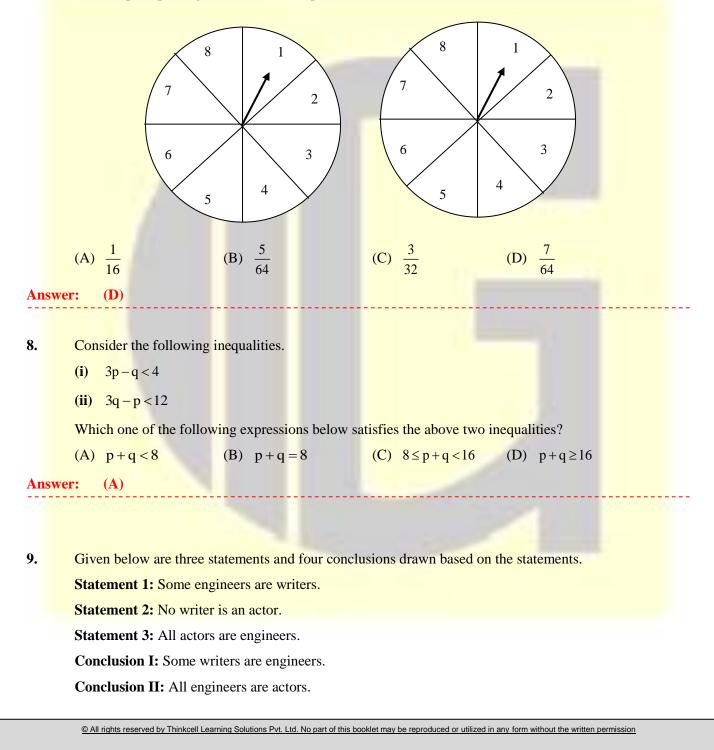
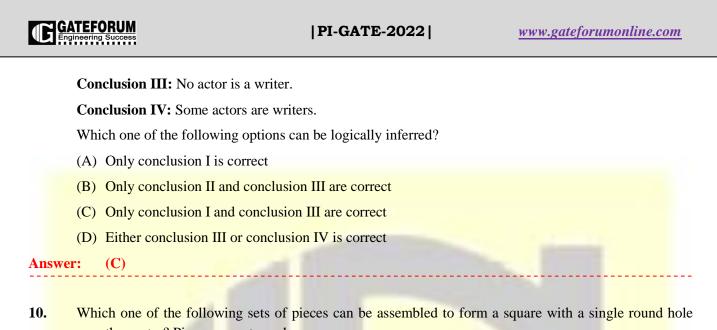

C	GATEFORUM Engineering Success	P I-1	GATE-2022	www.gateforumonline.com				
	GENERAL APTITUDE							
	<u>Q. No. 1 - 5 Carry One Mark Each</u>							
1.	Inhaling the smoke	from a burning	_ could you	ı quickly.				
	(A) tire / tier	(B) tire / tyre	(C) tyre / tire	(D) tyre / tier				
Ans	wer: (C)							
2.	A sphere of radius	$\frac{1}{r}$ cm is packed in a box of	f cubical shape.					
	What should be the	e minimum volume (in cm	³) of the box that can en	close the sphere?				
	(A) $\frac{r^3}{8}$	(B) r^3	(C) $2r^{3}$	(D) $8r^3$				
Ans	o wer: (D)							
3.	the water out from If it takes one hou	the storage tank at a rate of	of 34 litres per minute. I Ill storage tank with all	minutes, respectively. Pipe R draws P, Q and R operate at a constant rate. the pipes operating simultaneously,				
	(A) 26.8	(B) 60.0	(C) 120.0	(D) 127.5				
Ans	wer: (C)							
4.	same order. Consid P sits next to a	ler the following statemen		cing the center not necessarily in the				
		istance between S and R i	-	istance between T and U.				
		e statements, Q is a neight		(D) D and S				
Ans	(A) U and S wer: (C)	(B) R and T	(C) R and U	(D) P and S				
	© All rights reserved by Thinl	cell Learning Solutions Pvt 1 td. No part of	this booklet may be reproduced or utiliz	ed in any form without the written permission				

