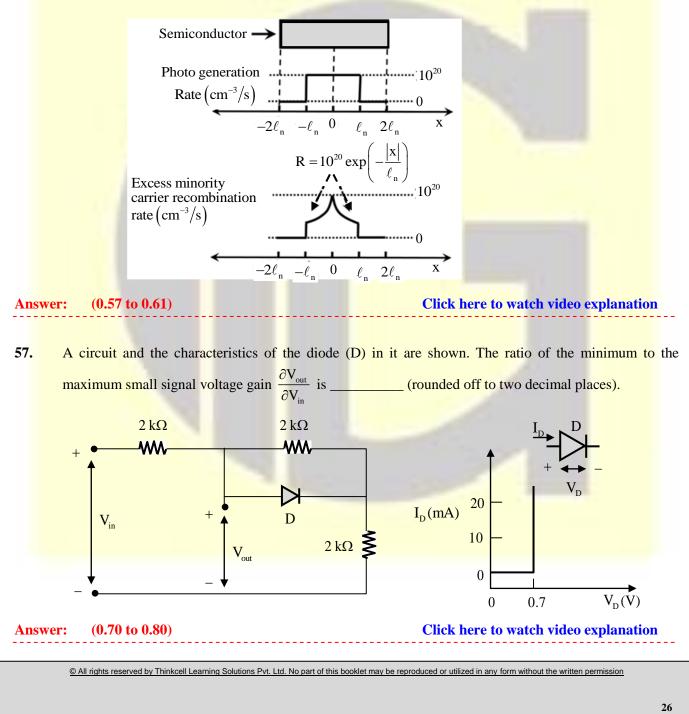
52. A waveguide consists of two infinite parallel plates (perfect conductors) at a separation of 10^{-4} cm, with air as the dielectric. Assume the speed of light in air to be 3×10^{8} m/s. The frequency/frequencies of TM waves which can propagate in this waveguide is/are _____




Answer: (512 to 512)

Click here to watch video explanation

54. A linear 2-port network is shown in Figure (a). An ideal DC voltage source of 10V is connected across Port 1. A variable resistance R is connected across Port 2. As R is varied, the measured voltage and current at Port 2 is shown in Figure (b) as V_2 versus $-I_2$ plot. Note that for $V_2 = 5V$, $I_2 = 0$ mA, and for $V_2 = 4V$, $I_2 = -4$ mA.

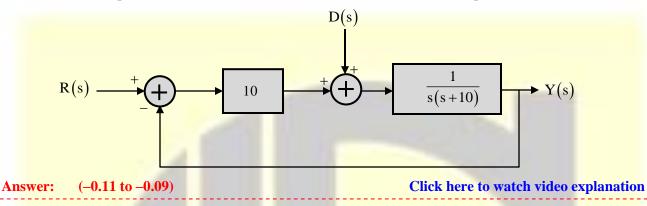

When the variable resistance R at Port 2 is replaced by the load shown in Fig. (c), the current I_2 is _____ mA (rounded off to one decimal place).

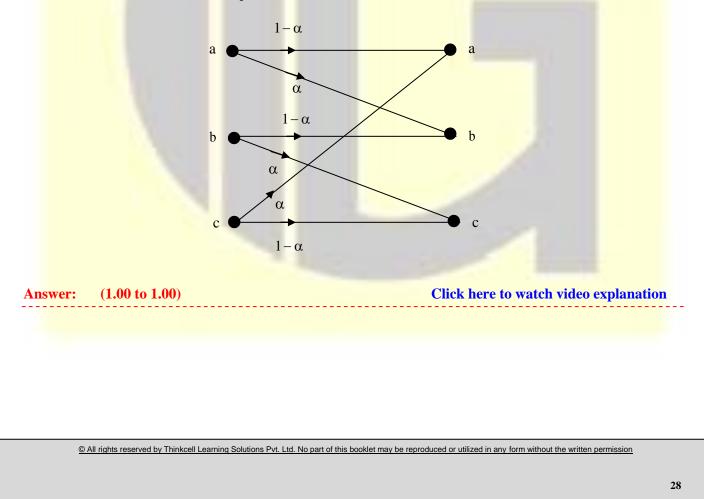
GATEFORUM

56. A p-type semiconductor with zero electric field is under illumination (low level injection) in steady state condition. Excess minority carrier density is zero at $x = \pm 2\ell_n$, where $\ell_n = 10^{-4}$ cm is the diffusion length of electrons. Assume electronic charge, $q = -1.6 \times 10^{-19}$ C. The profiles of photo-generation rate of carriers and the recombination rate of excess minority carriers (R) are shown. Under these conditions, the magnitude of the current density due to the photo-generated electrons at $x = +2\ell_n$ is _____ mA/cm^2 (rounded off to two decimal places).

