
GATE PREVIOUS YEAR SOLVED PAPERS Electrical Engineering Previous Year Solved Papers

GATEFORUM Pioneers in Digital courses for GATE since 2008 has long history of training students through innovative courses. Currently GATEFORUM offers a wide range of courses from eGATE, GATE Online, Gdrive to Online TarGATE. Since inception, we have trained more 3,00,000 students since inception.

For more details visit gateforumonline.com

GATEFORUM **|EE-GATE-2022|** www.gateforumonline.com **GENERAL APTITUDE** Q. No. 1 - 5 Carry One Mark Each 1. As you grow older, an injury to your _____ may take longer to _____. (A) heel / heel (B) heal / heel (C) heal / heal (D) heel / heal Click here to watch video explanation Answer: **(D)** 2. In a 500 m race, P and Q have speeds in the ratio of 3 : 4. Q starts the race when P has already covered 140 m. What is the distance between P and Q (in m) when P wins the race? (D) 140 (A) 20 **(B)** 40 (C) 60 Click here to watch video explanation Answer: (A) Three bells P, Q, and R are rung periodically in a school. P is rung every 20 minutes; Q is rung every 30 3. minutes and R is rung every 50 minutes. If all the three bells are rung at 12:00 PM, when will the three bells ring together again the next time? (A) 5:00 PM (B) 5:30 PM (C) 6:00 PM (D) 6:30 PM Click here to watch video explanation Answer: (A) Given below are two statements and four conclusions drawn based on the statements. 4. Statement 1: Some bottles are cups. Statement 2: All cups are knives. Conclusion I: Some bottles are knives. Conclusion II: Some knives are cups. Conclusion III: All cups are bottles. Conclusion IV: All knives are cups. Which one of the following options can be logically inferred? (A) Only conclusion I and conclusion II are correct (B) Only conclusion II and conclusion III are correct (C) Only conclusion II and conclusion IV are correct (D) Only conclusion III and conclusion IV are correct Click here to watch video explanation **(A)** Answer:

5. The figure below shows the front and rear view of a disc, which is shaded with identical patterns. The disc is flipped once with respect to any one of the fixed axes 1-1, 2-2 or 3-3 chosen uniformly at random. What is the probability that the disc DOES NOT retain the same front and rear views after the flipping operation?

Q. No. 6-10 Carry Two Marks Each

6. Altruism is the human concern for the wellbeing of others. Altruism has been shown to be motivated more by social bonding, familiarity and identification of belongingness to a group. The notion that altruism may be attributed to empathy or guilt has now been rejected.

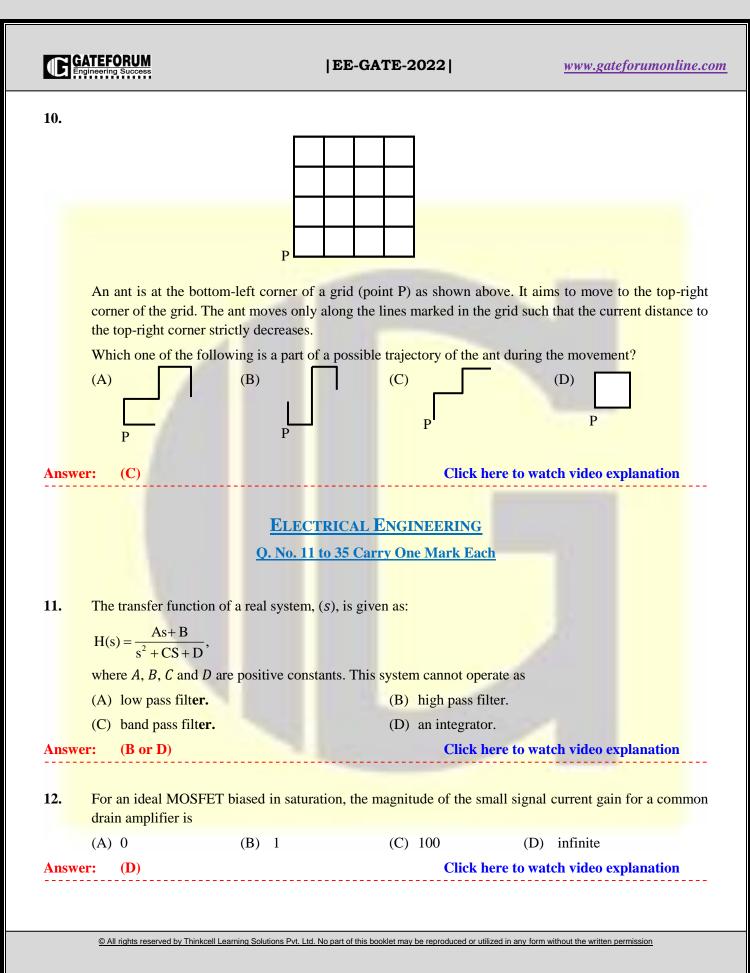
Which one of the following is the CORRECT logical inference based on the information in the above passage?