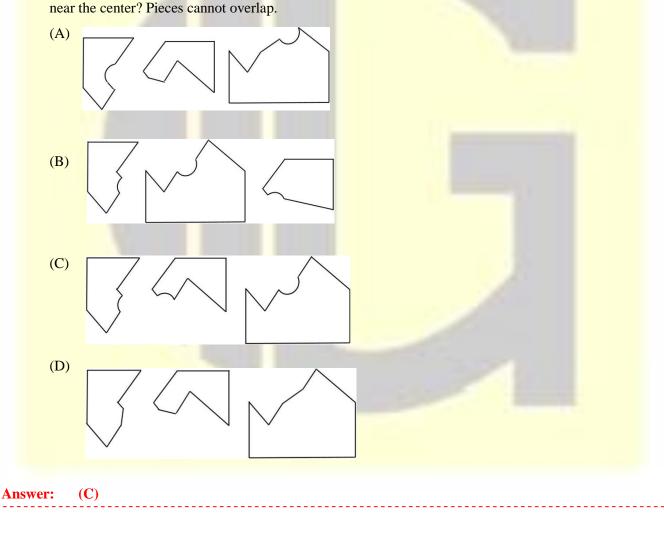
Q. No. 6-10 Carry Two Marks Each

6. Rice, a versatile and inexpensive source of carbohydrate, is a critical component of diet worldwide. Climate change, causing extreme weather, poses a threat to sustained availability of rice. Scientists are working on developing Green Super Rice (GSR), which is resilient under extreme weather conditions yet gives higher yields sustainably.

Which one of the following is the CORRECT logical inference based on the information given in the above passage?

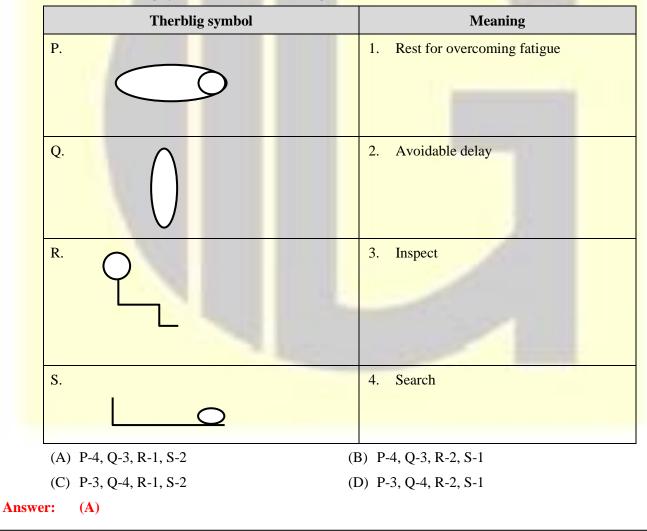

- (A) GSR is an alternative to regular rice, but it grows only in an extreme weather
- (B) GSR may be used in future in response to adverse effects of climate change
- (C) GSR grows in an extreme weather, but the quantity of produce is lesser than regular rice
- (D) Regular rice will continue to provide good yields even in extreme weather


Answer: (B)


7. A game consists of spinning an arrow around a stationary disk as shown below.

GATEFORUM

When the arrow comes to rest, there are eight equally likely outcomes. It could come to rest in any one of the sectors numbered 1, 2, 3, 4, 5, 6, 7 or 8 as shown. Two such disks are used in a game where their arrows are independently spun. What is the probability that the sum of the numbers on the resulting sectors upon spinning the two disks is equal to 8 after the arrows come to rest?

