General Aptitude

Q. No. 1-5 Carry One Mark Each

1. Inhaling the smoke from a burning \qquad could \qquad you quickly.
(A) tire / tier
(B) tire / tyre
(C) tyre / tire
(D) tyre / tier

Answer: (C)

Click here to watch video explanation

2. A sphere of radius $r \mathrm{~cm}$ is packed in a box of cubical shape.

What should be the minimum volume (in cm^{3}) of the box that can enclose the sphere?
(A) $\frac{\mathrm{r}^{3}}{8}$
(B) r^{3}
(C) $2 r^{3}$
(D) $8 r^{3}$

Answer:
(D)

Click here to watch video explanation
3. Pipes P and Q can fill a storage tank in full with water in 10 and 6 minutes, respectively. Pipe R draws the water out from the storage tank at a rate of 34 litres per minute. P, Q and R operate at a constant rate. If it takes one hour to completely empty a full storage tank with all the pipes operating simultaneously, what is the capacity of the storage tank (in litres)?
(A) 26.8
(B) 60.0
(C) 120.0
(D) 127.5

Answer: (C) C) Click here to watch video explanation
4. Six persons P, Q, R, S, T and U are sitting around a circular table facing the center not necessarily in the same order. Consider the following statements:

- P sits next to S and T.
- Q sits diametrically opposite to P .
- The shortest distance between S and R is equal to the shortest distance between T and U .

Based on the above statements, Q is a neighbor of
(A) U and S
(B) R and T
(C) R and U
(D) P and S

Answer: (C)
Click here to watch video explanation
5. A building has several rooms and doors as shown in the top view of the building given below. The doors are closed initially.
What is the minimum number of doors that need to be opened in order to go from the point P to the point Q?

(A) 4
(B) 3
(C) 2
(D) 1

Answer: (C)

Click here to watch video explanation

Q. No. 6-10 Carry Two Marks Each

6. Rice, a versatile and inexpensive source of carbohydrate, is a critical component of diet worldwide. Climate change, causing extreme weather, poses a threat to sustained availability of rice. Scientists are working on developing Green Super Rice (GSR), which is resilient under extreme weather conditions yet gives higher yields sustainably.
Which one of the following is the CORRECT logical inference based on the information given in the above passage?
(A) GSR is an alternative to regular rice, but it grows only in an extreme weather
(B) GSR may be used in future in response to adverse effects of climate change
(C) GSR grows in an extreme weather, but the quantity of produce is lesser than regular rice
(D) Regular rice will continue to provide good yields even in extreme weather

Answer: (B)
Click here to watch video explanation
7. A game consists of spinning an arrow around a stationary disk as shown below.

When the arrow comes to rest, there are eight equally likely outcomes. It could come to rest in any one of the sectors numbered $1,2,3,4,5,6,7$ or 8 as shown. Two such disks are used in a game where their arrows are independently spun. What is the probability that the sum of the numbers on the resulting sectors upon spinning the two disks is equal to 8 after the arrows come to rest?

(A) $\frac{1}{16}$
(B) $\frac{5}{64}$
(C) $\frac{3}{32}$
(D) $\frac{7}{64}$

Answer: (D)
Click here to watch video explanation
8. Consider the following inequalities.
(i) $3 \mathrm{p}-\mathrm{q}<4$
(ii) $3 \mathrm{q}-\mathrm{p}<12$

Which one of the following expressions below satisfies the above two inequalities?
(A) $\mathrm{p}+\mathrm{q}<8$
(B) $\mathrm{p}+\mathrm{q}=8$
(C) $8 \leq$ p + q <16
(D) $\mathrm{p}+\mathrm{q} \geq 16$

Answer: (A)
Click here to watch video explanation
9. Given below are three statements and four conclusions drawn based on the statements.

Statement 1: Some engineers are writers.
Statement 2: No writer is an actor.
Statement 3: All actors are engineers.
Conclusion I: Some writers are engineers.
Conclusion II: All engineers are actors.

