C	GATEFORUM Engineering Success	MN-	GATE-2023	www.gateforumonline.com						
	GENERAL APTITUDE									
	<u>Q. No. 1 - 5 Carry One Mark Each</u>									
1.	1. The line ran the page, right through the centre, and divided the page into two									
	(A) across	(B) of	(C) between	(D) about						
Ans	swer: (A)									
2.	Kind : : : Of	ten : Seldom								
	(A) Cruel	(B) Variety	(C) Type	(D) Kindred						
Ans	swer: (A)									
3.	In how many ways ca	an cells in a 3×3 grid	be shaded, such that ea	her have exactly and each column have exactly						
	one shaded cell? An e	example of one valid sl	hading is shown.							
	(A) 2	(B) 9	(C) 3	(D) 6						
Ans	swer: (D)	·								
4	Three are 4 red 5 gra	en and 6 blue balls i	nside a box. If N numb	er of halls are nicked simultaneously						
ч.	what is the smallest v	alue of N that guarante	ees there will be at least	t two balls of the same colour?						
	One cannot see the co	olour of the balls until	they are picked.							
	(A) 4	(B) 15	(C) 5	(D) 2						
Ans	swer: (A)									
	© All rights reserved by Thinkcell	Learning Solutions Pvt. Ltd. No part o	of this booklet may be reproduced or ut	tilized in any form without the written permission						

|MN-GATE-2023|

www.gateforumonline.com

5. Consider a circle with its centre at the origin (O), as shown. Two operations are allowed on the circle. Operation 1: Scale independently along the x and y axes. Operation 2: Rotation in any direction about the origin. Which figure among the options can be achieved through a combination of these two operations on the given circle?

Q. No. 6-10 Carry Two Marks Each

- 6. Elvesland is a country that has peculiar beliefs and practices. They express almost all their emotions by gifting flowers. For instance, if anyone gifts a white flower to someone, then it is always taken to be a declaration of one's love for that person. In a similar manner, the gifting of a yellow flower to someone often means that one is angry with that person. Based only on the information provided above, which one of the following sets of statement(s) can be logically inferred with certainty?
 - (i) In Elvesland, one always declares one's love by gifting a white flower.
 - (ii) In Elvesland, all emotions are declared by gifting flowers.
 - (iii) In Elvesland, sometimes one expresses one's anger by gifting a flower that is not yellow.
 - (iv) In Elvesland, sometimes one expresses one's love by gifting a white flower.
 - $(A) only (ii) \qquad (B) (i), (ii) and (iii) \qquad (C) (i), (iii) and (iv) (D) only (iv)$

Answer: (D)

-								
	arrangements are are possible such t	the pairs are to be defined only by the hat every husband si	seated at a circular ta relative position of the ts next to his wife?	able that has six identical chairs. Seat e people. How many seating arrangeme				
	(A) 16	(B) 4	(C) 120	(D) 720				
Ansv	ver: (A)							
8.	Based only on the	following passage, v	which one of the option	s can be inferred with certainty?				
	When the congreg audible because of Apenyo would try mortifying Sunday and learnt to beha by herself, which now convinced th unexpectedly away	ation sang together, f the group singing. f singing along, muy evenings, the moth ve. At home too, Ap annoyed her mothe nat her daughter ha y from home.	Apenyo would also joi But whenever there w ch to the embarrassme er stopped going to ch enyo never kept quiet; a r at times but most oft d inherited her love of	in, though her little screams were not q vas a special number, trouble would beg ent of her mother. After two or three s urch altogether until Apenyo became of she hummed or made up silly songs to s en made her become pensive. She was of singing from her father who had d				
	[Excerpt from These Hills Called Home by Temsula Ao]							
	(A) The mother was embarrassed about her daughter's singing at home.							
	(B) The mother's feelings about her daughter's singing at home were only of annoyance.							
	(C) The mother was not sure if Apenyo had inherited her love of singing from her father.							
	(D) When Apeny	o hummed at home,	her mother tended to be	ecome thoughtful.				
Ansv	ver: (D)							
9.	If x satisfies the ed	quation $4^{8^x} = 256$, the second	nen x is equal to					
	1		2					
	(A) $\frac{1}{2}$	(B) $\log_{16} 8$	(C) $\frac{1}{3}$	(D) $\log_4 8$				
Ansv	ver: (C)							
10.	Consider a spheric and R situated re- north pole in the n	cal globe rotating ab spectively on the eq orthern hemisphere.	out an axis passing thr uator, the north pole, Let P, Q, and R move y	ough its poles. There are three points P and midway between the equator and with speeds $V_{\rm P}$, $V_{\rm Q}$ and $V_{\rm R}$, respectively				
	Which one of the	following options is	CORRECT?					
	$(A) V_{\rm P} < V_{\rm R} < V_{\rm Q}$	2	(B) $V_{\rm P} < V_{\rm P}$	$V_Q < V_R$				
			(D) V - V	$V \neq V$				
	$(C) V_{\rm P} > V_{\rm R} > V_{\rm C}$)	$(D) v_{\rm p} =$	$\mathbf{v}_{\mathrm{R}} \neq \mathbf{v}_{\mathrm{Q}}$				