- (A) Humans engage in altruism due to guilt but not empathy
- (B) Humans engage in altruism due to empathy but not guilt
- (C) Humans engage in altruism due to group identification but not empathy
- (D) Humans engage in altruism due to empathy but not familiarity

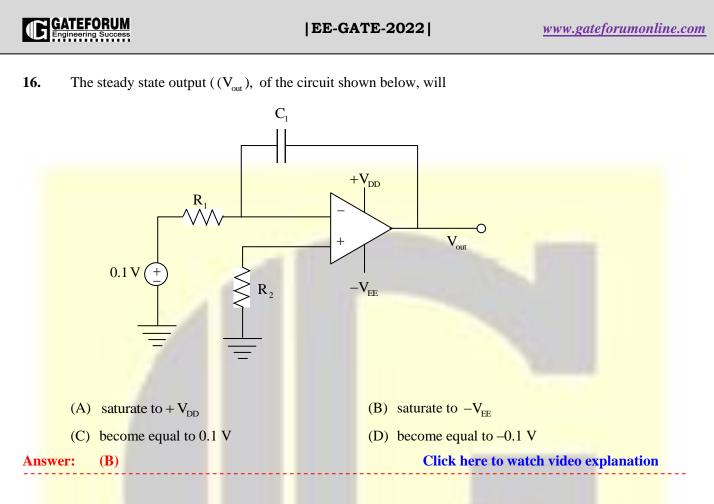
Answer: (A)

GATEFORUM

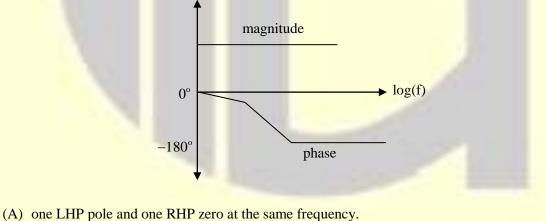
Click here to watch video explanation


C	GATEFORUM Engineering Success	E	E-GATE-2022	www.gateforumon	line.com	
7.	T, U, and V, one thrown once inde	on each of the faces. A	any of the six outcome What is the probability	aces. The following six letters: Q, es are equally likely. The two did y that the outcomes on the dice comes: Q, U and V?	ce are	
	(A) $\frac{1}{4}$	(B) $\frac{3}{4}$	(C) $\frac{1}{6}$	(D) $\frac{5}{36}$		
	4	(2) 4	0	50		
Ans	wer: (A)	<mark></mark> _	Click	there to watch video explanation	n 	
8.	The price of an item is 10% cheaper in an online store S compared to the price at another online store M. Store S charges ₹ 150 for delivery. There are no delivery charges for orders from the store M. A person bought the item from the store S and saved ₹ 100.					
	What is the price of the item at the online store S (in ₹) if there are no other charges than what is described above?					
	(A) 2500	(B) 2250	(C) 1750	(D) 1500		
Ans	wer: (B)		Click	here to watch video explanation	n	
9.	The letters P, Q, R, S, T and U are to be placed one per vertex on a regular convex hexagon, but not necessarily in the same order.				ut not	
	Consider the following statements:					
	• The line segment joining R and S is longer than the line segment joining P and Q.					
	• The line segment joining R and S is perpendicular to the line segment joining P and Q.					
	• The line segment joining R and U is parallel to the line segment joining T and Q.					
	Based on the above statements, which one of the following options is CORRECT?					
	(A) The line segn	nent joining R and T is p	arallel to the line segme	ent joining Q and S		
	(B) The line segn	nent joining T and Q is p	arallel to the line joinir	ng P and U		
	(C) The line segn	ent joining R and P is p	erpendicular to the line	e segment joining U and Q		
	(D) The line segn	<mark>ent joining Q and S</mark> is p	erpendicular to the line	e segment joining R and P		
	4.4.5					

Answer: (A)