Conclusion III: No actor is a writer.
Conclusion IV: Some actors are writers.
Which one of the following options can be logically inferred?
(A) Only conclusion I is correct
(B) Only conclusion II and conclusion III are correct
(C) Only conclusion I and conclusion III are correct
(D) Either conclusion III or conclusion IV is correct

Answer: (C)
Click here to watch video explanation
10. Which one of the following sets of pieces can be assembled to form a square with a single round hole near the center? Pieces cannot overlap.
(A)

(B)

(C)

(D)

Answer:
(C)

Instrumentation Engineering

Q. No. 11-35 Carry One Mark Each

11. The input (t) to a system is related to its output (t) as $\frac{d y(t)}{d t}+y(t)=3 x(t-3) u(t-3)$ Here $u(t)$ Here $u(t)$ represents a unit-step function. The transfer function of this system is \qquad
(A) $\frac{\mathrm{e}^{-3 \mathrm{~s}}}{\mathrm{~s}+3}$
(B) $\frac{3 \mathrm{e}^{-3 \mathrm{~s}}}{\mathrm{~s}+1}$
(C) $\frac{3 \mathrm{e}^{-(\mathrm{s} / 3)}}{\mathrm{s}+1}$
(D) $\frac{\mathrm{e}^{-(\mathrm{s} / 3)}}{\mathrm{s}+3}$

Answer:
(B)

Click here to watch video explanation

12. A pneumatic nozzle-flapper system is conventionally used to convert \qquad
(A) Small changes in flapper's velocity to large changes in output temperature
(B) Small changes in flapper's displacement to large changes in output temperature
(C) Small changes in flapper's displacement to large changes in output temperature
(D) Small changes in flapper's displacement to large changes in output pressure

Answer: (D)
Click here to watch video explanation
13. A periodic function (x), with period 2, is defined as $f(x)=\left\{\begin{array}{cc}-1-x & -1 \leq x<0 \\ 1-x & 0<x \leq 1\end{array}\right.$ The Fourier series of this function contains \qquad
(A) Both $\cos (n \pi x)$ and $\sin (n \pi x)$ where $n=1,2,3, \ldots$
(B) Only $\sin (n \pi x)$ where $n=1,2,3, \ldots$
(C) Only $\cos (n \pi x)$ where $n=1,2,3, \ldots$
(D) Only $\cos (2 n \pi x)$ where $n=1,2,3, \ldots$

Answer:
(B)

Click here to watch video explanation
14. The output of a system (t) is related to its input (t) according to the relation $(t)=x(t) \sin (2 \pi t)$. This system is \qquad
(A) Linear and time-variant
(B) Non-linear and time-invariant
(C) Linear and time-invariant
(D) Non-linear and time-variant

Answer: (A)

Click here to watch video explanation

15. A unity-gain negative-feedback control system has a loop-gain (s) given by $L(s)=\frac{6}{s(s-5)}$

The closed-loop system is \qquad
(A) Causal and stable
(B) Causal and unstable
(C) Non-causal and stable
(D) Non-causal and unstable

Answer: (B)

Click here to watch video explanation
16. A sinusoidal carrier wave with amplitude A_{c} and frequency f_{c} amplitude modulated with a message signal (t) having frequency $0<\mathrm{f}_{\mathrm{m}} \ll \mathrm{f}_{\mathrm{c}}$ to generate the modulated wave (t) given by
$\mathrm{s}(\mathrm{t})=\mathrm{A}_{\mathrm{c}}[1+\mathrm{m}(\mathrm{t})] \cos \left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}\right)$
The message signal that can be retrieved completely using envelope detection is \qquad
(A) $m(t)=0.5 \cos \left(2 \pi f_{\mathrm{m}} \mathrm{t}\right)$
(B) $m(t)=1.5 \sin \left(2 \pi \mathrm{f}_{\mathrm{m}} \mathrm{t}\right)$
(C) $(t)=2 \sin \left(4 \pi \mathrm{f}_{\mathrm{m}} \mathrm{t}\right)$
(D) $m(t)=2 \cos \left(4 \pi \mathrm{f}_{\mathrm{m}} \mathrm{t}\right)$

Answer: (A)

Click here to watch video explanation

17. A Hall sensor is based on the principle of \qquad
(A) Photoelectric effect
(B) Seebeck effect
(C) Piezoelectric effect
(D) Lorentz force

