Mechanical Engineering

PAPER-I

Question Paper Specific Instructions

Please reach each of the following instruction carefully before attempting questions:

There are EIGHT questions divided in TWO sections.
Candidate has to attempt FIVE questions in all
Questions No. 1 and 5 are compulsory and out of the remaining, any THREE are to be attempted choosing at least ONE question from each section.

The number of marks carried by a question/ part is indicated against it.
Wherever any assumptions are made for answering a question, they must be clearly indicated.

Diagrams/figures, wherever required, shall be drawn in the space provided for answering the question itself.

Unless otherwise mentioned, symbols and rotations carry their usual standard meanings.

Psychometric Chart is given in Page No.8.
Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly.

Any page or portion of the page left blank in the QCA Booklet must be clearly struck off.
Answers must be written in ENLISH only.

SECTION-A

1. (a) (i) Differentiate between rotational and irrotationalflows. Can there be any possibility of having zones possessing characteristics of both rotationaland irrotational flows?
(ii) If the expression for the stream function is described by $\psi=x^{3}-3 x y^{2}$ determine whether the flow is rotational or irrotational. Further, find out the correct expression of the velocity potential function of the following two, considering the flow is irrotational:
2. $\phi=y^{3}-3 x^{2} y$
3. $\phi=-7 x^{3} y$
[6 +6 Marks]
(b) A refrigerated truck whose dimensions are $12 \mathrm{~m} \times 2.5 \mathrm{~m} \times 3 \mathrm{~m}$ is to be precooled from $30^{\circ} \mathrm{C}$ to an average temperature of $5^{\circ} \mathrm{C}$. The construction of the truck is such that a transmission heat gain occurs at the rate of $90 \mathrm{~W} /{ }^{\circ} \mathrm{C}$.If the ambient temperature is $30^{\circ} \mathrm{C}$, determine how long it will take for asystem with a refrigeration capacity of 10 kW to precool this truck. The density of air may be taken as $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and its specific heat at average temperatureof $17.5^{\circ} \mathrm{C}$ is $\mathrm{C}_{\mathrm{p}}=1.0 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$. State the assumptions, if any.
[12 Marks]
(c) An engine oil flows through a copper tube of 1 cm internal diameter and 0.02 cm wall thickness at the flow rate of $0.1 \mathrm{~kg} / \mathrm{s}$. Consider that thetemperature of the oil at the entry is $30^{\circ} \mathrm{C}$. If the oil is heated to $50^{\circ} \mathrm{C}$ bysteam condensing at atmospheric pressure, calculate the length of the coppertube. The properties of the oil are as follows:
$\mathrm{C}_{\mathrm{p}}=1964 \mathrm{~J} / \mathrm{kg}-\mathrm{K}, \rho=876 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=0.144 \mathrm{~W} / \mathrm{m}-\mathrm{K}$,
$\mu=0.210 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}, \operatorname{Pr}=2870$
(d) Explain the mechanism of NOx formation and also the methods for its reduction in stationary gas turbine engines.
(e) (i) Why are higher heat transfer rates experienced in drop wise condensation than in film condensation?
(ii) Distinguish between nucleate boiling and film boiling.
4. (a) (i) Find the distance from the pipe wall at which the local velocity is equal tothe average velocity for turbulent flow in pipe.
(ii) Distinguish between hydrodynamically smooth and rough boundaries.
(b) (i) In a closed system, 3 kg of air at initial conditions of 400 kPa and $90^{\circ} \mathrm{Cadiabatically} \mathrm{expands}$ until its volume is 2.5 times the initial volume and temperature becomes equal to that of surroundings. If the conditions of the surroundings are 100 kPa and $25^{\circ} \mathrm{C}$, determine the following for thisprocess:
5. The maximum work
6. The change in availability
7. The irreversibility
(ii) Prove that for an ideal gas, the slope of an isochoric line on theT-s diagram is more than that of the isobaric line.
(c) A square plate heater $(15 \mathrm{~cm} \times 15 \mathrm{~cm})$ is inserted between two slabs. Slab A is 2 cm thick ($\mathrm{k}=50 \mathrm{~W}$ $/ \mathrm{m}-{ }^{\circ} \mathrm{C}$) and slab B is 1 cm thick $\left(\mathrm{k}=0.2 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C}\right)$. The outside heat transfer coefficients on side of A and side of Bare $200 \mathrm{~W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}$ and $50 \mathrm{~W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}$ respectively. The temperature of surrounding air is $25^{\circ} \mathrm{C}$. If the rating of heater is 1 kW , find the
(i) maximum temperature of the system;
(ii) outer surface temperature of two slabs.

Assume steady-state heat flow.
3. (a) A centrifugal pump discharges 2000 litres/s of water developing a head of 20 m when running at $300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The impeller diameter at the outlet and outlet flow velocity are 1.5 m and $3.0 \mathrm{~m} / \mathrm{s}$ respectively. If the blades are set back at an angle of 30° at the outlet, determine the-
(i) manometric efficiency;
(ii) power required by the pump;
(iii) minimum speed to start the pump if the inner diameter is 750 mm .
[20 Marks]
(b) Air flows at $12 \mathrm{~m} / \mathrm{s}$ past a smooth rectangular flat plate 0.4 m wide and 3 mlong . Assuming that the transition occurs at $\operatorname{Re}=5.5 \times 10^{5}$, calculate the totaldrag force when
(i) the flow is parallel to the length of the plate;
(ii) the flow is parallel to the width of the plate.

