
	AIEFORUM ngineering Success	IN-GA	ATE-2023	www.gateforumonline.com
		GENER	RAL APTITUDE	
		<u>Q. No. 1 -5 C</u>	Carry One Mark Eac	<u>h</u>
1.	The village was ne	stled in a green spot, the	ocean and the hills.	
	(A) through	(B) in	(C) at	(D) between
Answe	er: (D)		Clie	ck here to watch video explanation
2.	Disagree : Protest :	:: Agree : (By word me	eaning)	
	(A) Refuse	(B) Pretext	(C) Recomme	nd (D) Refute
Answe	er: (C)		Clie	ck here to watch video explanation
3.		-	-	
3.	the same. For exar exist?	mple, 137 is a frabjous r	number, while 133 is	not. How many such frabjous number
	the same. For examexist? (A) 125	-	number, while 133 is r (C) 60	not. How many such frabjous numbers
3. Answe	the same. For examexist? (A) 125	mple, 137 is a frabjous r	number, while 133 is r (C) 60	s odd, and no two adjacent digits being not. How many such frabjous numbers (D) 80 ck here to watch video explanation
	the same. For exar exist? (A) 125 er: (D) Which one among	mple, 137 is a frabjous r (B) 720	umber, while 133 is r (C) 60 Clic must be TRUE about	not. How many such frabjous numbers (D) 80 ck here to watch video explanation
Answe	the same. For exar exist? (A) 125 er: (D) Which one among of all candidates ap	mple, 137 is a frabjous r (B) 720 the following statements	umber, while 133 is r (C) 60 Clic must be TRUE about	not. How many such frabjous numbers
Answe	 the same. For exarent exist? (A) 125 er: (D) Which one among of all candidates ap (A) The median is 	mple, 137 is a frabjous r (B) 720 the following statements opearing for GATE 2023	(C) 60 (C) 60 Clic must be TRUE about ? hean.	not. How many such frabjous numbers (D) 80 ck here to watch video explanation
Answe	 the same. For exame exist? (A) 125 er: (D) Which one among of all candidates ap (A) The median is (B) The mean is a 	(B) 720 (B) 720 the following statements opearing for GATE 2023 s at least as large as the m	umber, while 133 is r (C) 60 Clic must be TRUE about ? hean. dian.	(D) 80 ck here to watch video explanation the mean and the median of the scores
Answe	 the same. For exame exist? (A) 125 er: (D) Which one among of all candidates ap (A) The median is (B) The mean is a (C) At most half to the formula of the formula of	(B) 720 (B) 720 the following statements opearing for GATE 2023 s at least as large as the m it least as large as the med	(C) 60 (C) 60 Clice must be TRUE about ? hean. dian. re that is larger than th	(D) 80 ck here to watch video explanation c the mean and the median of the scores e median.

IN-GATE-2023

www.gateforumonline.com

5. In the given diagram, ovals are marked at different heights (h) of a hill. Which one of the following options P, Q, R, and S depicts the top view of the hill?

Q. No. 6-10 Carry Two Marks Each

6. Residency is a famous housing complex with many well-established individuals among its residents. A recent survey conducted among the residents of the complex revealed that all of those residents who are well established in their respective fields happen to be academicians. The survey also revealed that most of these academicians are authors of some best-selling books.

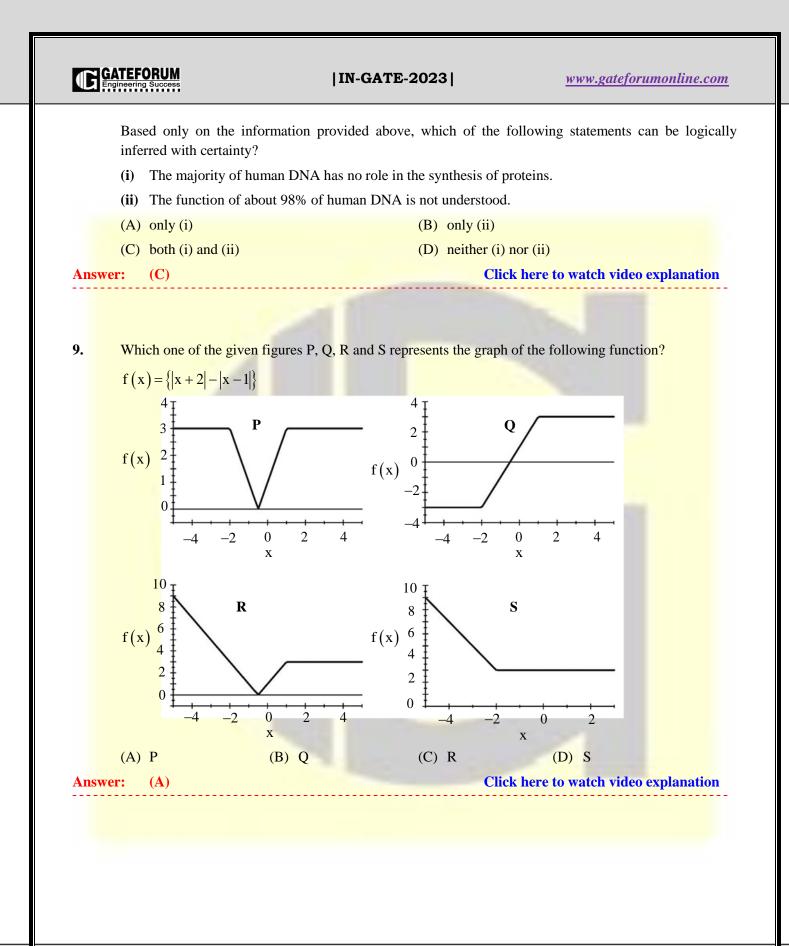
Based only on the information provided above, which one of the following statements can be logically inferred with certainty?

- (A) Some residents of the complex who are well established in their fields are also authors of some best-selling books.
- (B) All academicians residing in the complex are well established in their fields.
- (C) Some authors of best-selling books are residents of the complex who are well established in their fields.
- (D) Some academicians residing in the complex are well established in their fields.