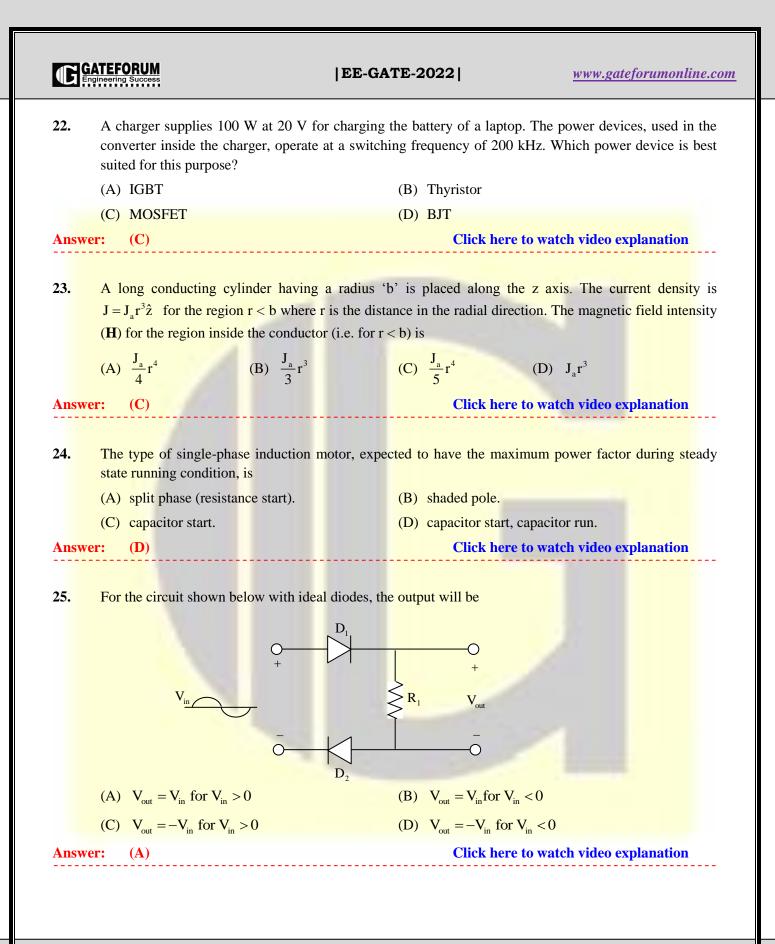

© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission

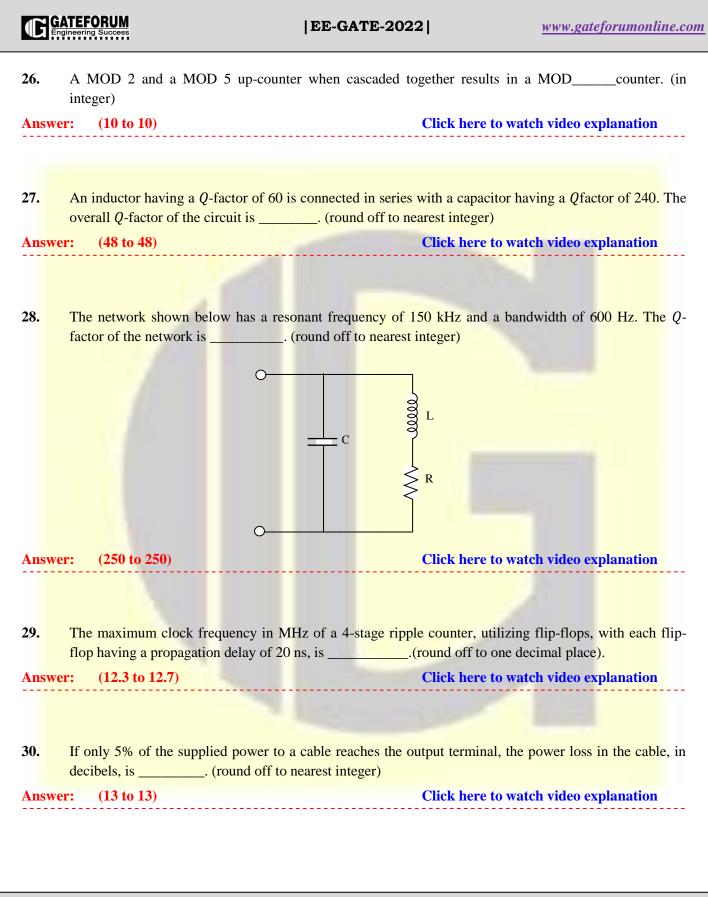
- -


Click here to watch video explanation

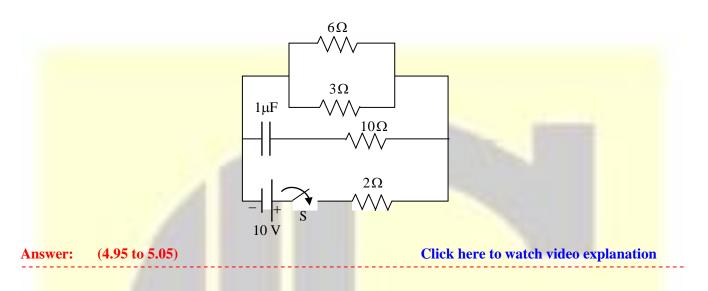
C	SATEFORUM	11	EE-GATE-2022	<u>www.gateforumonline.com</u>
13.	The most common	ly used relay, for the pr	otection of an alternator a	gainst loss of excitation, is
	(A) offset Mho rel	lay.	(B) over current	relay.
	(C) differential rel	lay.	(D) Buchholz re	lay.
Answ	ver: (A)		Click h	ere to watch video explanation
14.	shown in the figure	e below, is		nds with each strand of radius ' <i>r</i> ', as
	(A) 4r	(B) 1.414r	(C) 2r	(D) 1.723r
Answ	rer: (D)		Click h	ere to watch video explanation
15. Answ	transposed three-pl (A) 1.1, 0.15 and ((C) 0.2, 0.2 and 0.	nase transmission line, 0.08	from the given choices are (B) 0.15, 0.15 ar (D) 0.1, 0.3 and	nd 0.35
	© All rights reserved by Think	cell Learning Solutions Pvt. Ltd. No pa	rt of this booklet may be reproduced or utili	ized in any form without the written permission
				6

17. The Bode magnitude plot of a first order stable system is constant with frequency. The asymptotic value of the high frequency phase, for the system, is -180° . This system has




- (B) one LHP pole and one LHP zero at the same frequency.
- (C) two LHP poles and one RHP zero.
- (D) two RHP poles and one LHP zero.

Answer: (A)


Click here to watch video explanation

18.	A balanced Wheetstone bridge APCD has the fal		
10.	A balanced Wheatstone bridge <i>ABCD</i> has the fol $R_{AB} = 1k\Omega \pm 2.1\%$, $R_{BC} = 100\Omega \pm 0.5\%$; R_{CD} is a	0	
	$R_{DA} = 300\Omega \pm 0.4\%$. The value of R_{CD} and its a (A) $30\Omega \pm 3\Omega$ (B) $30\Omega \pm 0.9\Omega$	(C) $3000 \Omega \pm 90 \Omega$ (D) $3000 \Omega \pm 3 \Omega$	
Amore			motion
Answ	ver: (B)	Click here to watch video expla	
			k
19.	The open loop transfer function of a unity gain n	egative feedback system is given by $G(s) =$	$\frac{1}{s^2+4s-5}$
	The range of k for which the system is stable, is		
		(C) $k > 5$ (D) $k < 5$	
Answ	rer: (C)	Click here to watch video expla	anation
20.	Consider a 3×3 matrix A whose (i,j)-th elemen	$a_{i,j} = (i - j)^3$. Then the matrix A	
	(A) symmetric. (B) skew-symmetric.		
Answ	ver: (B)	Click here to watch video expla	anation
21.	In the circuit shown below, a three-phase star- three-phase supply of $100\sqrt{3}V$ with phase seque $Z_{\rm B} = 20\angle 60^{\circ}\Omega$. The value of $Z_{\rm C}$ in Ω , for v zero, is + E _c E _A + E _c E _B + (A) $20\angle -30^{\circ}$ (B) $20\angle 30^{\circ}$	ence <i>ABC</i> . The star connected load has Z _A	$=10\Omega$ and
	ver: (C)	Click here to watch video expla	anation
Answ		1	