	ngineering Success	MN-GATE-2023	www.gateforumonline.com	
16.	Given two random variables X ar	d Y, the expected value $E(3X-5)$	5Y) is	
	(A) $3E(X) - 5E(Y)$	(B) 3E(X)+5E	E(Y)	
	(C) $3E(X) - 5E(Y) - 15E(XY)$	(D) $E(X) - E($	Y) - E(XY)	
Answ	er: (A)			
17.	The reaction products of calcium	hydroxide with acidic ferrugino	us mine water are	
	(A) FeO, Ca^+ and H^+	(B) FeO, CaC	$O \text{ and } H_2 O$	
	(C) FeH_3 , Ca^{3+} and OH^-	(D) Fe(OH) ₃	, Ca^{2+} and H_2O	
Answ	er: (D)			
18.	An underground coal mine expendence during 2020. If the average employed is (A) 54.0 (B) 20.	ienced 5 serious injuries, 15 repoyment in the mine is 1200, the	portable injuries, and 25 minor injunity of the total injury rate per 1000 per	uries sons
Answ	er: (C)			
19.	A linear programming problem is	given as:		
	Maximize: $Z = 4x_1 + 2x_2$			
	Subject to:			
	$2x_1 - 2x_2 \le 20$			
	$4x_1 \le 80^2$			
	$\mathbf{x}_1 \ge 0, \mathbf{x}_2 \ge 0$			
	The problem has			
	(A) Unbounded solution.	(B) Infeasible	solution.	
	(C) Multiple optimal solutions.	(D) Unique of	ptimal solution.	
Answ	er: (A)	<u> </u>		
20.	A tabular, near-flat (dip < 30°), a is to be mined underground. Wall	nd less than 2 m thick copper or rock and orebody are competent	rebody having erratically located g it. The most suitable mining method	rade <mark>I i</mark> s
	(A) Cut and fill stoping.	(B) Sub-level	stoping.	
	(C) Underhand open stoping.	(D) Breast sto	ping.	
Answ	er: (D)			