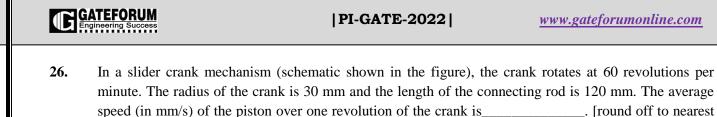


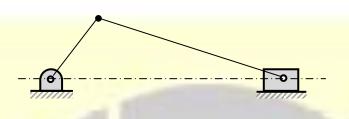
G	GATEFORU	M 185	ļF	PI-GATE-2022	www.gateforumonline.com
		PROI	DUCTION AND IM	NDUSTRIAL ENGINE	ERING (PI)
			<u>Q. No. 11-35</u>	<u>5 Carry One Mark Each</u>	
11.	If a, b ar	id c are three	vectors, the vector tr	iple product $(a \times b) \times c$ gi	ven by
		$c)b-(a \cdot b)c$		(B) $(a \cdot b)c - (a$ (D) $(b \cdot c)a - (a)$	·c)b
	(C) (a·	$c)b-(b\cdot c)a$		(D) $(b \cdot c)a - (a \cdot $	·c)b
Answ	ver: (C)				
12.	ordinate	s at $x = 1, 2$ ar	nd 3. Which one of t	he following statements is	
		-		result but trapezoidal rule esult but Simpson's 1/3 ru	
		- <u> </u>	-	ules will provide exact res	
		-		coidal rule will provide ex	
Answ	ver: (C)				
13.			U U	ace-centered cubic (FCC)	
	(A) Alp		(B) Chromium	(C) Magnesium	(D) Aluminum
Answ	/er: (D)				
14.		otes the shear of the materia		tropic material, then the r	maximum possible value of Young's
	(A) G		(B) 2 G	(C) 3 G	(D) 4 G
Answ	ver: (C)				

	Engineering Success		PI-GATE-2022	<u>www.gateforumonli</u>	
15.	Match the casting methods with products				
	Casting method		Products		
	P. Continuous casting		1. Thin and intricate shaped components		
	Q. Investment casting		2. Hollow axisymmetric parts (such as pipes)		
	R. Centrifugal castir	ng 3.	Slabs and strips		
	(A) P-3, Q-1, R-2		(B) P-2, Q-3, R-	-1	
	(C) P-3, Q-2, R-1		(D) P-2, Q-1, R-	-3	
Answ	ver: (A)				
16.	In injection blow molding	of plastic boy	erage bottles, the blowing is	a accomplished by	
10.		(B) hot air	(C) hot oil	(D) alcohol	
	• • •	(D) not an			
			ess, the discharge voltage is	V_{b} . The energy dissipated	
17.	In an electro-discharge m across the inter-electrode (A) V _b ^{0.5}	achining proce	ess, the discharge voltage is		
17.	In an electro-discharge m across the inter-electrode	achining proce gap is proportio	ess, the discharge voltage is onal to	V_{b} . The energy dissipated	
17. Answ	In an electro-discharge m across the inter-electrode (A) $V_b^{0.5}$ ver: (C)	achining proce gap is proportio (B) V _b	ess, the discharge voltage is onal to	5 V _b . The energy dissipated (D) V _b ³	
17. Ansv	In an electro-discharge m across the inter-electrode (A) $V_b^{0.5}$ ver: (C)	achining proce gap is proportio (B) V _b	ess, the discharge voltage is onal to (B) V _b ²	5 V _b . The energy dissipated (D) V _b ³	
Ansv 17. Ansv 18.	In an electro-discharge m across the inter-electrode (A) $V_b^{0.5}$ ver: (C) Match the codes used in C	achining proce gap is proportion (B) V _b CNC part progra	ess, the discharge voltage is onal to (B) V_b^2 camming with their function	5 V _b . The energy dissipated (D) V _b ³	
17. Answ	In an electro-discharge m across the inter-electrode (A) $V_b^{0.5}$ ver: (C) Match the codes used in C Code	CNC part progra 1	ess, the discharge voltage is onal to (B) V_b^2 eamming with their function Function	(D) V_b^3 (S.	
17. Ansv	In an electro-discharge m across the inter-electrode (A) $V_b^{0.5}$ ver: (C) Match the codes used in C Code P. G91	CNC part progra 1. End c 2. Progr	ess, the discharge voltage is onal to (B) V_b^2 camming with their function Function of program	(D) V_b^3 (S.	
17. Answ	In an electro-discharge m across the inter-electrode (A) $V_b^{0.5}$ ver: (C) Match the codes used in C Code P. G91 Q. M02	CNC part progra 1. End of 2. Progra	ess, the discharge voltage is onal to (B) V_b^2 examming with their function Function of program ramming in incremental coordinates	(D) V_b^3 (S.	
17. Answ	In an electro-discharge m across the inter-electrode (A) $V_b^{0.5}$ ver: (C) Match the codes used in C Code P. G91 Q. M02 R. G32	CNC part progra 1. End of 2. Progra	ess, the discharge voltage is onal to (B) V_b^2 earming with their function Function of program ramming in incremental coordle stop	(D) V_b^3 (C) V_b^3 (D) V_b^3 (C) V	
17. Ansv	In an electro-discharge m across the inter-electrode (A) $V_b^{0.5}$ ver: (C) Match the codes used in C P. G91 Q. M02 R. G32 S. M05	CNC part progra 1. End of 2. Progra	ess, the discharge voltage is onal to (B) V_b^2 camming with their function Function of program ramming in incremental coordile stop ad cutting in turning	(D) V_b^3 (S. (S. (C) V_b^3 (C) V_	