31. In the circuit shown below, the switch *S* is closed at t = 0. The magnitude of the steady state voltage, in volts, across the 6 Ω resistor is _____. (round off to two decimal places).

32. A single-phase full-bridge diode rectifier feeds a resistive load of 50 Ω from a 200 V, 50 Hz single phase AC supply. If the diodes are ideal, then the active power, in watts, drawn by the load is ______. (round off to nearest integer).

Answer: (795 to 805)

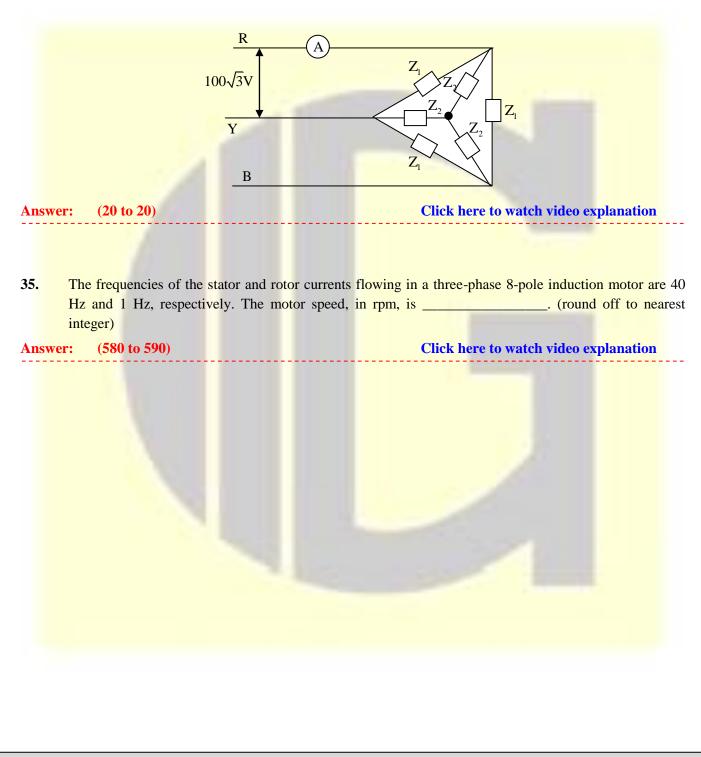
GATEFORUM

Click here to watch video explanation

33. The voltage at the input of an AC-DC rectifier is given by $v(t) = 230\sqrt{2} \sin \omega t$ where

 $\omega = 2\pi \times 50$ rad/s. The input current drawn by the rectifier is given by

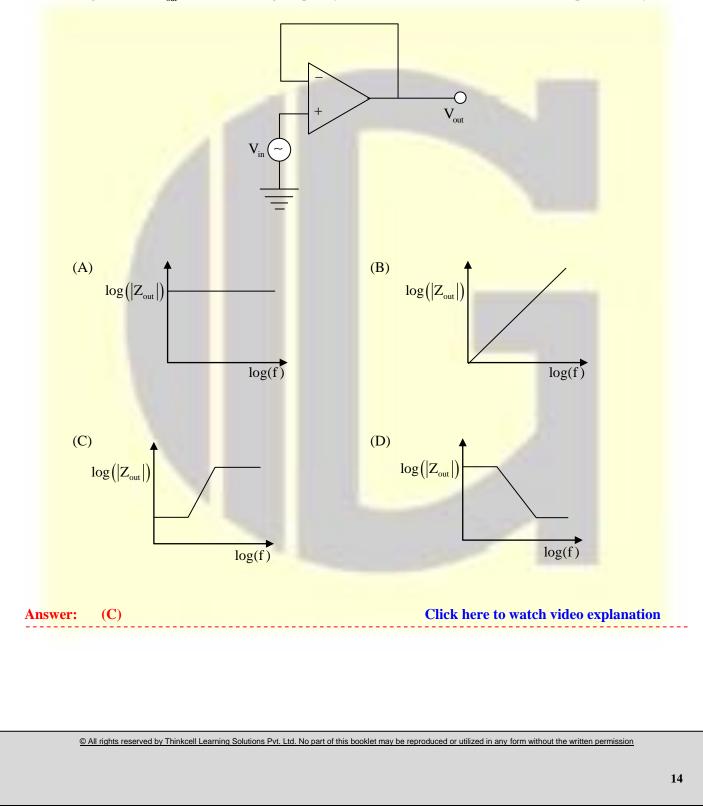
$$\mathbf{i(t)} = 10\sin\left(\omega t - \frac{\pi}{3}\right) + 4\sin\left(3\omega t - \frac{\pi}{6}\right) + 3\sin\left(5\omega t - \frac{\pi}{3}\right)$$


The input power factor, (rounded off to two decimal places), is, _____ lag.