21. x and y x = r co The jacc (A) tar (C) r ² Answer: (D) 22. In projet (A) Bo (B) Bo (C) CP (D) CP Answer: (C) 23. As per I (A) Co (C) Ex Answer: (B) (A) Co (C) Ex (A) Co (C) Ex (A) Co (C) Is (Q) Is (A) P- (A) P- (C) P-	y are functions of in os θ , y = r sin θ cobian of x,y is an θ 2 D) ject scheduling tech oth CPM and PER oth CPM and PER PM is deterministic PM is probabilistic	ndependent variables miques, the CORRE T are deterministic. T are probabilistic. c and PERT is proba	s r and θ as given below (B) r ² sinθcosθ (D) r CCT statement is	
x = r co The jacc (A) tar (C) r ² Answer: (D) 22. In project (A) Bo (B) Bo (C) CP (D) CP Answer: (C) 23. As per I (A) Co (C) Ex Answer: (B) 24. Match t (P) Is (Q) Is (A) P (C) P	$\cos \theta$, y = r $\sin \theta$ $\cosh \theta$ $an \theta$ $an \theta$ $cobian of x, y is an \thetacobian of x, y is cobian of x, y iscobian of x, y is cobian of x, y iscobian of x, y iscobian of x, y is cobian of x, y iscobian of x, y i$	miques, the CORRE T are deterministic. T are probabilistic. c and PERT is proba	 (B) r² sin θ cos θ (D) r 2CT statement is 	
(A) tar (A) tar (C) r ² Answer: (D) 22. In projet (A) Bo (B) Bo (C) CP (D) CP (D) CP (D) CP (A) Bo (C) CP (D) CP (A) Co (C) Ex Answer: (B) (A) Co (C) Ex Answer: (B) (A) Co (C) Ex (A) Co (C) Ex (A) Co (Q) Is (Q) Is (A) P- (A) P- (C) P- (C) P- (A) P- (C) P- (A) P- (C) P- (C) P-	cobian of x,y is an θ ² D) ject scheduling tech oth CPM and PER' oth CPM and PER' PM is deterministic PM is probabilistic	miques, the CORRE T are deterministic. T are probabilistic. c and PERT is proba	 (B) r² sin θ cos θ (D) r 2CT statement is 	
(A) tar (C) r ² Answer: (D) 22. In projection (A) Bo (B) Bo (C) CP (D) CP (D) CP (D) CP (D) CP (D) CP (C) Ex Answer: (B) 24. Match to (P) Is (Q) Is (R) Is (A) P (C) P	an θ ² D) ject scheduling tech oth CPM and PER' oth CPM and PER' PM is deterministic PM is probabilistic	miques, the CORRE T are deterministic. T are probabilistic. c and PERT is proba	 (B) r² sin θ cos θ (D) r 2CT statement is 	
(C) r ² Answer: (D) 22. In proje (A) Bo (B) Bo (C) CP (D) CP Answer: (C) 23. As per I (A) Co (C) Ex Answer: (B) 24. Match t (P) Is (Q) Is (R) Is (A) P- (C) P-	² ject scheduling tech oth CPM and PER' oth CPM and PER' PM is deterministic PM is probabilistic	miques, the CORRE T are deterministic. T are probabilistic. c and PERT is proba	(D) r	
Answer: (D) 22. In projection (A) Bo (B) Bo (C) CP (D) CP Answer: (C) 23. As per 1 (A) Co (C) Ex Answer: (B) 24. Match to (P) Is (Q) Is (R) Is (A) P- (C) P-	D) ject scheduling tech oth CPM and PER oth CPM and PER PM is deterministic PM is probabilistic	miques, the CORRE T are deterministic. T are probabilistic. c and PERT is proba	CT statement is	
22. In projet (A) Bo (B) Bo (C) CP (D) CP (D) CP (A) Co (C) Ex (A) Co (P) Is (Q) Is (A) P- (A) P- (C) P-	ect scheduling tech oth CPM and PER' oth CPM and PER' PM is deterministic PM is probabilistic	nniques, the CORRE T are deterministic. T are probabilistic. c and PERT is proba	CT statement is	
(C) CP (D) CP (D) CP 23. As per 1 (A) Co (C) Ex Answer: (B) 24. Match t (P) Is (Q) Is (R) Is (A) P- (C) P-	PM is deterministic PM is probabilistic	c and PERT is proba		
(D) CP Answer: (C) 23. As per I (A) Co (C) Ex Answer: (B) 24. Match t (P) Is (Q) Is (Q) Is (R) Is (A) P- (C) P-	PM is probabilistic	and PERT is detern	ıbilisti <mark>c.</mark>	
Answer: (C) 23. As per I (A) Co (C) Ex Answer: (B) 24. Match t (P) Is (Q) Is (R) Is (A) P- (C) P-		and I LIXI IS determ	ninisti <mark>c.</mark>	
 23. As per I (A) Co (C) Ex Answer: (B) 24. Match t (P) Is (Q) Is (R) Is (A) P- (C) P- 	()			
Answer: (B) 24. Match t (P) Is (Q) Is (R) Is (A) P– (C) P–	DGMS guidelines onsequence × Expo xposure × Probabil	, the risk score in Sa osure ity	 (b) Consequence × Exposure × Probabil (c) Consequence × Exposure × Probabil 	ed as lity
24. Match t (P) Is (Q) Is (R) Is (A) P– (C) P–	B)			
24. Match t (P) Is (Q) Is (R) Is (A) P- (C) P-				
(P) Is (Q) Is (R) Is (A) P- (C) P-	the following item	s with their respectiv	ve contours	
(P) Is (Q) Is (R) Is (A) P- (C) P-	Item	Contour		
(Q) Is (R) Is (A) P- (C) P-	Isopachs (1)	slope		
(R) Is (A) P- (C) P-	Isotherms (2)	thickness		
(A) P- (C) P-	Isocline (3)	temperature		
(C) P-	$\rightarrow 1, Q \rightarrow 3, R \rightarrow 2$		(B) $P \rightarrow 3, Q \rightarrow 1, R \rightarrow 2$	
	$\rightarrow 2, Q \rightarrow 3, R \rightarrow 1$		(D) $P \rightarrow 2; Q \rightarrow 1; R \rightarrow 3$	
Answer: (C	C)			
25. In an as The lati (A) 27 ^o		y at a given station,	the pole star is located at an angle of 27° from s $(C) = 27^{\circ} S$	1 the horizon.
	astronomical surve titude of the survey 7° N	(B) 63° N	(C) 27° S (D) 63° S	