G	GATEFORUM Engineering Success	P I-	GATE-2022	www.gateforumonline.com
19.	The control chart for a nur	nber of defects in a	a welded joint is	
	(A) \overline{X} - chart (4)	B) R – chart	(C) $c - chart$	(D) $p - chart$
Answ	ver: (C)			
20.	Which one of the followin	g statements is TR	UE?	
	(A) Concurrent engineerin	ng is a non-integra	ted approach for designi	ing a product
	(B) Concurrent engineerin	ng carries out all p	roduct development fun	ctions in a sequential manner
	(C) Concurrent engineerin	ng reduces the lead	l time for the product de	evelopment
	(D) Concurrent engineerin	ng increases the lea	ad time for the product of	development
Answ	ver: (C)			

21. Match the therblig symbols with their meanings.


	Match the types of layout wi	th the types of producti on.
	Type of layout	Type of production
	P. Process layout	1. Job production
	Q. Product layout	2. Batch production
	R. Fixed position layout	3. Mass production
	(A) P-2, Q-3, R-1	(B) P-3, Q-1, R-2
	(C) P-2, Q-1, R-3	(D) P-3, Q-2, R-1
CW	er: (A)	
		other matrices is given by
	Matrix A as a product of two $A = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}$	
	Matrix A as a product of two $A = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}$ The value of det(A) is	(round off to nearest integer)
	Matrix A as a product of two $A = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}$	
•	Matrix A as a product of two $A = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}$ The value of det(A) is er: (0 to 0)	(round off to nearest integer)
SW	Matrix A as a product of two $A = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}$ The value of det(A) is er: (0 to 0)	(round off to nearest integer)


Answer: (0.69 to 0.71)

@ All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission

spur gears are drawn at random without replacement. The probability of getting all three gears as non-

defective is_____. [round off to two decimal places]

Answer: (119 to 121)

integer]

27. Water (kinematic viscosity $v = 1 \times 10^{-6} \text{ m}^2/\text{s}$) is flowing through a circular horizontal pipe of diameter 8 mm. If the flow is laminar and fully developed with a maximum axial velocity of 0.5 m/s, the Reynolds number is______. (round off to nearest integer)

Answer: (1995 to 2005)

28. Yielding starts in a material when the principal stresses are 100 MPa, 100 MPa and 200 MPa. As per the von Mises criterion, yield stress (in MPa) of the material is ______. [round off to nearest integer]