Answer: (0.43 to 0.47)

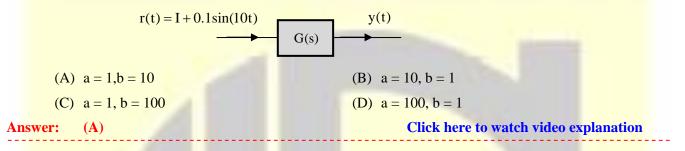
Click here to watch video explanation

34. Two balanced three-phase loads, as shown in the figure, are connected to a $100\sqrt{3}V$, three-phase, 50 Hz main supply. Given $Z_1 = (18 + j24)\Omega$ and $Z_2 = (6 + j8)\Omega$. The ammeter reading, in amperes, is _____. (round off to nearest integer)


www.gateforumonline.com

Q. No. 36-65 Carry Two Marks Each

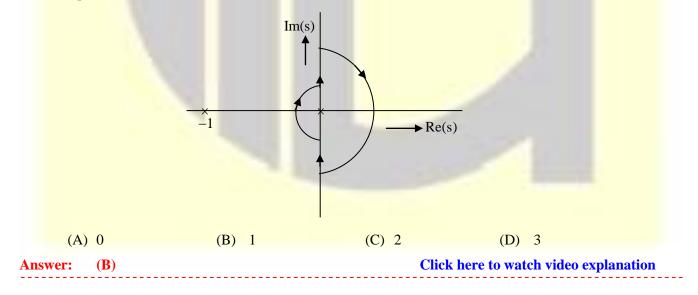
36. The output impedance of a non-ideal operational amplifier is denoted by Z_{out} . The variation in the magnitude of Z_{out} with increasing frequency, f, in the circuit shown below, is best represented by



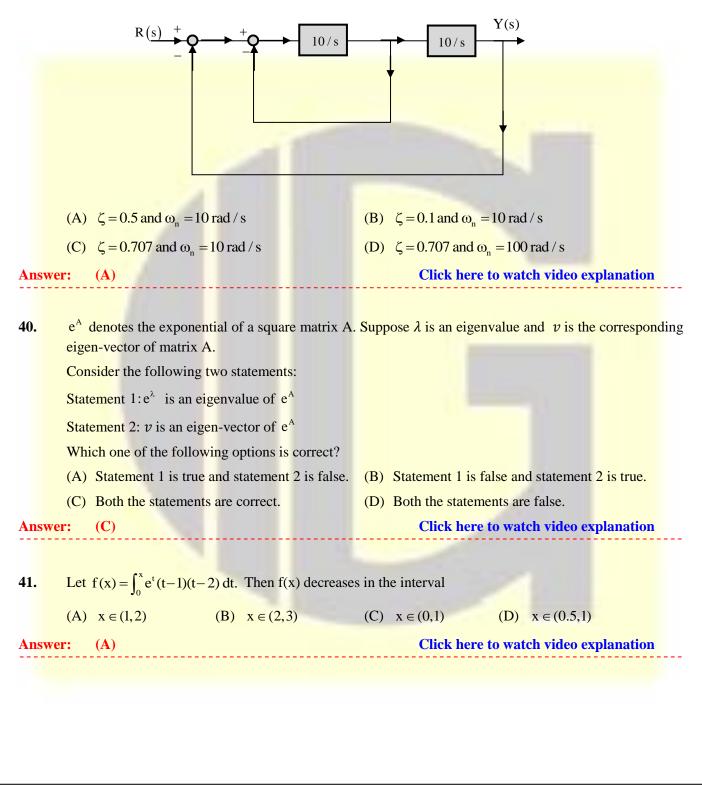
|EE-GATE-2022|

- **37.** An LTI system is shown in the figure where
 - $G(s) = \frac{100}{s^2 + 0.1s + 10}.$

The steady state output of the system, to the input (t), is given as


 $y(t) = a + b \sin b(10t + \theta)$. The values of 'a' and 'b' will be

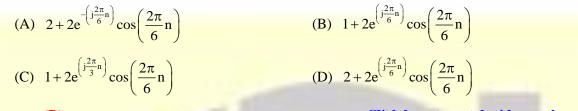
38. The open loop transfer function of a unity gain negative feedback system is given as


 $\mathbf{G}(\mathbf{s}) = \frac{1}{\mathbf{s}(\mathbf{s}+1)}.$

The Nyquist contour in the *s*-plane encloses the entire right half plane and a small neighbourhood around the origin in the left half plane, as shown in the figure below. The number of encirclements of the point (-1 + j0) by the Nyquist plot of (*s*), corresponding to the Nyquist contour, is denoted as *N*. Then *N* equals to

GATEFORUM Engineering Success

39. The damping ratio and undamped natural frequency of a closed loop system as shown in the figure, are denoted as ζ and ω , respectively. The values of ζ and ω are