G	GATEFORUM Engineering Success	MN-GATE-2023	www.gateforumonline.com
26.	The position tracking of a po	int by GPS is based on the technique	of
	(A) Graphical resection.	(B) Analytical	resection.
	(C) Triangulation.	(D) Trilateratio	on.
Answ	ver: (D)		
27.	Matrix A is negative defini matrix?	te. Which one of the following is	NOT the correct statement about the
	(A) It is symmetric.		
	(B) Determinant of A is alw	ays less than zero.	
	(C) All the eigen values are	less than zero.	
	(D) Trace of A is always les	s than zero.	
Answ	ver: (B)		
28.	The average ore grade of a c and refining is 85%. If the se one tonne of ore is	opper deposit is 0.9%. The recovery lling price of refined copper is Rs 640 . [rounded off to 1 decimal place]	of the metal after processing, smelting 0/kg, the sale value in Rs. from mining
Answ	ver: (4895 to 4897)		
29. Answ	A slope stability radar shows to (200.05, 700.1, -60.75) n [rounded off to 2 decimal pla ver: (75.00 to 76.50)	that the position of a point P in a min n over a time Δt . The net displacements (ces]	ne dump shifts from (200, 700, –60) m ent in cm of the point P is
20		1 6 1, 1 1	
30.	A Mohr-Coulomb failure env	relop of a sandstone rock is given as	
	$\sigma_1 = 30 + 3.5\sigma_3$		
	Where σ_1 and σ_3 , measured	in MPa, are the major and minor pri	ncipal stresses respectively. The angle
	of the failure plane with the	σ_3 axis in degree is [rou	unded off to 1 decimal place]
Answ	ver: (60.00 to 63.00)		
	© All rights reserved by Thinkcell Learning So	lutions Pvt. Ltd. No part of this booklet may be reproduced or u	utilized in any form without the written permission
			0

|MN-GATE-2023| www.gateforumonline.com 31. A punch hole of diameter 10 mm is to be made in a 5 mm thick rock plate as shown. If the yield strength of rock plate is 25 MPa, the punch force P required in kN is _____ [rounded off to 1 decimal place]

32. 'Critical subsidence' has occurred on the surface due to mining of a flat longwall panel at a depth of 200m. The width of the panel is 150 m. The maximum width of the panel in m that can be mined at a depth of 300 m, to reach critical subsidence is _____. [rounded off to 1 decimal place]

(225.00 to 225.00) **Answer:**

GATEFORUM

To increase the resistance of a mine roadway by 1.5 Ns²m⁻⁸, the size in m² of the regulator to be 33. installed is _____. [rounded off to 2 decimal places]

(0.95 to 1.07) **Answer:**

34. A coal seam of 3.0 m height is mined with a double-ended ranging drum shearer (DERDS) for a web depth of 0.5 m. The coal density is 1.4 tonne/m³. If the panel width is 150 m, the production per cycle in tonne is _____. [rounded off to 1 decimal place]