Answer:

(D)

Click here to watch video explanation
18. A signal (t) is band-limited between 100 Hz and 200 Hz . A signal (t) is related to (t) as follows: $(t)=$ $x(2 t-5)$. The statement that is always true is \qquad
(A) $y(t)$ is band-limited between 50 Hz and 100 Hz
(B) $y(t)$ is band-limited between 100 Hz and 200 Hz
(C) $y(t)$ is band-limited between 200 Hz and 400 Hz
(D) (t) is not band-limited

Answer: (C)
Click here to watch video explanation
19. The figure shows a Chromel-Alumel thermocouple, where the junction A is held at temperature T_{A}, and a thermal emf E_{1} is measured using an ideal voltmeter between the open ends B1 and B2, both held at temperature T_{B}. Two identical copper wires are introduced between $\mathrm{B} 1-\mathrm{C} 1$ and $\mathrm{B} 2-\mathrm{C} 2$ as shown in the figure. When C 1 and C 2 are held at temperature T_{C}, the voltmeter reads a thermal emf E_{2}. Then,

(A) $\mathrm{E}_{1}<\mathrm{E}_{2}$
(B) $\mathrm{E}_{1}>\mathrm{E}_{2}$
(C) $\mathrm{E}_{1}=2 \mathrm{E}_{2}$
(D) $\mathrm{E}_{1}=\mathrm{E}_{2}$

Answer:
(D)

Click here to watch video explanation
20. The resistance of a pure copper wire of length 10 cm and diameter 1 mm is to be measured. The most suitable method from amongst the choices given below is \qquad -
(A) Two wire method
(B) Three wire method
(C) Four wire method
(D) Ellipsometry

Answer: (C)
Click here to watch video explanation
21. The logic block shown has an output F given by \qquad

(A) $A+B$
(B) A. $\overline{\mathrm{B}}$
(C) $\mathrm{A}+\overline{\mathrm{B}}$
(D) $\overline{\mathrm{B}}$

Answer:
(C)

Click here to watch video explanation
22. In which of the following bridge(s) is the balancing condition frequency-independent?
(A) Maxwell bridge
(B) Wien bridge
(C) Schering bridge
(D) Wheatstone bridge

Answer: (A, C, D)
Click here to watch video explanation
23. The output F of the digital circuit shown can be written in the form(s) \qquad

(A) $\overline{\mathrm{A} . \mathrm{B}}$
(B) $\overline{\mathrm{A}}+\overline{\mathrm{B}}$
(C) $\overline{\mathrm{A}+\mathrm{B}}$
(D) $\bar{A} \cdot \bar{B}$

Answer: (A, B)
Click here to watch video explanation
24. Given $\mathrm{M}=\left[\begin{array}{ccc}2 & 3 & 7 \\ 6 & 4 & 7 \\ 4 & 6 & 14\end{array}\right]$, which of the following statement(s) is/are correct?
(A) The rank of M is 2
(B) The rank of M is 3
(C) The rows of M are linearly independent
(D) The determinant of M is 0

Answer: (A, D)
Click here to watch video explanation
25. An analog-to-digital converter with resolution 0.01 V converts analog signals between 0 V to +10 V to an unsigned binary output. The minimum number of bits (in integer) in the output is \qquad
Answer:
(10 to 10)
Click here to watch video explanation
26. Consider 24 voice signals being transmitted without latency using time-division multiplexing. If each signal is sampled at 12 kHz and represented by an 8 -bit word, the bit-duration (in microseconds) is
\qquad (round off to two decimal places)

Answer:
(0.42 to 0.44)

Click here to watch video explanation
27. A photodiode is made of a semiconductor with a bandgap of 1.42 eV . Given that Planck's constant is $6.626 \times 10^{-34} \mathrm{Js}$, the speed of light in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, and $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$, the cut-off wavelength (in nanometers) of the photodiode is \qquad (round off to one decimal place)

Answer:
(870.0 to 880.0)

Click here to watch video explanation
28. The global minimum of $x^{3} e^{-|x|}$ for $x \in(-\infty, \infty)$ occurs at $x=$ \qquad (round off to one decimal place)
Answer: ($\mathbf{3 . 0}$ to -3.0)