Answer: (99 to 101)

29. A single-point cutting tool with zero rake angle is used for orthogonal machining. If the chipcompression ratio is 1.25, then the shear angle (in degree) during machining is ______. [round off to one decimal place]

Answer: (38.0 to 39.0)

30. It is required to cut a single-start thread of 2 mm pitch in a lathe machine with a single-start lead screw of 4 mm pitch. For one revolution of the workpiece, the number of revolution of the lead screw is______. [round off to two decimal places]

Answer: (0.40 to 0.60)

31. The absolute deviations of 8 points from the datum line of a surface are 10, 15, 12, 10, 13, 12, 20 and 25 μm. The root mean square value of the surface roughness (in μm) is______. [round off to one decimal place]

Answer: (15.0 to 16.0)

G	GATEFORUM Engineering Success	PI-GATE	5-2022	www.gateforumonline.com
32.	reliabilities of the	ere are two motors, but only one motors are 0.90 and 0.70. The of o decimal places)		-
Answ	ver: (0.96 to 0.9	98)		
33.		al time is exponential and 8 custon stomer during a period of 15 min	•	
Answ	ver: (0.12 to 0.1	5)		
34.	depreciation cos	ys a machine worth ₹ 65000, w st is ₹ 10000 based on the straight (in integer)	vhich has a salvage va	alue of ₹ 5000. The annual
Answ	ver: (6 to 6)			
35.	A project comp follows:	rises of seven activities. The expe	cted durations of activit	ies and their variances are as
	Activity	Expected duration (minute)	Variance (minute)	
	A	4	1	
	В	5	1	

 C
 4
 1

 D
 1
 0

 E
 7
 4

 F
 6
 1

 G
 8
 4

The critical path consists of activities B, E and G. The standard deviation (in minute) of the project duration is ______. (round off to two decimal places)

Answer: (2.90 to 3.10)

www.gateforumonline.com

Q. No. 36-65 Carry Two Marks Each

36. If a matrix is squared, then

- (A) both eigenvalues and eigenvectors must change
- (B) both eigenvalues and eigenvectors are retained
- (C) eigenvalues get squared but eigenvectors are retained
- (D) eigenvalues are retained but eigenvectors change

Answer: (C)

37. Consider the following ordinate differential equation:

$$4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0$$

Given that c_1 and c_2 are constants, the general solution of the differential equation is

(A) $y = (c_1 + c_2 x)e^x$ (B) $y = c_1 e^{x/2} + c_2 e^x$ (C) $y = c_1 e^x + c_2 e^{2x}$ (D) $y = (c_1 + c_2 x)e^{x/2}$

Answer: (D)

38. A market survey with a sample size of 1000 was conducted for a parameter that follows normal distribution. The confidence interval was estimated as [500, 700] with a mean of 600. It is now desired to reduce the confidence interval to [550, 650]. The sample size for achieving the desired interval at the same confidence level is

(A)	1000	(B) 4000	(C) 9000	(D) 16000
Answer:	(B)			

39. A eutecoid steel with 100% austenite is cooled from a temperature of 750°C to a room temperature of 35°C. Match the cooling methods with transformed structures.

	Cooling method		Transformed structure
P.	Water quenching	1.	Coarse pearlite
Q.	Oil quenching	2.	Fine pearlite
R.	Air cooling	3.	Martensite
S.	Furnace cooling	4.	Very fine pearlite

C Engineering Success	PI-GATE-2022	www.gateforumonline.com
(A) P-1, Q-2, R-3, S-4	(B) P-2, Q-3, R-4,	S-1
(C) P-3, Q-4, R-2, S-1	(D) P-3, Q-4, R-1,	S-2
Answer: (C)		
40. In the three-member truss shown in parallel to AC. The force in the member trust shown in t	ber BC is	hal force of 10 kN is applied at B,
(A) zero	(B) 10 kN (tensile))
(C) 10 kN (compressive)	(D) 7.07 kN (tensil	le)
Answer: (B)		

41.	Match the processing steps related to production of powder metallurgy parts with their descriptions.
------------	--

Processing step	Description
P. Atomization	1. Blended powders are pressed into shapes using dies and pressure
Q. Sintering	2. A process for producing metal powder
R. Compaction	3. Metal powders are heated below their melting points to allow bonding
S. Infiltration	4. Metal powders are heated significantly above their melting point for bonding
(A) P-1, Q-5, R-2, S-3	(B) P-3, Q-2, R-1, S-5
(C) P-2, Q-3, R-1, S-4	(D) P-2, Q-5, R-1, S-4
Answer: (C)	

G	GATEFORUM Engineering Success PI-GATE-2022 www.gateforumonlin	<u>ie.com</u>
42.	In an assembly comprising shaft and hole, the nominal sizes with tolerances are specified as Hole: $25.000^{+0.002}_{-0.001}$ mm, Shaft: $25.000^{+0.001}_{-0.003}$ mm.	
	The type of fit is	
	(A) Clearance fit (B) Interference fit (C) Transition fit (D) Running fit	
Answ	swer: (C)	
43.	In a manufacturing system, four different types of products (P, Q, R and S) are produced. The b of each product is 2×10^7 . The numbers of defective units are 60, 71, 80 and 55, for P, Q, I respectively. Which one of the following statements is TRUE? (A) All products conform to six sigma standa rd.	
	(B) Only product S conforms to six sigma standard.	
	(C) Except R, all other products conform to six sigma standard.	
	(D) Products P and S conform to six sigma standard.	
Answ	swer: (D)	
44 <mark>.</mark>	Match the processes of product development with their characteristics.	

Process		Characteristics			
P.	Product synthesis	1.	Process of conversion of conceptual design into engineering science based model		
Q.	Product simplification	2.	2. Process related to design conceptualization		
R.	Product analysis	3.	3. Process of maintaining uniformly and consistency		
S.	Product standardization	4.	•. Process of reducing the number of parts without losing the functionalities.		
(A) P-2, Q-4, R-1, S-3			(B) P-2, Q-3, R-1, S-4		
(C) P-4, Q-3, R-1, S-2			(D) P-4, Q-3, R-2, S-1		

Answer: (A)

GATEFORUM Engineering Success

|**PI-GATE-2022**|

www.gateforumonline.com

45. The value of

 $\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}$

is _____ (round off to one decimal place)

Answer: (1.4 to 1.6)

46. A thick-cylinder has inner diameter of 20 mm and outer diameter of 40 mm. It is subjected to an internal pressure of 100 MPa. Follow the convention of taking tensile stress as positive and compressive stress as negative. The sum of radial and hoop stresses (in MPa) at a radius of 15 mm is______. (round off to two decimal places)

Answer: (66.00 to 67.00)

47. A shaft is used to transmit a power of 10 kW. The shear yield stress of the material is 150 MPa and factor of safety is 2. The shaft rotates at 1440 revolutions per minute. The diameter of the shaft (in mm) based on static strength is ______. (round off to two decimal places)

Answer: (16.00 to 17.00)

Answer: (495 to 499)

49. During a hot-working process, the homologous temperature is 0.8. The melting point of the work metal is 800°C. The temperature (in °C) during hot-working is ______ (round off to nearest integer)

Answer: (584 to 586)

50. A workpiece of 30 mm diameter and 40 mm height is compressed between two platens in an open die forging process. Assume a perfectly plastic material with a flow stress of 300 MPa. The ideal forging load (in kN) at 30% reduction (in height) is ______ (round off to nearest integer).

Answer: (300 to 306)

GATEFORUM Engineering Success

|PI-GATE-2022|

51. In a gas tungsten arc welding process under steady state condition, the input voltage and current are measured as 18V and 160A, respectively. Heat loss during creation of arc is 40% of the input power. Heat loss through convection and radiation from the work piece is 800 W. The effective power (in W) utilized to metl the work piece is ______ (round off to nearest integer)

Answer: (926 to 930)

52. During straight turning of a 20 mm diameter steel bar at a spindle speed of 400 revolutions per minute (RPM) with an HSS tool, a tool life of 10 minute was observed. When the same bar was turned at 200 RPM, the tool life increased to 40 minute. The tool life (in minute) while machining the bar at 300 RPM is______. (round off to nearest integer)

Answer: (16 to 19)

53. A cylindrical work piece is turned using two different tools. Tool 1 has zero nose radius; side and end cutting edge angles are 20° and 10°, respectively. Tool 2 has 0.5 mm nose radius. Both the tools machine at a feed of 0.2 mm/rev. The ratio of ideal maximum height of unevenness on the surface produced by Tool 1 to that produced by Tool 2 is ______ (round off to one decimal place).

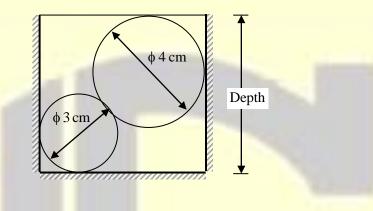
Answer: (2.9 to 3.7)

54. For an electrochemical machining process

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\lambda}{y} - f,$$

Where y is the inter-electrode gap in mm at time t in minute, and f is the feed of the tool in mm/minute. The value of λ is 6×10^{-3} cm²/minute. For maintaining a constant inter-electrode gap of 0.1 mm, the feed (in mm/minute) should be ______ (round off to one decimal place).

Answer: (5.9 to 6.1)


55. The worktable of an open loop positioning system is driven by a lead screw with a pitch of 4 mm. The lead screw is connected to the shaft of a stepper motor. A gear of 80 teeth mounted on the stepper motor shaft meshes with a gear of 20 teeth mounted on the lead screw. The step angle of the stepper motor is 9°. The number of pulses required to move the table by 200 mm is______. (in integer).

Answer: (498 to 502)

56. The diameter of a cylindrical cavity is measured by using two spherical steel balls of diameters 3 cm and 4 cm. The balls are placed inside the cavity such that the bigger ball is above the smaller one as shown in the figure. If the depth of cavity is 6 cm, then the diameter (in cm) of cavity is _____ (round off to two decimal places)

Answer: (5.93 to 5.97)

57. In a mobile screen manufacturing process on a mass scale basis, 5 samples of size 80 are inspected. Consider a p-chart with $\pm 3\sigma$ limits (σ is the standard deviation). The numbers of defective items are given in the table.

Sample No.	Number of defective items	
1	4	
2	10	
3	5	
4	6	
5	5	

The upper control limit of the defective item (in fraction defective) is______. (round off to two decimal places)

Answer: (0.15 to 0.18)

Duration (month)	Cumulative probability	
1	0.10	
2	0.25	
3	0.47	
4	0.68	
5	1.00	

The factory follows the individual replacement policy. If the cost of replacing a bulb is \gtrless 300, then the expected cost (in \gtrless) of replacement per month is ______. (round off to nearest integer)

Answer: (8570 to 8701)

GATEFORUM

59. A company procures 384 parts annually. The annual holding cost per part is ₹ 30. If the ordering cost is ₹ 1000, then the economic order quantity is ______. (in integer)

Answer: (160 to 160)

60. A time study engineer recorded the cycle time (in minute) for machining of a component. The recorded time study data is provided in the table. The performance rating of the worker is 110%. The standard time for machining (in minute) the component by assuming 10% allowance is ______. (round off to nearest integer)

Time study data						
Cycle time (minute)	Frequency					
42	1					
43	2					
44	3					
45	2					
46	1					

Answer: (53 to 54)

61. A machine component is to be processed at 5 workstations sequentially. The table provides the cycle time (in second) of each workstation. In mass production, the number of components produced per hour (in steady state) is _______. (in integer)

Workstation	Cycle time of each workstation (second)	
WS-1	85	
WS-2	55	
WS-3	90	
WS-4	65	
WS-5	70	

Answer: (40 to 40)

62. A vaccine has to be distributed from two warehouses to three hospitals. The supplies at warehouses W_1 and W_2 are 200 and 150, respectively. The demands at hospitals H_1 , H_2 , and H_3 are 100, 150 and 125, respectively. The transportation cost (in \gtrless) per vaccine is as follows:

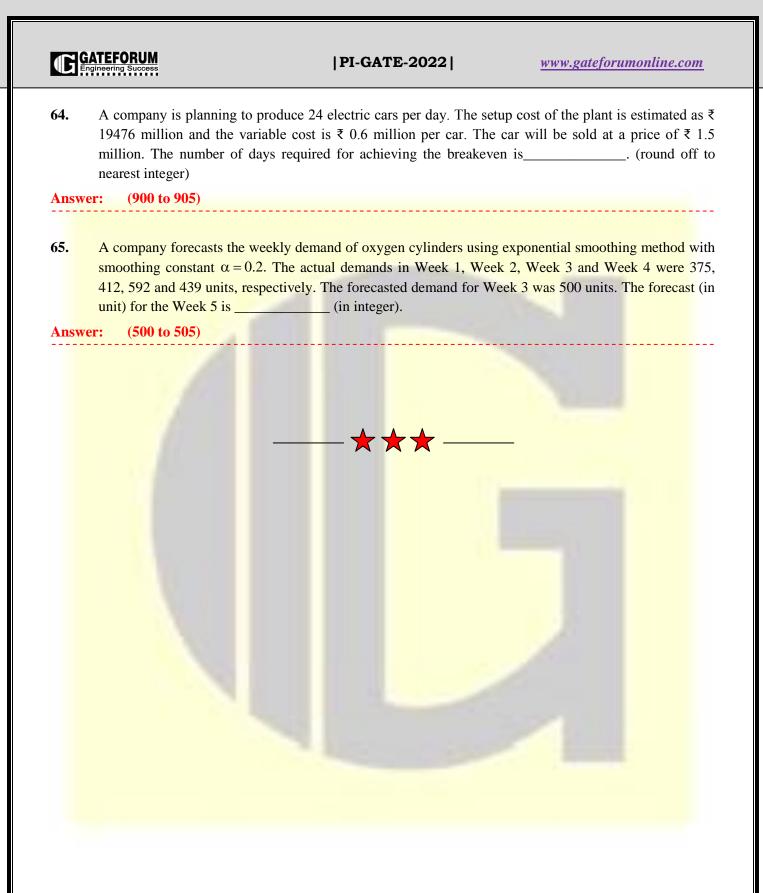
	\mathbf{H}_{1}	\mathbf{H}_{2}	H ₃
W ₁	5	7	3
W ₂	4	6	7

The initial basic feasible solution using the Northwest-corner method provides the total transportation cost (in ₹) as ______. (round off to nearest integer)

Answer: (2190 to 2210)

63. Consider the linear programming problem:

Maximize $z = 20x_1 + 6x_2 + Px_3$,


Subject to

 $8x_{1} + 2x_{2} + 3x_{3} \le 250, \qquad (C_{1})$ $4x_{1} + 3x_{2} \le 150, \qquad (C_{2})$ $2x_{1} + x_{3} \le 50, \qquad (C_{3})$

$$\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \ge \mathbf{0},$$

The optimal solution is given as $x_1^* = 0$, $x_2^* = 50$ and $x_3^* = 50$. The dual variables of constraints C_1, C_2 and C_3 are y_1, y_2 and y_3 , respectively. The optimal values of dual variables are $y_1^* = 0$, $y_2^* = 2$ and $y_3^* = 8$. The value of parameter P in the objective function is ______ (round off to one decimal place).

Answer: (7.9 to 8.1)