(3.15 to 315.0 OR 630.0 to 630.0) **Answer:**

In a panel with 50 workers, a miner typically consumes $2.5 \times 10-3$ m3/min of oxygen. The percentage 35. of oxygen in the intake air is 20.95%. To ensure minimum permissible oxygen in the return air as per CMR 2017 the quantity of ventilating air in m^3/min to be supplied to the panel is ______. [rounded off to 2 decimal places]

(6.00 to 7.00) Answer:

G Engineering Success

|MN-GATE-2023|

www.gateforumonline.com

Q. No. 36-65 Carry Two Marks Each

36. In a quality control process of coal supplied to a thermal plant, the 3-sigma control limits for fixed carbon (FC) are defined by $40\% \pm 15\%$. The process is termed "out of control" if:

Rule 1: 4 out of 5 successive values of FC are situated at the same side of the mean and at a distance more than 1 standard deviation.

Rule 2: Any one value crosses any of the 3-sigma control limits.

For the following continuous data of FC (%): 49, 51, 56, 20, 46, 48, 47, 49, 45, 41, 42, 40, the process is

- (A) out of control because of both rules 1 & 2
- (B) out of control because of rule 1 only.
- (C) out of control because of rule 2 only.
- (D) not out of control.

Answer: (A)

37. A tunnel of diameter 8 m is to be driven in a rock mass having quality index, Q of 1.0. Assume the excavation support ratio (ESR) of the tunnel is 1.0. The support requirement of the tunnel wall using fibre reinforced shotcrete (based on the chart prepared by Grimstad and Barton, 1993) is ______

|MN-GATE-2023|

- (A) Shotcrete of thickness 9-12 cm, bolt length of 2.7-2.8 m
- (B) Shotcrete of thickness 9-12 cm, bolt length of 3.0-3.2 m
- (C) Shotcrete of thickness 5-9 cm, bolt length of 2.7-2.8 m
- (D) Shotcrete of thickness 5-9 cm, bolt length of 2.5-2.6 m

Answer: (C)

38. Match the following devices with their intended applications.

Device	Application
(P) Ground Penetrating Radar	(1) Spatial positioning of a point
(Q) Tactile Sensor	(2) Measurement of a borehole deviation
(R) Global Navigation Satellite System	(3) Robotic Arm
(S) Digital Inclinometer	(4) Locating subsurface features
(A) $P \rightarrow 1; Q \rightarrow 2; R \rightarrow 3; S \rightarrow 4$	(B) $P \rightarrow 4; Q \rightarrow 3; R \rightarrow 1; S \rightarrow 2$
(C) $P \rightarrow 3; Q \rightarrow 4; R \rightarrow 2; S \rightarrow 1$	(D) $P \rightarrow 4; Q \rightarrow 3; R \rightarrow 2; S \rightarrow 1$

Answer: (B)

39. The evaluation of the integral

$$I = \int \frac{e^{x-1} + x^{e-1}}{e^x + x^e} dx \text{ yields}$$

(A)
$$\ell n(e^{x} + x^{e})$$
 (B) $\frac{1}{e} \ell n(e^{x} - x^{e})$ (C) $\frac{1}{e} \ell n(e^{x} + x^{e})$ (D) $\ell n(e^{x} - x^{e})$

Answer: (C)

40. Given the function

f(x) = |x| + |x-1|,

For all the real values of x, which one of the following statements is CORRECT?

(A) The function is continuous and not differentiable at one point.

(B) The function is continuous but not differentiable at two points.

- (C) The function is discontinuous.
- (D) The function is continuous and differentiable.

Answer: (B)

|MN-GATE-2023|

www.gateforumonline.com

41. The slope and intercept values of three linear equations are

Equation no.	Slope	Intercept
1	2.0	3.0
2	4.0	5.0
3	6.0	2.0

The above system of equations has

- (A) Trivial solution. (B) A single solution.
- (C) Multiple solutions.

(D) No Solution.

- Answer: (D)
- 42. A regression line is constructed between shovel production rate and shovel swing angle for 50 observations as shown below.

	Estimated parameter	Standard error
Intercept	29.6	13.45
Slope	2.5	1.32

t-values corresponding to level of significance (P) and degree of freedom (DF)

P									
One-tail	0.1	0.05	0.025	0.01	0.005	0.001	0.0005		
DF		t-values							
30	1.31	1.697	2.042	2.457	2.75	3.385	<mark>3.64</mark> 6		
60	1.296	1.671	2	2.39	2.66	3.232	<mark>3.4</mark> 6		

If residuals are normally distributed and significance tests of the parameters are conducted at 0.05 significance level, the true statement is

- (A) Both intercept and slope are significant.
- (B) Intercept is significant but slope is not significant.
- (C) Intercept is not significant but slope is significant.
- (D) Both intercept and slope are not significant.

Answer: (B)

G	GATEFORUM Engineering SuccessIMN-GATE-2023 www.gateforumonline.com
43.	A duct of diameter 0.60 m with an exhausting fan has -97.5 mm wg static pressure behind the fan when the air flow rate is $4.0 \text{ m}^3/\text{s}$. If an evasee with inlet to outlet area ratio of 1:4 and efficiency 60% is attached to the outlet of the fan, the static pressure of the fan in mm of wg becomes
	(A) -104.26 (B) -99.13 (C) -90.73 (D) -80.6
Allsw	
44.	Coordinates of two points A and B are (E 0 m, N 200 m) and (E 300 m, N 200 m), respectively. The bearing of two lines AO and BO are 67° and 35°, respectively. The easting of point O, in m, is [rounded off to 2 decimal places]
Answ	ver: (426.00 to 427.64)
45 <mark>.</mark>	Data related to a surface miner operation are given below –
	Drum width (m) = 3.0
	Average cutting depth (cm) = 20
	Average cutting speed (m/min) = 25
	Length of pit $(m) = 500$
	Turning time (min) = 2
	Truck exchange time $(s) = 30$
	Truck capacity $(m^3) = 15$
	Considering in situ volume, the production rate of the surface miner in m^3/hr , is
	[rounded off to 1 decimal place]
Answ	ver: (555 to 578)
46.	A continuous miner served by two shuttle cars produces 240 tonne/hr. The capacity of each shuttle car is 10 tonne. When a single shuttle car operates, the cycle time becomes 4 min. In case one of the shuttle cars is under break-down, the reduction in hourly production from that of two cars in percent is [rounded off to 1 decimal place]

Answer:

47. A circular tunnel is developed in a biaxial in situ stress field as shown in the figure. If the ratio between tangential stress at the boundary point A and that at the boundary point B is 2.0, the value of k is _____. [rounded off to 2 decimal places]

48. Strength of a rectangular coal pillar in MPa is given by

$$S_{p} = S_{1} \left(0.64 + 0.54 \frac{w}{h} - 0.18 \frac{w^{2}}{\ell h} \right)$$

Where w, $\ell (\geq w)$ and h are width, length and height of the pillar, respectively. The parameter S_1 is constant.

A 30 m square pillar is split into two halves as shown in the figure. The height of the pillar is 3 m. The ratio of safety factors between one half-pillar and the original square pillar is _____.

[rounded off to 2 decimal places]

GATEFORUM

www.gateforumonline.com

49. A dozer pushes up a 100 kg spool of cable along a 20° incline road at a constant velocity as shown in the figure. The coefficient of static friction between the dozer bucket and the spool (Point B) is 0.45, and coefficient of kinetic friction between road and the spool (Point A) is 0.15.

Consider the spool only slides up the incline. The maximum normal force in N acting at Point B, is _____. [rounded off to 1 decimal place]

50. Stress waves are sent from the transmitter A to the receiver B through an isotropic and elastic cylindrical rock specimen as shown in the figure.

The length of the specimen is 100 mm. The travel time of longitudinal and shear waves are 0.025 ms and 0.04 ms, respectively. The Poisson's ratio of the rock specimen is

[rounded off to 2 decimal places]

51. A jointed rock sample is subjected to 20 MPa vertical stress as shown in the figure. The modulus of elasticity of the rock is 10 GPa and the normal stiffness of the joint surface is 5 GPa/m. Assuming one-dimensional elastic behaviour of rock and joint, the displacement in mm of the loading surface AB is ______. [rounded off to 1 decimal place]

52. An unmanned aerial vehicle (UAV) with payload of 2 kg reaches vertically 100 m in 10 s at uniform velocity. The self-weight of the UAV is 1.2 kg. The power required in lifting in kW is _____.