Click here to watch video explanation

29. A $440 \mathrm{~V}, 8 \mathrm{~kW}$, 4-pole, 50 Hz , star-connected induction motor has a full load slip of 0.04 . The rotor speed (in rpm) at full load is \qquad (round off to one decimal place)
Answer: (1440.0 to 1440.0) Click here to watch video explanation
30. The transfer function of a system is: $\frac{(s+1)(s+3)}{(s+5)(s+7)(s+9)}$

In the state-space representation of the system, the minimum number of state variables (in integer) necessary is \qquad
Answer: (3 to 3)
Click here to watch video explanation
31. A Zener diode is used as a 4 V voltage regulator in the circuit shown. Given that the diode requires a minimum current of 4 mA for voltage regulation, the maximum current (in milliamperes) permitted to flow through the load R_{L} is \qquad (round off to one decimal place)

Answer:
(6.0 to 6.0)

Click here to watch video explanation
32. A bag contains six red balls and four blue balls. If three balls are drawn in succession without replacement, the probability that the second and third balls drawn are red is \qquad (round off to two decimal places)
Answer: (0.32 to 0.34)
Click here to watch video explanation
33. In the bandpass filter circuit shown, $R_{0}=50 \Omega, L_{0}=1 \mathrm{mH}, \mathrm{C}_{0}=10 \mathrm{nF}$. The Q factor of the filter is
\qquad (round off to two decimal places)

Answer:
(6.22 to 6.42)

Click here to watch video explanation
34. The Newton-Raphson method is applied to determine the solution of $f(x)=0$ where $f(x)=x-\cos (x)$. If the initial guess of the solution is $\mathrm{x}_{0}=0$, the value of the next approximation x_{1} is \qquad (round off to two decimal places).

Answer:
(0.99 to 1.01)

Click here to watch video explanation
35. An OPAMP has a gain of 10^{4}, an input impedance of $10 \mathrm{M} \Omega$ and an output impedance of 100Ω. The OPAMP is used in unity-gain feedback configuration in a voltage buffer circuit. The closed-loop output impedance of the OPAMP (in milliohms) in the circuit is \qquad (round off to one decimal place)

Answer:
(9.9 to 10.0)

Click here to watch video explanation

Q. No. 36-65 Carry Two Marks Each

36. A signal $\mathrm{V}_{\mathrm{in}}(t)$ shown is applied from $t=0 \mathrm{~ms}$ to $t=6 \mathrm{~ms}$ to the circuit shown. Given the initial voltage across the capacitor is 0.3 V , and that the diode is ideal, the open circuit voltage $\mathrm{V}_{\text {out }}(\mathrm{t})$ at $t=5 \mathrm{~ms}$ is

(A) 0.3 V
(B) 0.6 V
(C) 0.7 V
(D) 1.0 V

Answer: (D)
Click here to watch video explanation
37. The signal flow graph of a system is shown. The expression for $\mathrm{Y}(\mathrm{s}) / \mathrm{X}(\mathrm{s})$ is \qquad

(A) $\frac{2 \mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})+2 \mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{3}(\mathrm{~s})}{1+\mathrm{G}_{2}(\mathrm{~s})+\mathrm{G}_{3}(\mathrm{~s})}$
(B) $2+\mathrm{G}_{1}(\mathrm{~s})+\mathrm{G}_{3}(\mathrm{~s})+\frac{\mathrm{G}_{2}(\mathrm{~s})}{1+\mathrm{G}_{2}(\mathrm{~s})}$
(C) $\mathrm{G}_{1}(\mathrm{~s})+\mathrm{G}_{3}(\mathrm{~s})-\frac{\mathrm{G}_{2}(\mathrm{~s})}{2+\mathrm{G}_{2}(\mathrm{~s})}$
(D) $\frac{2 \mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})+2 \mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{3}(\mathrm{~s})-\mathrm{G}_{1}(\mathrm{~s})}{1+\mathrm{G}_{2}(\mathrm{~s})+\mathrm{G}_{3}(\mathrm{~s})}$