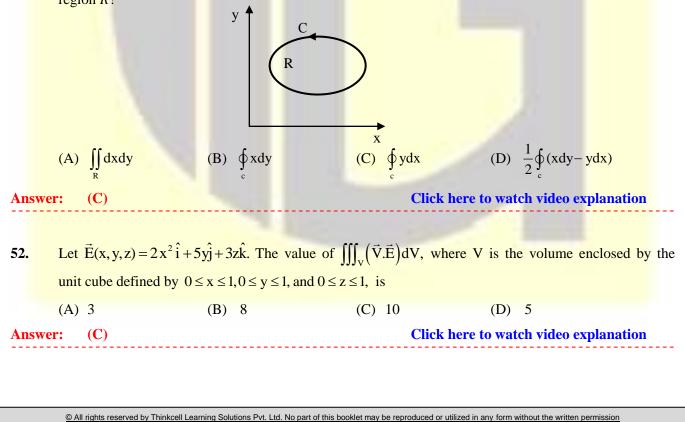

G	ATEFORUM ingineering Success	 E]	E-GATE-2022	www.gateforumonline.com
42.	Consider a matrix	$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -2 \\ 0 & 1 & 1 \end{bmatrix}.$		
			$= A^2 + cA + dI$, where c	and d are scalars and I is the identity
	matrix.			
	Then $(c + d)$ is eq (A) 5		(\mathbf{C})	(D) 11
Answ		(b) 17	(C) =0	(D) 11 here to watch video explanation
43 .	The fuel cost func	tions in rupees/hour for tw	wo 600 MW thermal po	ower plants are given by
	Plant 1: $C_1 = 350$ -	$+6P_1+0.004P_1^2$		
	Plant 2: C_{2} 450 +			
	incremental cost	of power (λ) is 8 rupee	es per MWh. The two	ectively, in MW and <i>a</i> is constant. The thermal power plants together meet a 1 and plant 2 in MW, respectively, are (D) 350, 200
Answ	er: (B)		Click	here to watch video explanation
44.	The current gain (I_{out}/I_{in}) in the circuit with C_f	an ideal current amplif $C_{c} I_{out}$ $V_{o}^{+} I_{-}$	ier given below is
	(A) $\frac{C_f}{C_c}$	(B) $\frac{-C_{f}}{C_{c}}$	(C) $\frac{C_c}{C_f}$	(D) $\frac{-C_c}{C_c}$
	C		\mathbf{c}_{f}	$C_{\rm f}$
Answ			1	C _f here to watch video explanation

G	CATEFORUM Engineering Success	E	E-GATE-2022	www.gateforumonline.com		
45.	If the magnetic field intensity (H) in a conducting region is given by the expression,					
	$H = x^{2}\hat{i} + x^{2}y^{2}\hat{j} + x^{2}y$ $z = 1 \text{ m, is}$	$v^2 z^2 \hat{k} A / m$. The mag	nitude of the current d	density, in A/m , at $x = 1$ m, $y = 2$ m, and		
	(A) 8	(B) 12	(C) 16	(D) 20		
Answ	ver: (B)		Clic	k here to watch video explanation		
46 <mark>.</mark>	Let a causal LTI syst	em be governed by th	e following differentia	al equation		
	$y(t) + \frac{1}{4}\frac{dy}{dt} = 2x(t),$	where $x(t)$ and $y(t)$ a	are the input and output	ut respectively.		
	Its impulse response	is				
	(A) $2e^{-\frac{1}{4}t}u(t)$	(B) $2e^{-4t}u(t)$	(C) $8e^{-\frac{1}{4}t}u(t)$) (D) $8e^{-4t}u(t)$		
Answ				k here to watch video explanation		
	·					
47 .	Let an input $x(t) = 2$	$\sin(10\pi t) + 5\cos(15\pi)$	t) + 7 sin(42 π t) + 4 cos	$s(45\pi t)$ is passed through an LTI system		
	having an impulse re	sponse,				
	$h(t) = 2\left(\frac{\sin(10\pi t)}{\pi t}\right) dt$	cos(40πt)				
	The output of the sys	tem is				
	(A) $2\sin(10\pi t) + 5c$	os(15πt)	(B) 5cos(157	πt) + 7 sin(42 π t)		
	(C) $7\sin(42\pi t) + 4c$	$os(45\pi t)$	(D) 2sin(107	$tt) + 4\cos(45\pi t)$		
Answ	ver: (C)		Clic	k here to watch video explanation		
48.	Consider the system	as shown below				
		x(t)	y(t)			
	where $y(t) = x(e^{t})$.	The system is				
	(A) linear and causa	1.	(B) linear and	d non-causal.		
		1	(D) non line			
	(C) non-linear and c	ausai.	(D) non-mea	ar and non-causal		

G GATEFORUM Engineering Success

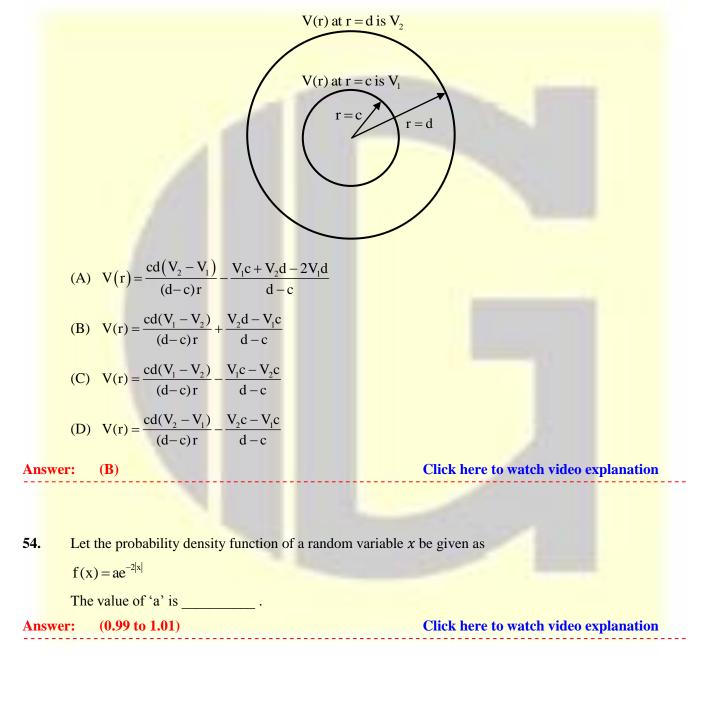
|EE-GATE-2022|

49. The discrete time Fourier series representation of a signal x[n] with period N is written as $x[n] = \sum_{k=0}^{N-1} a_k e^{j(2kn\pi/N)}$. A discrete time periodic signal with period N = 3, has the non-zero Fourier series coefficient: $a_{-3} = 2$ and $a_4 = 1$. The signal is