Answer:	(B)	Click here to watch video explanation

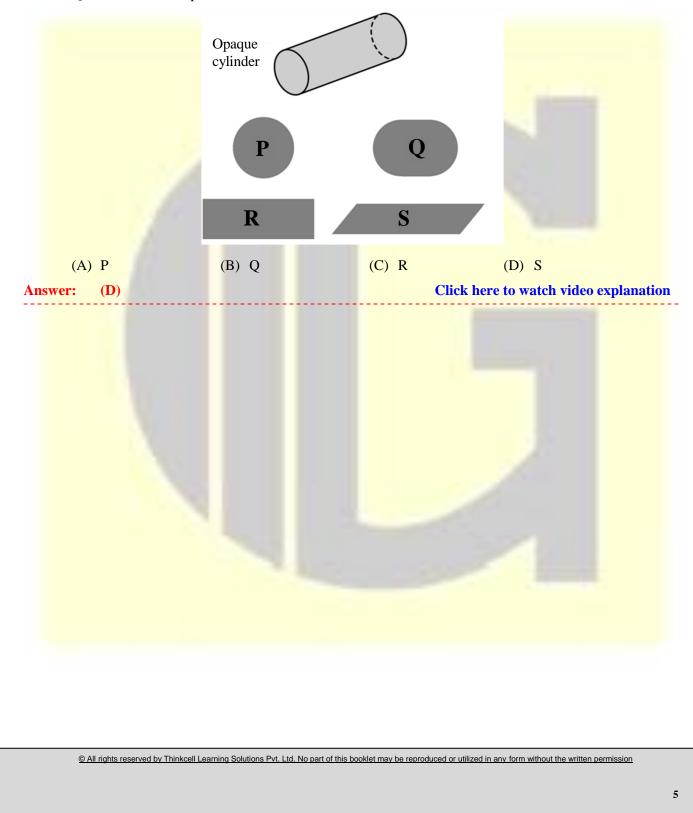
7. Ankita has to climb 5 stairs starting at the ground, while respecting the following rules:

1. At any stage, Ankita can move either one or two stairs up.


2. At any stage, Ankita cannot move to a lower step.

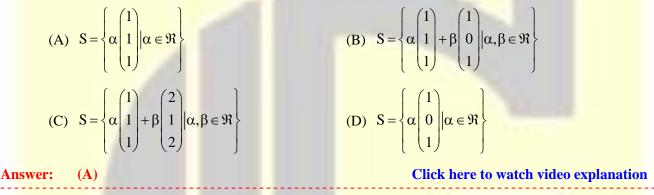
GATEFORUM

Let F(N) denote the number of possible ways in which Ankita can reach the Nth stair. For example, F(1) = F(2) = 2, F(3) = 3.


(A) 8(B) 7(C) 6(D) 5Answer: (A)Click here to watch video explanation

8. The information contained in DNA is used to synthesize proteins that are necessary for the functioning of life. DNA is composed of four nucleotides: Adenine (A), Thymine (T), Cytosine (C), and Guanine (G). The information contained in DNA can then be thought of as a sequence of these four nucleotides: A, T, C, and G. DNA has coding and non-coding regions. Coding regions—where the sequence of these nucleotides are read in groups of three to produce individual amino acids—constitute only about 2% of human DNA. For example, the triplet of nucleotides CCG codes for the amino acid glycine, while the triplet GGA codes for the amino acid proline. Multiple amino acids are then assembled to form a protein.

10. An opaque cylinder (shown below) is suspended in the path of a parallel beam of light, such that its shadow is cast on a screen oriented perpendicular to the direction of the light beam. The cylinder can be reoriented in any direction within the light beam. Under these conditions, which one of the shadows P, Q, R, and S is NOT possible?


INSTRUMENTATION ENGINEERING

Q. No. 11-35 Carry One Mark Each

11. Choose solution set S corresponding to the systems of two equations

x - 2y + z = 0x - z = 0

Note: \Re denotes the set of real numbers

12. Inductance of a coil is measured as 10 mH, using an LCR meter, when no other objects are present near the coil. The LCR meter uses a sinusoidal excitation at 10 kHz. If a pure copper sheet is brought near the coil, the same LCR meter will read .

- (A) less than 10 mH
- (B) 10 mH
- (C) more than 10 mH
- (D) less than 10 mH initially and then stabilizes to more than 10 mH

Answer:	(A)	Click here to watch video explanation

13. Which of the following flow meters offers the lowest resistance to the flow?

- (A) Turbine flow meter (B) Orifi
- (C) Venturi meter

- (B) Orifice flow meter*
- (D) Electromagnetic flow meter

Answer: (D)

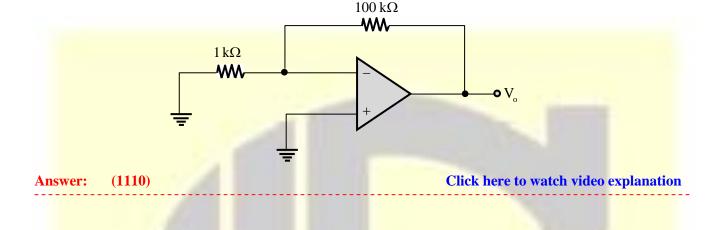
Click here to watch video explanation

G	GATEFORUM		IN-GA7	re-2023		<u>www.</u> ;	gateforumonline.com
14.	Pair the qu	uantities (p) to	(s) with the measurin	g devices (i)	to (iv).		
	(i) Lin	ear Variable D	ifferential Transform	er (LVDT)	(p) T	orque	
	(ii) The	ermistor			(q) P1	ressure	
	(iii) Stra	in gauge			(r) Li	near position	
	(iv) Dia	phragm			(s) T	emperature	
	(A) (i) - (r), (ii) - (s), (ii	i) - (q), (iv) - (p)	(B) (i)	- (p), (ii) - (s), (iii) - (r)	, (iv) - (q)
	(C) (i) - (r), (ii) - (s), (ii	i) - (p), (iv) - (q)	(D) (i)	- (q), (ii) - (s), (iii) - (p)), (iv) - (r)
Answ	ver: (D)				Clic	k here to watcl	n video explanation
		readings is lik	ely to be current? (B) 20 pF			(D) 10	ance, which one of th
Answ					-		• n video explanation
16.	The table flip-flop.	shows the pres	sent state Q(t), next st	tate Q(t+1), :	and the o	control input in	a flip-flop. Identify th
	Q(t)	Q(t + 1)	Input				
	0	0	0				
	0	1	1				
	0	1 0	1				