Answer: (A)
Click here to watch video explanation
38. Consider the transfer function $\mathrm{H}_{\mathrm{c}}(\mathrm{s})=\frac{1}{(s+1)(s+3)}$ Bilinear transformation with a sampling period of 0.1 s is employed to obtain the discrete-time transfer function $\mathrm{H}_{\mathrm{d}}(\mathrm{z})$. Then $\mathrm{H}_{\mathrm{d}}(\mathrm{z})$ is \qquad
(A) $\frac{\left(1+z^{-1}\right)^{2}}{\left(19-21 z^{-1}\right)\left(23-17 z^{-1}\right)}$
(C) $\frac{\left(1-z^{-1}\right)^{2}}{\left(21-19 z^{-1}\right)\left(23-17 z^{-1}\right)}$

Answer: (C)
(B) $\frac{\left(1-z^{-1}\right)^{2}}{\left(21-19 z^{-1}\right)\left(17-23 z^{-1}\right)}$
(D) $\frac{\left(1+z^{-1}\right)^{2}}{\left(21-19 z^{-1}\right)\left(17-23 z^{-1}\right)}$

Click here to watch video explanation
39. A car is moving collinearly with a laser beam emitted by a transceiver. A laser pulse emitted at $t=0 \mathrm{~s}$ is received back by the transceiver 100 ns (nanoseconds) later after reflection from the car. A second pulse emitted at $t=0.1 \mathrm{~s}$ is received back 90 ns later. Given the speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the average speed of the car in this interval is \qquad
(A) 54 kmph , moving towards the transceiver
(B) 108 kmph , moving towards the transceiver
(C) 54 kmph , moving away from the transceiver
(D) 108 kmph , moving away from the transceiver

Answer: (A)
Click here to watch video explanation
40. The signal $\mathrm{x}(\mathrm{t})=(\mathrm{t}-1)^{2} \mathrm{u}(\mathrm{t}-1)$, where $\mathrm{u}(\mathrm{t})$ is the unit-step function, has the Laplace transform $\mathrm{X}(\mathrm{s})$. The value of $X(1)$ is \qquad
(A) $\frac{1}{\mathrm{e}}$
(B) $\frac{2}{\mathrm{e}}$
(C) 2 e
(D) e^{2}

Answer:
(B)

Click here to watch video explanation
41. A proportional-integral-derivative (PID) controller is employed to stably control a plant with transfer function $P(s)=\frac{1}{(s+1)(s+2)}$

Now, the proportional gain is increased by a factor of 2, the integral gain is increased by a factor of 3, and the derivative gain is left unchanged. Given that the closed-loop system continues to remain stable with the new gains, the steady-state error in tracking a ramp reference signal \qquad
(A) Remains unchanged
(B) Decreases by a factor of 2
(C) Decreases by a factor of 3
(D) Decreases by a factor of 5

Answer: (C)
Click here to watch video explanation
42. A resistor ladder digital-to-analog converter (DAC) receives a digital input that results in the circuit having the state as shown in the figure. For this digital input, the Thevenin voltage, V_{th}, and Thevenin resistance, R_{th}, as seen at the output node are \qquad

(A) $\mathrm{V}_{\mathrm{th}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{th}}=1 \mathrm{k} \Omega$
(B) $\mathrm{V}_{\mathrm{th}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{th}}=2 \mathrm{k} \Omega$
(C) $\mathrm{V}_{\mathrm{th}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{th}}=1 \mathrm{k} \Omega$
(D) $\mathrm{V}_{\mathrm{th}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{th}}=2 \mathrm{k} \Omega$

Answer: (C)
Click here to watch video explanation
43. The Nyquist plot of a stable open-loop system $G(\mathrm{j} \omega)$ is plotted in the frequency range $0 \leq \omega<\infty$ as shown. It is found to intersect a unit circle with center at the origin at the point $\mathrm{P}=-0.77-0.64 \mathrm{j}$. The points Q and R lie on $\mathrm{G}(\mathrm{j} \omega)$ and assume values $\mathrm{Q}=14.40+0.00 \mathrm{j}$ and $\mathrm{R}=-0.21+0.00 \mathrm{j}$. The phase margin (PM) and the gain margin (GM) of the system are \qquad
(A) $\mathrm{PM}=39.7^{\circ}$ and $\mathrm{GM}=4.76$
(C) $\mathrm{PM}=-39.7^{\circ}$ and $\mathrm{GM}=4.76$