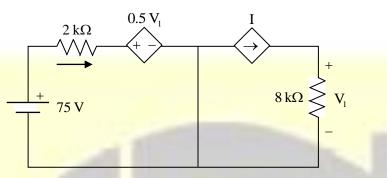


Answer: (B)

Click here to watch video explanation


- 50. Let, $f(x, y, z) = 4x^2 + 7xy + 3xz^2$. The direction in which the function f(x, y, z) increases most rapidly at point P = (1, 0, 2) is
- (A) $20\hat{i} + 7\hat{j}$ (B) $20\hat{i} + 7\hat{j} + 12\hat{k}$ (C) $20\hat{i} + 12\hat{k}$ (D) $20\hat{i}$

 Answer:
 (B)
 Click here to watch video explanation
- 51. Let R be a region in the first quadrant of the xy plane enclosed by a closed curve C considered in counter-clockwise direction. Which of the following expressions does not represent the area of the region R?


GATEFORUM Engineering Success

53. As shown in the figure below, two concentric conducting spherical shells, centered at r = 0 and having radii r = c and r = d are maintained at potentials such that the potential V(r) at r = c is V₁ and V(r) at r = d is V₂. Assume that V(r) depends only on r, where r is the radial distance. The expression for V(r) in the region between r = c and r = d is

55. In the circuit shown below, the magnitude of the voltage V in volts, across the $8k\Omega$ resistor is ______. (round off to nearest integer)

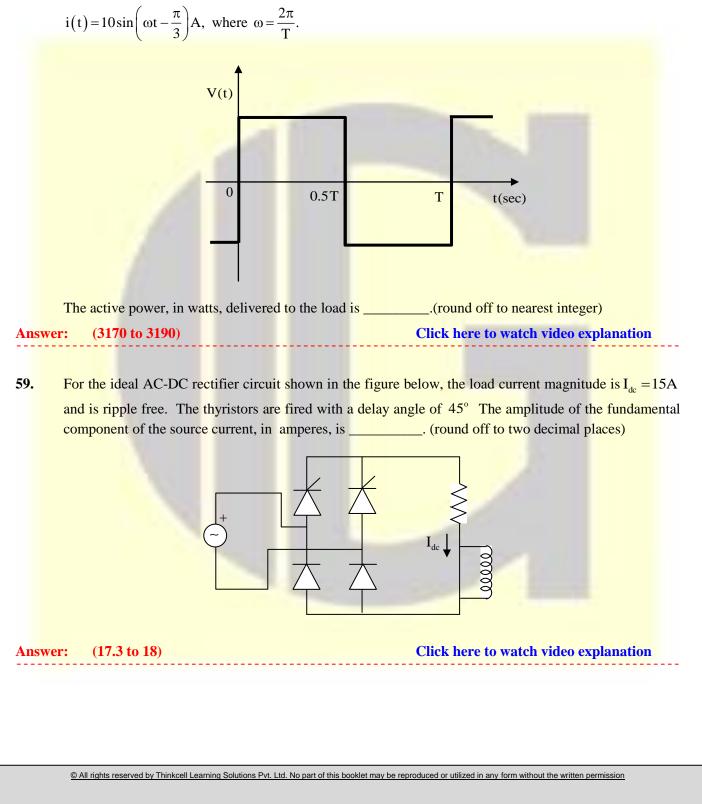
Answer: (98 to 1.01)

Click here to watch video explanation

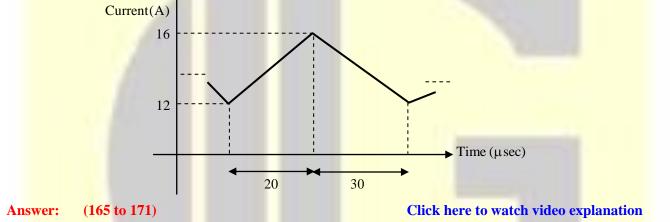
56. Two generating units rated for 250 MW and 400 MW have governor speed regulations of 6% and 6.4%, respectively, from no load to full load. Both the generating units are operating in parallel to share a load of 500 MW. Assuming free governor action, the load shared in MW, by the 250 MW generating unit is ______. (round off to nearest integer)

Answer: (188 to 192 or 198 to 202)

Click here to watch video explanation


57. A 20 MVA, 11.2 kV, 4-pole, 50 Hz alternator has an inertia constant of 15 MJ/MVA. If the input and output powers of the alternator are 15 MW and 10 MW, respectively, the angular acceleration in mechanical degree/s² _____. (round off to nearest integer)

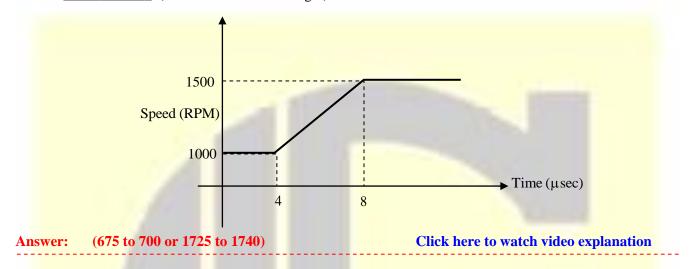
Answer: (74 to 76)