- (A) T flip-flop
- (C) SR flip-flop

- (B) D flip-flop
- (D) JK flip-flop

Answer: (A)


Click here to watch video explanation

17.	Match the Exc.	lusive-OR (XOR)	operations (i) to (iv) with the results (p) to (s), where X is a Boole
	(i) X⊕X	(p) 1	
	(ii) $X \oplus \overline{X}$	(q) 0	
	(iii) X⊕0	(r) X	
	(iv) X⊕1	(s) X	
	(A) (i) - (q), (i	i) - (r), (iii) - (s), (iv	v) - (p) (B) (i) - (q), (ii) - (r), (iii) - (p), (iv) - (s)
	(C) (i) - (p), (i	<mark>i) - (s), (iii) - (q),</mark> (i	v) - (r) (D) (i) - (q), (ii) - (p), (iii) - (s), (iv) - (r)
Answ	ver: (D)		Click here to watch video explanation
18.	A light emitting to light when it		ts light when it is biased. A photodiode provides maximum sensitiv
	(A) forward, for	orward	(B) forward, reverse
	(C) reverse, re	verse	(D) reverse, forward
Answ		verse	
Answ		verse	(D) reverse, forward
Answ 19.	ver: (B)		(D) reverse, forward Click here to watch video explanation
	ver: (B) $F(z) = \frac{1}{1-z}, w$	vhen expanded as a	(D) reverse, forward Click here to watch video explanation a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)$
	ver: (B) $F(z) = \frac{1}{1-z}, w$	vhen expanded as a	(D) reverse, forward Click here to watch video explanation
	ver: (B) $F(z) = \frac{1}{1-z}, w$	vhen expanded as a	(D) reverse, forward Click here to watch video explanation a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)$ ROC) $ z-2 < 1$. The coefficients $a_k, k \ge 0$, are given by the expression $f(z)^k$
	ver: (B) $F(z) = \frac{1}{1-z}, w$ with the region (A) $(-1)^{k}$	/hen expanded as a of convergence (F 	(D) reverse, forward Click here to watch video explanation a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)$ ROC) $ z-2 < 1$. The coefficients $a_k, k \ge 0$, are given by the expression
19.	ver: (B) $F(z) = \frac{1}{1-z}, w$ with the region (A) $(-1)^{k}$	/hen expanded as a of convergence (F 	(D) reverse, forward Click here to watch video explanation a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)$ ROC) $ z-2 < 1$. The coefficients $a_k, k \ge 0$, are given by the expression p_{k+1}^{k+1} (C) $\left(\frac{1}{2}\right)^k$ (D) $\left(\frac{-1}{2}\right)^{k+1}$
19. Answ	ver: (B) $F(z) = \frac{1}{1-z}, w$ with the region (A) $(-1)^{k}$ ver: (B)	when expanded as a of convergence (F	(D) reverse, forward Click here to watch video explanation a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)$ ROC) $ z-2 < 1$. The coefficients $a_k, k \ge 0$, are given by the expression $)^{k+1}$ (C) $\left(\frac{1}{2}\right)^k$ (D) $\left(-\frac{1}{2}\right)^{k+1}$ Click here to watch video explanation
19.	ver: (B) $F(z) = \frac{1}{1-z}, w$ with the region (A) $(-1)^{k}$ ver: (B) The solution x	<pre>/hen expanded as a of convergence (F (B) (-1) (t),t≥0, to the dif</pre>	(D) reverse, forward Click here to watch video explanation a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)$ $ROC) z-2 <1$. The coefficients $a_k, k \ge 0$, are given by the expression $)^{k+1}$ (C) $\left(\frac{1}{2}\right)^k$ (D) $\left(-\frac{1}{2}\right)^{k+1}$ Click here to watch video explanation Fferential equation
19. Answ	ver: (B) $F(z) = \frac{1}{1-z}, w$ with the region (A) $(-1)^{k}$ ver: (B) The solution x $\ddot{x} = -k\dot{x}, k > 0$	when expanded as a of convergence (F (B) (-1) (B) (-1) (t), t ≥ 0, to the difficult with initial condition	(D) reverse, forward Click here to watch video explanation a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)$ ROC) $ z-2 < 1$. The coefficients $a_k, k \ge 0$, are given by the expression $)^{k+1}$ (C) $\left(\frac{1}{2}\right)^k$ (D) $\left(\frac{-1}{2}\right)^{k+1}$ Click here to watch video explanation frem tial equation ons $x(0) = 1$ and $\dot{x}(0) = 0$ is
19. Answ	ver: (B) $F(z) = \frac{1}{1-z}, w$ with the region (A) $(-1)^{k}$ ver: (B) The solution x	when expanded as a of convergence (F (B) (-1) (B) (-1) (t), t ≥ 0, to the difficult with initial condition	(D) reverse, forward Click here to watch video explanation a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)$ $ROC) z-2 <1$. The coefficients $a_k, k \ge 0$, are given by the expression $)^{k+1}$ (C) $\left(\frac{1}{2}\right)^k$ (D) $\left(-\frac{1}{2}\right)^{k+1}$ Click here to watch video explanation Fferential equation
19. Answ	ver: (B) $F(z) = \frac{1}{1-z}, w$ with the region (A) $(-1)^{k}$ ver: (B) The solution x $\ddot{x} = -k\dot{x}, k > 0$	when expanded as a of convergence (F (B) (-1) (B) (-1) (t), t ≥ 0, to the difficult with initial condition	(D) reverse, forward Click here to watch video explanation a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)$ ROC) $ z-2 < 1$. The coefficients $a_k, k \ge 0$, are given by the expression $)^{k+1}$ (C) $\left(\frac{1}{2}\right)^k$ (D) $\left(\frac{-1}{2}\right)^{k+1}$ Click here to watch video explanation frem tial equation ons $x(0) = 1$ and $\dot{x}(0) = 0$ is

GATEFORUM |IN-GATE-2023| www.gateforumonline.com 21. A system has transfer-function $\frac{Y(s)}{X(s)} = \frac{s-\pi}{s+\pi}$ Let u(t) be the unit-step function. The input x(t) that results in a steady-state output $y(t) = \sin \pi t$ is (B) $x(t) = \sin\left(\pi t + \frac{\pi}{2}\right)u(t)$ (A) $x(t) = \sin(\pi t)u(t)$ (C) $x(t) = \sin\left(\pi t - \frac{\pi}{2}\right)u(t)$ (D) $x(t) = \cos\left(\pi t + \frac{\pi}{4}\right)u(t)$ Click here to watch video explanation Answer: (C) 22. Choose the fastest logic family among the following: (A) Transistor-Transistor Logic (B) Emitter-Coupled Logic (C) CMOS Logic (D) Resistor-Transistor Logic Click here to watch video explanation Answer: (B) What is $\lim_{x \to 0} f(x)$, where $f(x) = x \sin \frac{1}{x}$? 23. (A) 0 **(B)** 1 (C) ∞ (D) Limit does not exist Click here to watch video explanation Answer: (A) The number of zeros of the polynomial $P(s) = s^3 + 2s^2 + 5s + 80$ in the right-plane is ______. 24. Click here to watch video explanation (2) Answer: _____ The number of times the Nyquist plot of $G(s)H(s) = \frac{1(s-1)(s-2)}{2(s+1)(s+2)}$ encircles the origin is _____. 25. **Click here to watch video explanation** Answer: (2) @ All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission

26. The opamp in the circuit shown is ideal, except that it has an input bias current of 1 nA and an input offset voltage of 10 μ V. The resulting worst-case output voltage will be ± _____ μ V (rounded off to the nearest integer).

27. The force per unit length between two infinitely long parallel conductors, with a gap of 2 cm between them is $10 \,\mu$ N/m. When the gap is doubled, the force per unit length will be _____ μ N/m (rounded off to one decimal place).

```
  Answer:
  (5)

  Click here to watch video explanation
```

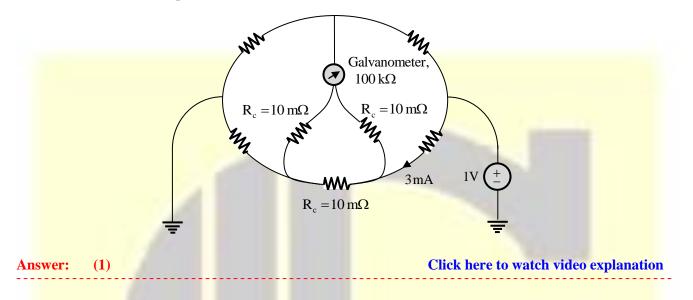
28. Consider the discrete-time signal x[n] = u[-n+5] - u[n+3],

Where
$$u[n] = \begin{cases} 1; & n \ge 0 \\ 0; & n < 0 \end{cases}$$

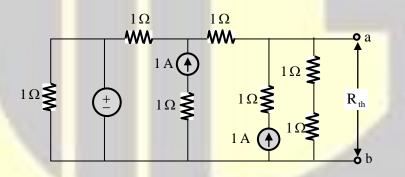
The smaller n for which x[n] = 0 is _____.

Answer: (-3)

Click here to watch video explanation


29. Let y(t) = x(4t), where x(t) is a continuous-time periodic signal with fundamental period of 100s. The fundamental period of y(t) is ______ s (rounded off to the nearest integer).

.....


Answer:(25)Click here to watch video explanation

30. When the bridge given below is balanced, the current through the resistor R_a is _____ mA (rounded off to two decimal places).

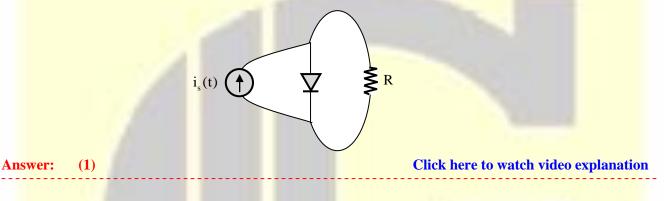
31. In the circuit given, the Thevenin equivalent resistance Rth across the terminals 'a' and 'b' is _____ Ω (rounded off to one decimal place).

Answer: (1)

Click here to watch video explanation

32. X is a discrete random variable which takes values 0, 1 and 2. The probabilities are P(X=0)=0.25 and P(X=1)=0.5. What E[.] denoting the expectation operator, the value of $E[X]-E[X^2]$ is _________(rounded off to one decimal place).

|IN-GATE-2023|


Answer: (-0.5)

GATEFORUM

Click here to watch video explanation

www.gateforumonline.com

33. The diode in the circuit is ideal. The current source is $i_s(t) = \pi \sin(3000\pi t) \text{ mA}$. The magnitude of the average current flowing through the resistor R is mA (rounded off to two decimal places).

34. The full-scale range of the wattmeter shown in the circuit is 100 W. The turns ratio of the individual transformers are indicated in the figure. The RMS value of the ac source voltage Vs is 200 V. The wattmeter reading will be ______ W (rounded off to the nearest integer).

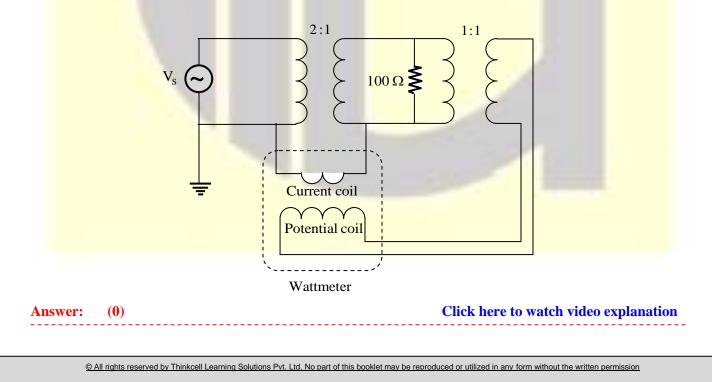


 Image: Www.gateforumonline.com

 35.
 The no-load steady-state output voltage of a DC shunt generator is 200 V when it is driven in the clockwise direction at its rated speed. If the same machine is driven at the rated speed but in the opposite direction, the steady-state output voltage will be ______ V (rounded off to the nearest integer).

 Answer:
 (0)
 Click here to watch video explanation

Q. No. 36-65 Carry Two Marks Each

(B) $1.5\cos\left(\frac{7\pi}{4}t\right)$

(D) $1.5\sin\left(\frac{7\pi}{4}t\right)$

Click here to watch video explanation

Click here to watch video explanation

36. The impulse response of an LTI system is $h(t) = \delta(t) + 0.5\delta(t-4)$, where $\delta(t)$ is the continuous-time

unit impulse signal. If the input signal. If the signal $x(t) = \cos\left(\frac{7\pi}{4}t\right)$, the output is _____

(A) $0.5\cos\left(\frac{7\pi}{4}t\right)$

(C) $0.5\sin\left(\frac{7\pi}{4}t\right)$

Answer: (A)

Answer:

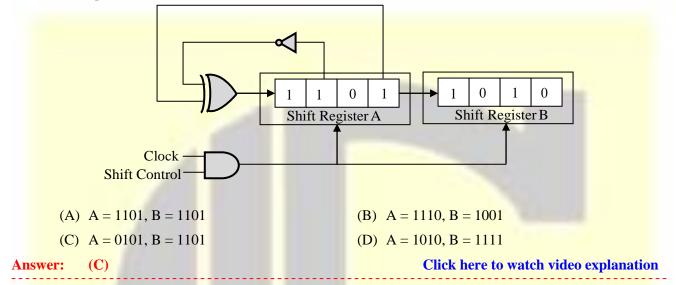
(A)

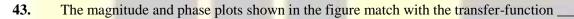
37 .	The Laplace transform of the continuous-time signal $x(t) = e^{-3t}u(t-5)$ is where $u(t)$ den	otes
	the continuous-time unit step signal.	

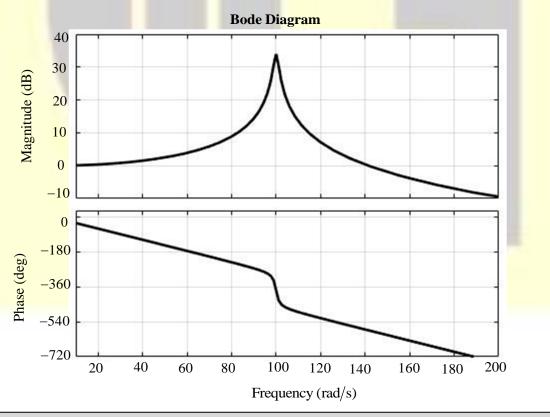
(A) $\frac{e^{-5s}}{s+3}$, Real{s} > -3	(B) $\frac{e^{-5(s-3)}}{s-3}$, Real {s} > 3
(C) $\frac{e^{-5(s+3)}}{s+3}$, Real $\{s\} > -3$	(D) $\frac{e^{-5(s-3)}}{s+3}$, Real $\{s\} > -3$
Answer: (C)	Click here to watch video explanation

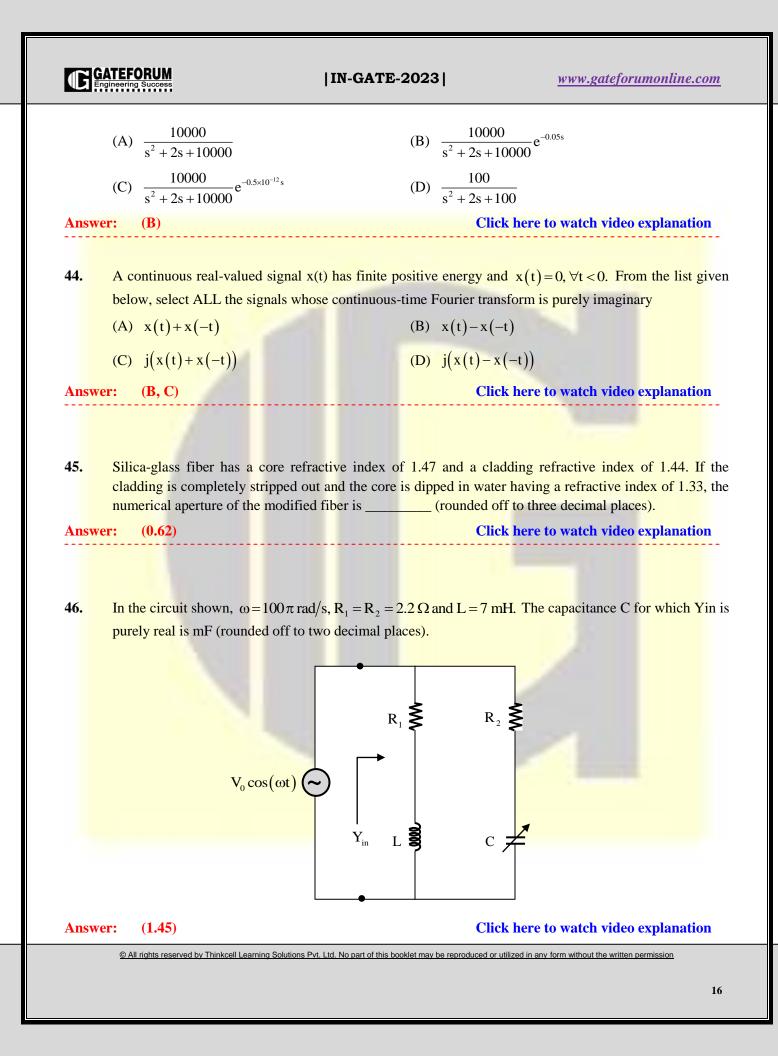
38. In a p-i-n photodiode, a pulse of light containing 8×10^{12} incident photons at wavelength $\lambda_0 = 1.55$ hm gives rise to an average 4×10^{12} electrons collected at the terminals of the device. The quantum efficiency of the photodiode at this wavelength is %.

(A) 50 (B) 54.2 (C) 62.5 (D) 80

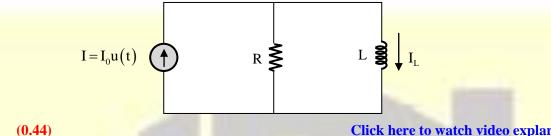

C	ATEFORUM gineering Success	IN-GATE-2023	www.gateforumonline.com
39.	$f(z) = j\frac{1-z}{1+z}$, where z demaps the real axis to the		otes $\sqrt{-1}$. The inverse function $f^{-1}(z)$
	(A) unit circle with centre	at the origin (B) unit circl	e with centre not at the origin
	(C) imaginary axis	(D) real axis	
Answe	er: (A)	Cl	ick here to watch video explanation
40.		the Boolean function $F(W, X, Y, Z)$ smallest number of literals in each ter (B) $WX + W$ (D) $\overline{X}Y + \overline{W}$	$VY + X\overline{Y}$
Answe		× ′	ick here to watch video explanation
	of 10 ns, 10 ns, and 5 ns recircuit is turned on, the free C	espectively. All lines have zero propa quency of steady-state oscillation of the	Y
		3) 15 MHz (C) 40 MHz	(D) 50 MHz
	er: (A)		ick here to watch video explanation
	© All rights reserved by Thinkcell Learning	Solutions Pvt. Ltd. No part of this booklet may be reproduced	or utilized in any form without the written permission
			14


IN-GATE-2023

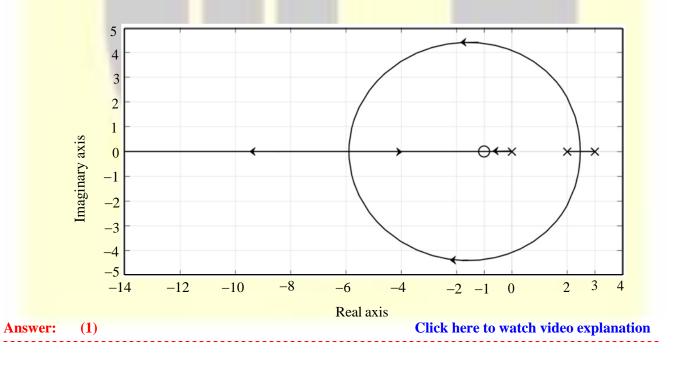

www.gateforumonline.com


42. In the circuit shown, the initial binary content of shift register A is 1101 and that of shift register B is 1010. The shift registers are positive-edge triggered, and the gates have no delay.

When the shift control is high, what will be the binary content of the shift registers A and B after four clock pulses?

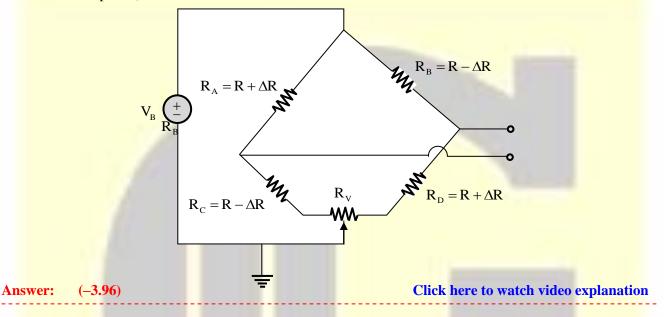


47. The R-L circuit with $R = 10 k\Omega$ and L = 1 mH is excited by a step current $I_0 u(t)$. At $t = 0^{-1}$, there is a current $I_L = I_0/5$ flowing through the inductor. The minimum time taken for the current through the inductor to reach 99% of its final value is $____ \mu s$ (rounded off to two decimal places).



Answer:

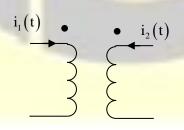
Click here to watch video explanation


Consider a standard negative feedback configuration with $G(s) = \frac{1}{(s-2)(s-3)}$ and the controller **48.**

 $C(s) = K_{p} + \frac{K_{1}}{s} + K_{D}S$. the roo-locus of G(s)C(s) is presented in the figure below. The gain $C(j\omega) = 2$ at $\omega = 1$ rad/s. The value of K_D is _____ (rounded off to one decimal place).

 49. How many five-digit numbers can be formed using the integers 3, 4, 5 and 6 with exactly one digit appearing twice? Answer: (240) Click here to watch video explanation 50. The phase margin of the transfer function G(s) = 2(1-s)/(1+s)² is degrees. (rounded off to the nearest integer). Answer: (0) Click here to watch video explanation 51. A wire-wound 'resistive potentiometer type' angle sensor with 72 turns is used in an application. The first turn of the potentiometer is connected to ground while its last turn is connected to 3.6 V. The width of the wiper covers two turns ensuring make-before-break. The output (wiper) voltage when the wiper is on top of both the turns 35 and 36 is V (rounded off to two decimal places). Answer: (0.1) Click here to watch video explanation 52. The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 µm, the output for zero displacement is µm (rounded off to one decimal place). Answer: (34.9) Click here to watch video explanation 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places). 	G	GATEFORUM Engineering Success	IN-GATE-2023	www.gateforumonline.com
 50. The phase margin of the transfer function G(s) = 2(1-s)/(1+s)² is degrees. (rounded off to the nearest integer). Answer: (0) Click here to watch video explanation 51. A wire-wound 'resistive potentiometer type' angle sensor with 72 turns is used in an application. The first turn of the potentiometer is connected to ground while its last turn is connected to 3.6 V. The width of the wiper covers two turns ensuring make- before-break. The output (wiper) voltage when the wiper is on top of both the turns 35 and 36 is V (rounded off to two decimal places). Answer: (0.1) Click here to watch video explanation 52. The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 µm, the output for zero displacement is µm (rounded off to one decimal place). 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places). 	49.	•	?	
 50. The phase margin of the transfer function G(s) = 2(1-s)/(1+s)² is degrees. (rounded off to the nearest integer). Answer: (0) Click here to watch video explanation 51. A wire-wound 'resistive potentiometer type' angle sensor with 72 turns is used in an application. The first turn of the potentiometer is connected to ground while its last turn is connected to 3.6 V. The width of the wiper covers two turns ensuring make- before-break. The output (wiper) voltage when the wiper is on top of both the turns 35 and 36 is V (rounded off to two decimal places). Answer: (0.1) Click here to watch video explanation 52. The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 µm, the output for zero displacement is µm (rounded off to one decimal place). 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places). 	Answ	ver: (240)	Click	here to watch video explanation
nearest integer). Click here to watch video explanation 51. A wire-wound 'resistive potentiometer type' angle sensor with 72 turns is used in an application. The first turn of the potentiometer is connected to ground while its last turn is connected to 3.6 V. The width of the wiper covers two turns ensuring make- before-break. The output (wiper) voltage when the wiper is on top of both the turns 35 and 36 is V (rounded off to two decimal places). Answer: (0.1) Click here to watch video explanation 52. The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 µm, the output for zero displacement is µm (rounded off to one decimal place). 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places).				
Answer: (0) Click here to watch video explanation 51. A wire-wound 'resistive potentiometer type' angle sensor with 72 turns is used in an application. The first turn of the potentiometer is connected to ground while its last turn is connected to 3.6 V. The width of the wiper covers two turns ensuring make- before-break. The output (wiper) voltage when the wiper is on top of both the turns 35 and 36 is V (rounded off to two decimal places). Answer: (0.1) Click here to watch video explanation 52. The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 µm, the output for zero displacement is µm (rounded off to one decimal place). 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places).	50.			degrees. (rounded off to the
 51. A wire-wound 'resistive potentiometer type' angle sensor with 72 turns is used in an application. The first turn of the potentiometer is connected to ground while its last turn is connected to 3.6 V. The width of the wiper covers two turns ensuring make- before-break. The output (wiper) voltage when the wiper is on top of both the turns 35 and 36 is V (rounded off to two decimal places). <u>Answer: (0.1)</u> Click here to watch video explanation 52. The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 μm, the output for zero displacement is µm (rounded off to one decimal place). 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places). 	Ancu	U .		here to watch video avalanction
 first turn of the potentiometer is connected to ground while its last turn is connected to 3.6 V. The width of the wiper covers two turns ensuring make- before-break. The output (wiper) voltage when the wiper is on top of both the turns 35 and 36 is V (rounded off to two decimal places). Answer: (0.1) Click here to watch video explanation 52. The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 µm, the output for zero displacement is µm (rounded off to one decimal place). 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places). 		(0)	Ciick	
 52. The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 μm, the output for zero displacement is μm (rounded off to one decimal place). Answer: (34.9) Click here to watch video explanation 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal place). 	51.	first turn of the point of the point of the wiper cover	potentiometer is connected to ground while its last to vers two turns ensuring make- before-break. The ou	urn is connected to 3.6 V. The width tput (wiper) voltage when the wiper
 52. The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 µm, the output for zero displacement is µm (rounded off to one decimal place). Answer: (34.9) Click here to watch video explanation 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal place). 	Answ	ver: (0.1)	Click	here to watch video explanation
If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 μm, the output for zero displacement is μm (rounded off to one decimal place). Answer: (34.9) Click here to watch video explanation 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places).	52.			
is μm (rounded off to one decimal place). Answer: (34.9) Click here to watch video explanation 53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places).		a deviation of or	ne degree from the expected phase. Other than this d	eviation, the LVDT is ideal.
53. Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places).				um, the output for zero displacement
and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places).	Answ	ver: (34.9)	Click	here to watch video explanation
		and 81 kg. The s	sample standard deviation of the measurement is kg	(rounded off to two decimal places).
			Circk	nere to mater muco explanation

54. Four strain gauges R_A, R_B, R_C and R_D , each with nominal resistance R, are connected in a bridge configuration. When a force is applied, R_A and R_D increase by ΔR and R_B and R_C decrease by ΔR as shown. A potentiometer with total resistance R_V is connected as shown. If $R = 100 \Omega$, and $\Delta R = 1 \Omega$, the minimum value of resistance R_V required to balance the bridge is _____ Ω (rounded off to two decimal places).



55. A sinusoidal current of $i_1(t) = 1\sin(200\pi t)mA$ is flowing through a 4H inductor which is mutually coupled to another 5 H inductor carrying

$i_2(t) = 2\sin(200\pi t) mA$

<u>GATEFORUM</u>

as shown in the figure. The coupling coefficient between the inductors is 0.6. The peak energy stored in the circuit is _____ μ J (rounded off to two decimal places).

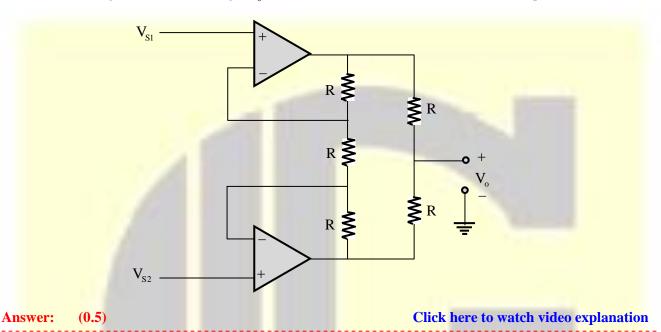


Answer: (17.37)

Click here to watch video explanation

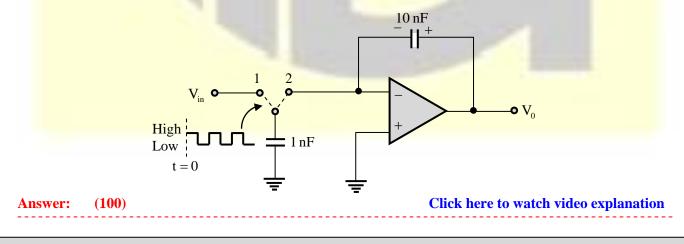
IN-GATE-2023

56. The figure below shows a feedback amplifier constructed using an nMOS transistor. Assume that $\mu_n C_{ox} = 1 \text{ mA}/V^2$, threshold voltage $V_T = 1V$ and W/L = 2. The bias voltage at the drain terminal is 4V. The capacitor C_{∞} offer zero impedance at the signal frequency. The ratio V_{out}/V_{in} is ______ (rounded off to two decimal places).