Answer: (A)

44. In the small signal circuit shown, the enhancement mode n-channel MOSFET is biased in saturation with transconductance g_{m}. If channel length modulation is ignored, the small signal impedance looking into the node P is given by \qquad

(A) $\mathrm{R}_{\mathrm{S}}\left\|\mathrm{R}_{\mathrm{L}}\right\| \mathrm{g}_{\mathrm{m}}^{-1}$
(B) $\mathrm{R}_{\mathrm{s}} \| \mathrm{g}_{\mathrm{m}}^{-1}$
(C) $\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{L}}\right) \| \mathrm{g}_{\mathrm{m}}^{-1}$
(D) $\frac{\mathrm{R}_{1} \mathrm{~g}_{\mathrm{m}}}{1+\mathrm{R}_{\mathrm{s}} \mathrm{g}_{\mathrm{m}}}\left(\mathrm{R}_{\mathrm{L}} \| \mathrm{g}_{\mathrm{m}}^{-1}\right)$

Answer:
(B)

Click here to watch video explanation
45. Consider the differential equation $\frac{d y}{d x}+y \ln (y)=0$ If $y(0)=e$, then $y(1)$ is \qquad
(A) e^{e}
(B) $\mathrm{e}^{-\mathrm{e}}$
(C) $\mathrm{e}^{(1 / \mathrm{e})}$
(D) $\mathrm{e}^{(-1 / e)}$

Answer: (C)
Click here to watch video explanation
46. The digital circuit shown \qquad
(A) is a divide-by- 5 counter
(B) is a divide-by-7 counter
(C) is a divide-by- 8 counter

(D) does not function as a counter due to disjoint cycles of states

Answer: (A)
Click here to watch video explanation
47. In the small signal circuit shown, the enhancement mode n-channel MOSFET is biased in saturation with a transconductance g_{m}. A small signal low-frequency voltage v_{d} injected at the supply terminal results in a small signal voltage fluctuation v_{0} at the output. If the channel length modulation of the MOSFET is ignored, the small signal gain v_{0} / v_{d} is given by \qquad
(A) $\frac{-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{0}}{1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{0}}$
(B) $\left(\mathrm{g}_{\mathrm{m}} \mathrm{R}_{0}+1\right)^{-1}$
(C) $\frac{-g_{m} R_{0}}{1+2 g_{m} R_{0}}$
(D) $\left(\frac{\mathrm{g}_{\mathrm{m}} \mathrm{R}_{0}}{2}+\frac{3}{2}\right)^{-1}$

Answer: (D)

Click herē to watch video explanation
48. $A=a_{1} a_{0}$ and $B=b_{1} b_{0}$ are two 2-bit unsigned binary numbers. If $F\left(a_{1}, a_{0}, b_{1}, b_{0}\right)$ is a Boolean function such that $\mathrm{F}=1$ only when $\mathrm{A}>\mathrm{B}$, and $\mathrm{F}=0$ otherwise, then F can be minimized to the form \qquad
(A) $\mathrm{a}_{1} \overline{\mathrm{~b}}_{1}+\mathrm{a}_{1} \mathrm{a}_{0} \overline{\mathrm{~b}}_{0}$
(B) $\mathrm{a}_{1} \overline{\mathrm{~b}}_{1}+\mathrm{a}_{1} \mathrm{a}_{0} \overline{\mathrm{~b}}_{0}+\mathrm{a}_{0} \overline{\mathrm{~b}}_{0} \overline{\mathrm{~b}}_{1}$
(C) $\mathrm{a}_{1} \mathrm{a}_{0} \overline{\mathrm{~b}}_{0}+\mathrm{a}_{0} \overline{\mathrm{~b}}_{0} \overline{\mathrm{~b}}_{1}$
(D) $\mathrm{a}_{1} \overline{\mathrm{~b}}_{1}+\mathrm{a}_{1} \mathrm{a}_{0} \overline{\mathrm{~b}}_{0}+\mathrm{a}_{0} \overline{\mathrm{~b}}_{0} \mathrm{~b}_{1}$

Answer:
(B)

Click here to watch video explanation
49. The matrix $\mathrm{A}=\left[\begin{array}{cc}4 & 3 \\ 9 & -2\end{array}\right]$ has eigen values -5 and 7 . The eigenvector(s) is/are \qquad
(A) $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(B) $\left[\begin{array}{l}3 \\ 4\end{array}\right]$
(C) $\left[\begin{array}{l}2 \\ -6\end{array}\right]$
(D) $\left[\begin{array}{l}2 \\ 8\end{array}\right]$

Answer: (A,C)

Click here to watch video explanation

50. For the complex number $\mathrm{Z}=\frac{\mathrm{a}+\mathrm{jb}}{\mathrm{a}-\mathrm{jb}}$, Where $\mathrm{a}>0$ and $\mathrm{b}>0$. Which of the following statement(s) is/are true?
(A) The phase is $2 \tan ^{-1} \frac{b}{a}$
(B) The phase is $\tan ^{-1} \frac{2 b}{a}$
(C) The magnitude is 1
(D) The magnitude is $\sqrt{\frac{a^{2}+b^{2}}{a^{2}-b^{2}}}$

Answer: (A,C)
Click here to watch video explanation
51. Monochromatic light of wavelength 532 nm is used to measure the absorption coefficient of a material in a UV-Visible Spectrophotometer. The measured light intensity after transmission through a 1 cm thick sample of the material is $0.414 \mathrm{~mW} / \mathrm{cm}^{2}$. For a sample of thickness 2 cm , the measured light intensity is $0.186 \mathrm{~mW} / \mathrm{cm}^{2}$. The absorption coefficient (in cm^{-1}) of the material is \qquad (round off to two decimal places)

Answer: (0.75 to 0.85)
Click here to watch video explanation
52. In the circuit shown, the load is driven by a sinusoidal ac voltage source $\mathrm{V}_{1}=100 \angle 0^{\circ} \mathrm{V}$ at Hz . Given $\mathrm{R}_{1}=20 \Omega, \mathrm{C}_{1}=\left(\frac{1000}{\pi}\right) \mu \mathrm{F}, \mathrm{L}_{1}=\left(\frac{20}{\pi}\right) \mathrm{mH}$ and $\mathrm{R}_{2}=4 \Omega$, the power factor is \qquad (round off to one decimal place)

Answer:
(0.8 to 0.8)

53. In a unity-gain feedback control system, the plant $P(s)=\frac{0.001}{s(2 s+1)(0.01 s+1)}$ is controlled by a lag compensator $\mathrm{C}(\mathrm{s})=\frac{\mathrm{s}+10}{\mathrm{~s}+0.1}$

The slope (in $\mathrm{dB} /$ decade) of the asymptotic Bode magnitude plot of the loop gain at $\omega=3 \mathrm{rad} / \mathrm{s}$ is
\qquad (in integer)

Answer: (-60 to -60)

Click here to watch video explanation

54. Given Circuit A with currents I_{1} and I_{2} as shown, the current I_{3} in Circuit B (in amperes), is
\qquad (round off to one decimal place)

Answer: (0.0 to 0.0)

55. In the balanced three-phase circuit shown, $\mathrm{C}_{0}=8.2 \mu \mathrm{~F}$ and the line-to-line r.m.s. voltage is 440 V at 50 Hz . The reading on the wattmeter (in watts) is \qquad (round off to two decimal places)

Answer:
(141.80 to 146.20)

Click here to watch video explanation
56. The circuit shown is driven by a sinusoidal input voltage, V_{in}, resulting in the output voltage, $\mathrm{V}_{\text {out }}$. The frequency (in kilohertz) at which the voltage gain is 0 dB is \qquad (round off to two decimal places)

Answer: (15.80 to 16.00)