Click here to watch video explanation

GATEFORUM

58. Consider an ideal full-bridge single-phase DC-AC inverter with a DC bus voltage magnitude of 1000 V. The inverter output voltage (t) shown below, is obtained when diagonal switches of the inverter are switched with 50 % duty cycle. The inverter feeds a load with a sinusoidal current given by,

GATEFORUM **|EE-GATE-2022|** www.gateforumonline.com 60. A 3-phase grid-connected voltage source converter with DC link voltage of 1000 V is switched using sinusoidal Pulse Width Modulation (PWM) technique. If the grid phase current is 10 A and the 3-phase complex power supplied by the converter is given by (-4000 - i3000) VA, then the modulation index used in sinusoidal PWM is _____. (round off to two decimal places) **Answer:** (0.46 to 0.48) **Click here to watch video explanation** The steady state current flowing through the inductor of a DC-DC buck boost converter is given in the 61. figure below. If the peak-to peak ripple in the output voltage of the converter is 1V, then the value of the output capacitor, in µF, is _____. (round off to decimal integer) Inductor

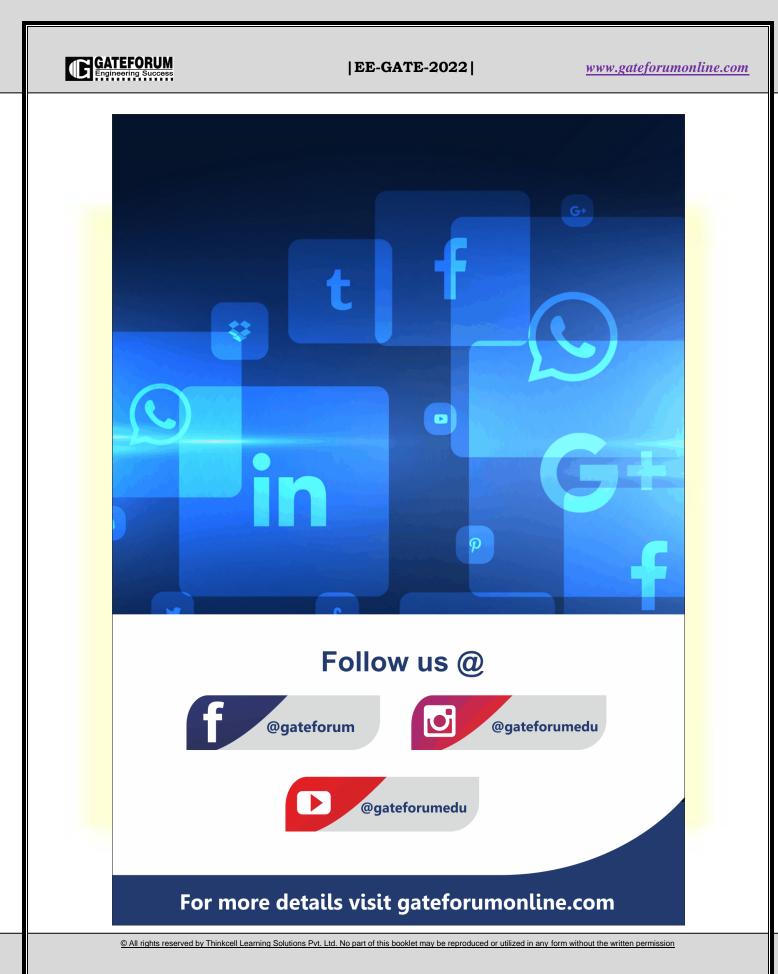

62. A 280 V, separately excited DC motor with armature resistance of 1Ω and constant field excitation drives a load. The load torque is proportional to the speed. The motor draws a current of 30 A when running at a speed of 1000 rpm. Neglect frictional losses in the motor. The speed, in rpm, at which the motor will run, if an additional resistance of value 10Ω is connected in series with the armature, is ______. (round off to nearest integer)

Answer: (480 to 485)

Click here to watch video explanation

G GATEFORUM Engineering Success

63. A 4-pole induction motor with inertia of 0.1 kg-m² drives a constant load torque of 2 Nm. The speed of the motor is increased linearly from 1000 rpm to 1500 rpm in 4 seconds as shown in the figure below. Neglect losses in the motor. The energy, in joules, consumed by the motor during the speed change is _______. (round off to nearest integer)



64. A star-connected 3-phase, 400 V, 50 kVA, 50 Hz synchronous motor has a synchronous reactance of 1 ohm per phase with negligible armature resistance. The shaft load on the motor is 10 kW while the power factor is 0.8 leading. The loss in the motor is 2 kW. The magnitude of the per phase excitation emf of the motor, in volts, is ______. (round off to nearest integer).

Answer:	(240 to 248)	Click here to watch video explanation

65. A 3-phase, 415 V, 4-pole, 50 Hz induction motor draws 5 times the rated current at rated voltage at starting. It is required to bring down the starting current from the supply to 2 times of the rated current using a 3-phase autotransformer. If the magnetizing impedance of the induction motor and no load current of the autotransformer is neglected, then the transformation ratio of the autotransformer is given by ______. (round off to two decimal places).

Answer: (0.61 to 0.65)	Click here to watch video explanation
	★★★
© All rights reserved by Thinkcell Learning S	olutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission