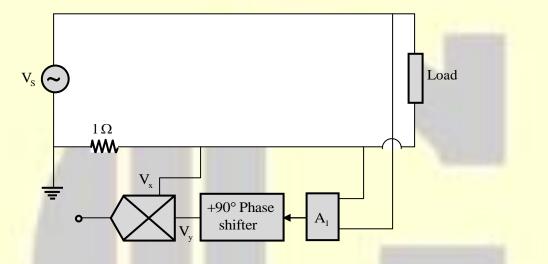

connected to a 2 V (RMS), 1 kHz sinusoidal source in series with a $\frac{1}{2\pi\sqrt{5}}$ mF capacitor. The primary

current (RMS) will be ______ A (rounded off to two decimal places).

Answer:(1)Click here to watch video explanation


- **59.** The opamps in the circuit are ideal. The input signals are
 - $V_{s1} = 3 + 0.10 \sin(300t) V$ and $V_{s2} = -2 + 0.11 \sin(300t) V$.

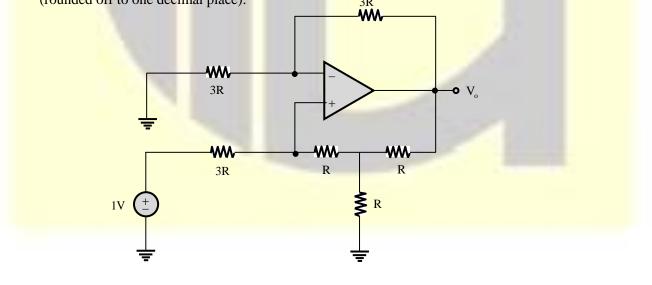
The average value of the voltage V_0 is _____ V (rounded off to two decimal places).



60. In the circuit shown, the input voltage Vin = 100 mV. The switch and the opamp are ideal. At time t = 0, the initial charge stored in the 10 nF capacitor is 1 nC, with the polarity as indicated in the figure. The switch S is controlled using a 1 kHz square- wave voltage signal Vs as shown. Whenever V_s is 'High', S is in position '1' and when V_s is 'Low', S is in position '2'.

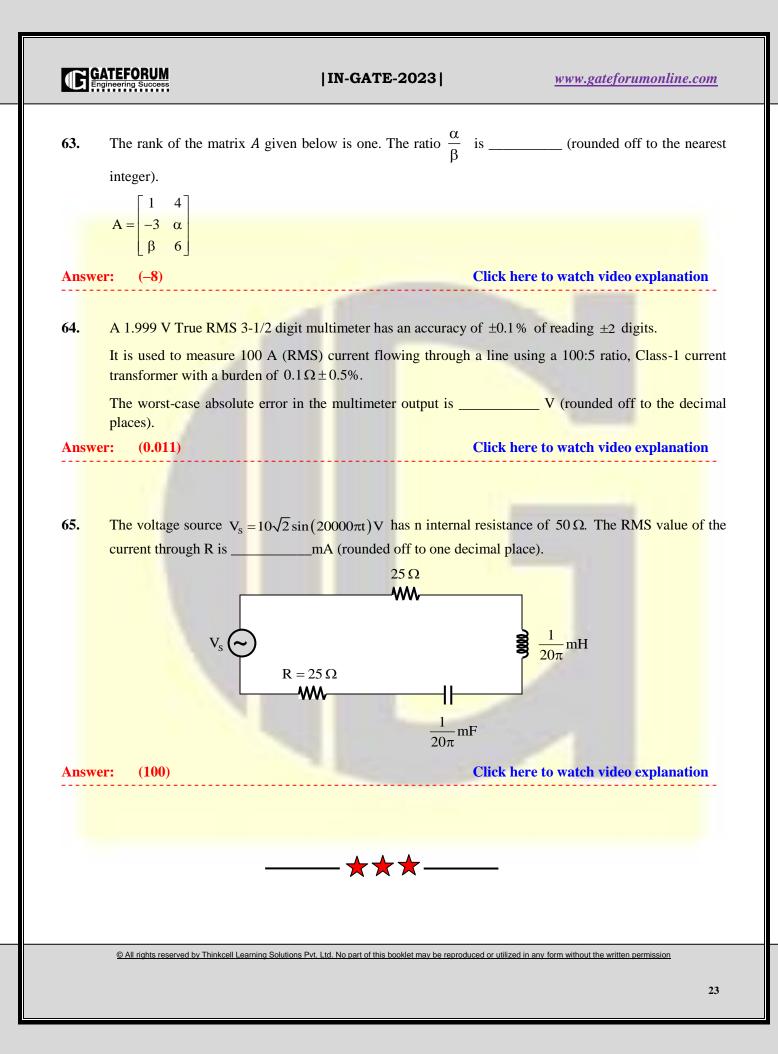
At t = 20 ms, the magnitude of the voltage V_0 will be _____ mV (rounded off to the nearest integer).

61. In the diagram shown, the frequency of the sinusoidal source voltage V_s is 50 Hz. The load voltage is 230 V (RMS), and the load impedance is $\frac{230}{\sqrt{2}} + j\frac{230}{\sqrt{2}}\Omega$. The value of attenuator $A_1 = \frac{1}{50\sqrt{2}}$. The multiplier output voltage $V_o = \frac{V_x V_y}{1V}$, where V_x and V_y are the inputs. The magnitude of the average value of the multiplier output V_o is _____ V (rounded off to one decimal place).



Answer: (2.9)

GATEFORUM



62. In the circuit shown, assuming an ideal opamp, the value of the output voltage $V_0 =$ _____ V (rounded off to one decimal place). $_{3R}$

Answer: (2)

Click here to watch video explanation