Click here to watch video explanation

57. A conducting semi-circular loop of radius $R=0.1 \mathrm{~m}$, with its diameter centered at the origin, rotates in the $x-y$ plane about the origin with a constant angular velocity, $\omega=20 \mathrm{rad} / \mathrm{s}$, as shown. A magnetic field of magnitude $B=2 \mathrm{~T}$ and normal to x -y plane exists in the region $x \geq 0$ as shown. If the loop has a resistance of 2Ω, and negligible inductance, the peak-to-peak current (in milliamperes) in the loop is
\qquad (round off to one decimal place)

Answer:

Click here to watch video explanation
58. In the circuit shown, $R_{1}=100 \mathrm{k} \Omega$ and $R_{2}=1 \mathrm{k} \Omega$. If the base-to-emitter voltage of the npn BJT is 0.7 V and the collector-to-emitter voltage is 5.2 V , the β (current gain) of the BJT is \qquad (round off to two decimal places)

Answer:
(148.00 to 152.00)

Click here to watch video explanation
59. A capacitor is constructed using two concentric spheres and air as the dielectric medium (permittivity of air $=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$). The radii of the inner and outer spheres are $\mathrm{a}=10 \mathrm{~cm}$ and $\mathrm{b}=15 \mathrm{~cm}$, respectively. The capacitance (in picofarads) is \qquad (round off to 2 decimal places)

Answer: (32.8 to 33.9)
Click here to watch video explanation
60. A 1 kHz sine-wave generator having an internal resistance of 50Ω generates an open-circuit voltage of $10 \mathrm{Vp}-\mathrm{p}$. When a capacitor is connected across the output terminals, the voltage drops to 8 Vp -p. The capacitance of the capacitor (in microfarads) is \qquad (round off to two decimal places)

Answer: (2.35 to 2.43)
Click here to watch video explanation
61. Consider the function $\mathrm{f}(\mathrm{z})=\frac{1}{(\mathrm{z}+1)(\mathrm{z}+2)(\mathrm{z}+3)}$. The residue of $\mathrm{f}(\mathrm{z})$ at $\mathrm{z}=-1$, is \qquad

Answer:
(0.49 to 0.51)

Click here to watch video explanation
62. In the circuit shown, the capacitance $\mathrm{C}_{0}=10 \mu \mathrm{~F}$ and inductance $\mathrm{L}_{0}=1 \mathrm{mH}$ and the diode is ideal. The capacitor is initially charged to 10 V and the current in the inductor is initially zero. If the switch is closed at $t=0 \mathrm{~s}$, the voltage $\mathrm{V}_{\mathrm{C}}(t)$ (in volts) across the capacitor at $t=0.5 \mathrm{~s}$ is \qquad (round off to one decimal place)

Answer:
(-10.1 to -9.9)
Click here to watch video explanation
63. The bridge shown is balanced when $R_{1}=100 \Omega, R_{2}=210 \Omega, C_{2}=2.9 \mu \mathrm{~F}$, and $\mathrm{R}_{4}=50 \Omega$. The 2 kHz sinewave generator supplies a voltage of 10 Vp -p. The value of L_{3} (in millihenry) is \qquad (round off to two decimal places)

Answer: (14.40 to 14.60)
Click here to watch video explanation
64. In the circuit shown, the switch is initially closed. It is opened at $t=0 \mathrm{~s}$ and remains open thereafter. The time (in milliseconds) at which the output voltage $\mathrm{V}_{\text {out }}$ becomes LOW is \qquad (round off to three decimal places)

Answer: (0.365 to 0.369)
65. In the Wheatstone bridge circuit shown, $\mathrm{R}_{1}=1.5 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=1 \mathrm{k} \Omega$. The switch is initially open and the voltage between the points C and D is V_{CD}. Upon closing the switch at $t=0$, the resistance in the arm AD changes by an amount $\delta \mathrm{R}_{1}$, and the voltage between C and D changes by $\delta \mathrm{V}_{\mathrm{CD}}$. The sensitivity of the bridge (in volt/kiloohm), defined as $\left|\frac{\delta \mathrm{V}_{\mathrm{CD}}}{\delta_{\mathrm{R}_{1}}}\right|$, is ___ (round off to two decimal places)

Click here to watch video explanation