EC-GATE-2022

GATEFORUM


58. Consider the circuit shown with an ideal OPAMP. The output voltage V_0 is ______V (rounded off to two decimal places).


27

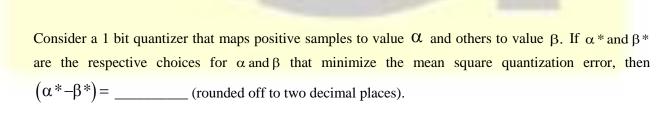
GATEFORUM

60. The block diagram of a closed-loop control system is shown in the figure. R(s), Y(s), and D(s) are the Laplace transforms of the time-domain signals r(t), y(t), and d(t), respectively. Let the error signal be defined as e(t) = r(t) - y(t). Assuming the reference input (t) = 0 for all t, the steady-state error (∞) , due to a unit step disturbance (t), is ______ (rounded off to two decimal places).

61. The transition diagram of a discrete memoryless channel with three input symbols and three output symbols is shown in the figure. The transition probabilities are as marked. The parameter α lies in the interval [0.25, 1]. The value of α for which the capacity of this channel is maximized, is ______ (rounded off to two decimal places).

GATEFORUM **|EC-GATE-2022|** www.gateforumonline.com 62. Consider communication over a memoryless binary symmetric channel using a(7, 4) Hamming code. Each transmitted bit is received correctly with probability $(1 - \epsilon)$, and flipped with probability ϵ . For each codeword transmission, the receiver performs minimum Hamming distance decoding, and correctly decodes the message bits if and only if the channel introduces at most one bit error. For $\epsilon = 0.1$, the probability that a transmitted codeword is decoded correctly is _____ ____(rounded off to two decimal places). (0.84 to 0.86) Click here to watch video explanation **Answer:** Consider a channel over which either symbols x_A or symbol x_B is transmitted. Let the output of the 63. channel Y be the input to a maximum likelihood (ML) detector at the receiver. The conditional probability density functions for Y given x_A and x_B are $f_{y/x_{A}}(y) = e^{-(y+1)}u(y+1),$ $f_{y/x_{R}}(y) = e^{(y-1)}(1-u(y-1)),$

where $u(\cdot)$ is the standard unit step function. The probability of symbols error for this system is _____ (rounded off to two decimal places).

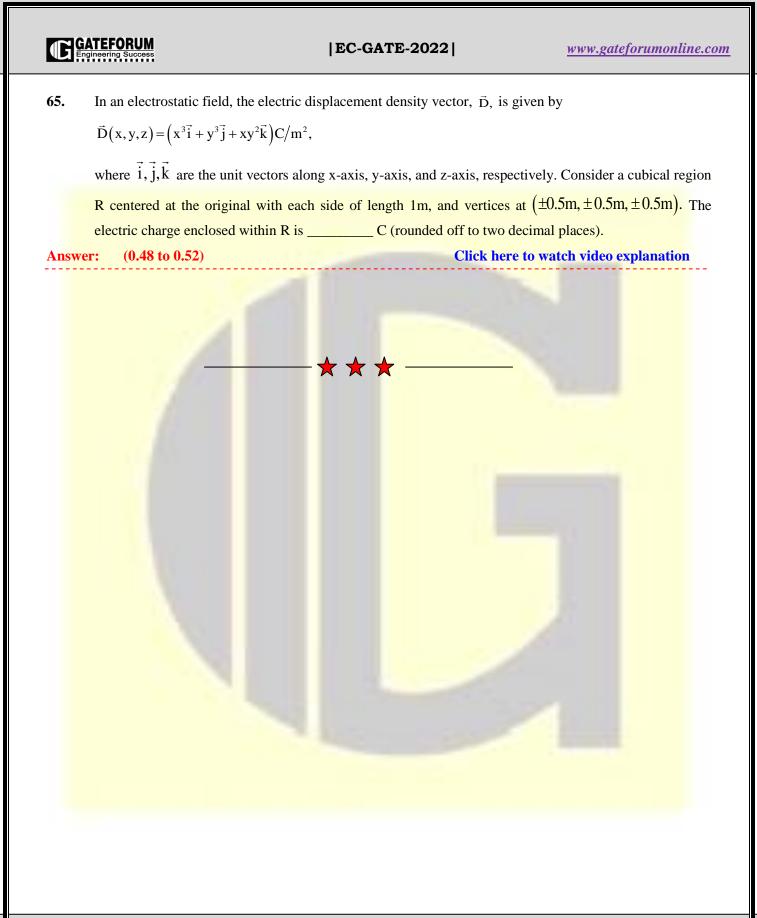

Answer: (0.22 to 0.25)

Answer:

Click here to watch video explanation

64. Consider a real valued source whose samples are independent and identically distributed random variables with the probability density function, (x), as shown in the figure.

f(x)


0

-2

(1.15 to 1.18) Click here to watch video explanation

1

► X