[rounded off to 2 decimal places]

Answer: (0.30 to 0.32)

Answer:

53. An irregular shaped rock sample of mass 60 g displaces 27 g of brine when submerged in a filled jar. The specific gravity of brine is 1.05. The unit weight of the rock sample in kN/m^3 is _____.

[rounded off to 2 decimal places]

Answer: (22.59 to 23.19)

54. The reliability function of a pump is given as $R(t) = \exp\left[-\left(\frac{t}{1000}\right)^{0.5}\right]$, where t stands for time in years.

If the pump comes with a six-month warranty, the number of years for the pump to attain a reliability of 0.9 is ______. [rounded off to 2 decimal places]

Answer: (14.50 to 17.00)

55. In a sample of groundwater, the concentration of Ca^{2+} is 200 mg/l. The corresponding calcium carbonate hardness in mg/l is ______. [rounded off to 1 decimal place]

Answer: (490 to 510)

56. A thermal power station receives coal of calorific value 4000 kcal/kg and uses 7000 tonnes of coal every day. Assuming 860 kcal is the heat equivalent of 1.0 kWh, for a thermal efficiency of 40% and electrical efficiency of 85% the power generation per day in MWh is ______.

[rounded off to 1 decimal place]

Answer: (11060.0 to 11080.0)

57. A coal company has three mines which transport coal to four washeries. The daily production from each mine, the demand at each washery and unit transportation cost from each mine to each washery are given in table

	Washery						
Min	W 1	W2	W3	W4	Supply (tones/day)		
M1	19	30	50	10	700		
M2	70	30	40	60	900		
M3	40	8	70	20	1800		
Demand (tonnes/day)	500	800	700	1400			

The cost of initial basic feasible solution using Vogel's approximation method is ____

[rounded off to 1 decimal place]

Answer: (77900 to 77900)

www.gateforumonline.com

58. A workshop has four tasks and equal number of machines to perform the tasks. Each of the machines can perform only one of the four tasks. The estimated cost at each of the machines to complete each task is given in table

	TASK						
		T1	T2	T3	T4		
	M1	10	40	60	30		
MACHINE	M2	90	70	100	90		
	M3	40	50	110	70		
	M4	80	70	80	50		

The total cost of optimal assignment is _____. [rounded off to 1 decimal place]

Answer: (210 to 210)

59. The time between consecutive accidents in days in an underground coal mine in a year are as follows 10, 15, 6, 18, 12, 14, 16, 9, 21, 15, 26, 18, 22, 25, 13

Assuming exponential distribution, the probability that there will be no accident over a 10-day period is ______. [rounded off to 2 decimal places]

Answer: (0.52 to 0.56)

60. A surface mine blast pattern has spacing 4 m and burden 3 m. The diameter of the drill hole is 110 mm. The drilling length is 8.8 m including subgrade of 10%. The bulk explosive density is 900 kg/m³.

If the powder factor is 2.5 m³/kg, the charge length in m is_____. [rounded off to 2 decimal places]

Answer: (4.44 to 4.55)

|MN-GATE-2023|

www.gateforumonline.com

63. A mine void of width 20 m, length 50 m and height 30 m is to be filled with mill tailings based cemented paste backfill (CPB). The CPB contains tailings:cement:water as 1.0:0.1:0.2 by weight. The specific gravity of tailings and cement are 2.8 and 2.4 respectively. Assuming 20% of the original volume of water is retained in the final backfill, the amount of cement in tonne required so as to fill the void completely is ______. [rounded off to nearest integer]

Answer: (6800 to 6850)

64. A fan installed in a mine ventilation system circulates 30 m3/s of air to two districts A and B as shown in Figure below. It is desired to increase the quantity of air by 20% in the district B using a booster fan in it. Assuming that the main fan pressure is unchanged, the pressure of the booster fan, in Pa, is _____. [rounded off to 2 decimal places]

Answer: (305 to 325)

65. Data related to a water turbine pump with backward bladed impellers are given below: Impeller diameter : 35 cm

RPM : 1200

Angle of curvature of blade : 30°

Radial velocity of discharge : 2 m/s

Manometric efficiency : 0.8

The number of impellers required in the pump to lift water by a height 300 m is _____ [rounded off to higher integer]

Answer: (10 to 10)