Assume,
Density of air, $\rho=1.24 \mathrm{~kg} / \mathrm{m}^{3}$
Kinematic viscosity, $v=0.15$ stokes
(c) Two tanks, tank A and tank B, are separated by a partition as shown in the figure. Tank A contains 3 kg of steam at 1 MPa and $300^{\circ} \mathrm{C}$. Tank B contains 4 kg of saturated liquid-vapour mixture at $150^{\circ} \mathrm{C}$ with a dryness fraction of0.5. The partition is removed and two fluids are allowed to mix until thethermal equilibrium and mechanical equilibrium are acquired. If the pressure of the final state is 300 kPa ; determine-
(i) the temperature of the final state;
(ii) the quality of the steam at final state;
(iii) the amount of heat lost from the tanks.

[Required steam tables are attached below]
$P=200 \mathrm{kPa}(120.23)$

	$P=200 \mathrm{kPa}(120.23)$				$P=300 \mathrm{kPa}(133.55)$				$P=400 \mathrm{kPa}$ (143.63)			
T	v	u	h	s	v	u	h	5	v	u	h	s
900	2.70643	3854.5	4395.8	9.4565	1.80406	3854.2	4395.4	9.2691	1.35288	3853.9	4395.1	
1000	2.93740	4052.5	4640.0	9.6563	1.95812	4052.3	4639.7	9.4689	1.46847	4052.0	4639.4	9.3360
1100	3.16834	4257.6	4890.7	9.8458	2.11214	4256.8	4890.4	9.6585	1.58404	4256.5	4890.1	9.5255
1200	3.39927	4467.5	5147.3	10.0262	2.26614	4467.2	5147.1	9.8389	1.69958	4467.0	5146.8	9.7059
1300	3.63018	4683.2	5409.3	10.1982	2.42013	4683.0	5409.0	10.0109	1.81511	4682.8	5408.8	9.8780
	$P=500 \mathrm{kPa}(151.86)$				$P=600 \mathrm{kPa}(158.85)$				$P=800 \mathrm{kPa}(170.43)$			
Sat.	0.37489	25612	2748.7	6.8212	0.31567	2567.4	2756.8	6.7600	0.24043	2576.8	2769.1	6.6627
200	0.42492	2642.9	2855.4	7.0592	0.35202	2638.9	2850.1	6.9665	0.26080	2630.6	2839.2	6.8158
250	0.47436	2723.5	2960.7	7.2708	0.39383	2720.9	2957.2	7.1816	0.29314	2715.5	2950.0	7.0384
300	0.52256	2802.9	3064.2	7.4598	0.43437	2801.0	3061.6	7.3723	0.32411	2797.1	3056.4	7.2372
350	0.57012	2882.6	3167.6	7.6328	0.47424	2881.1	3165.7	7.5463	0.35439	2878.2	3161.7	7.4088
400	0.61728	2963.2	3271.8	7.7937	0.51372	2962.0	3270.2	7.7078	0.38426	2959.7	3267.1	7.5715
500	0.71093	3128.4	3483.8	8.0872	0.59199	3127.6	3482.7	8.0020	0.44331	3125.9	3480.6	7.8672
600	0.80406	3299.6	3701.7	8.3521	$00_{6} 66974$	3299.1	3700.9	8.2673	0.50184	3297.9	3699.4	8.1332
700	0.89691	3477.5	3926.0	8.5952	0,74720	3477.1	3925.4	8.5107	0.56007	3476.2	3924.3	8.3770
800	0.98959	3662,2	4157.0	8.8211	0.82450	3661.8	4156.5	8.7367	0.61813	3661.1	4155.7	8.6033
. 900	1.08217	3853.6	4394.7	9.0329	0.90169	3853.3	4394.4	8.9485	0.67610	3852.8	4393.6	8.8153
1000	1.17469	4051.8	4639.1	9,2328	0.97883	4051.5	4638.8	9.1484	0.73401	4051.0	4638.2	9.0153
1100	1.26718	4256.3	4889.9	9.4224	1,05594	4256.1	4889.6	9.3381	0.79188	4255.6	4889.1	9.2049
1200	1.35964	4466.8	5146.6	9.6028	1.13302	4466.5	5146.3	9.5185	0.84974	4466.1	5145.8	9.3854
1300	1.45210	4682.5	5408.6	9.7749	1.21009	4682.3	5408.3	9.6906	0.90758	4681.8	5407.9	9.5575
		$=1.00$	(179.91)			$P=1.2$	(187.			$=1.40 \mathrm{M}$	$\mathrm{Pa}(195.07)$	
Sat.	0.19444	2583.6	2778.1	6.5864	0.16333	2588.8	2784.8	6.5233	0.14084	2592.8	2790.0	6.4692
200	0.20596	2621.9	2827.9	6.6939	0.16930	2612.7	2815.9	6.5898	0.14302	2603.1	2803.3	6.4975
250	0.23268	2709.9	2942.6	6.9246	0.19235	2704.2	2935.0	6.8293	0.16350	2698.3	2927.2	6.7467
300	0.25794	2793.2	3051.2	7.1228	0.21382	2789.2	3045.8	7.0316	0.18228	2785.2	3040.4	6.9533
350	0.28247	2875.2	3157.7	7.3010	0.23452	2872.2	3153.6	7.2120	0.20026	2869.1	3149.5	7.1359
400	0.30659	2957.3	3263.9	7.4650	0.25480	2954.9	3260.7	7.3773	0.21780	2952.5	3257.4	7.3025
500	0.35411	3124.3	3478.4	7.7621	0.29463	3122.7	3476.3	7.6758	0.25215	3121.1	3474.1	7.6026

Steam Table												
$\begin{gathered} \text { Temp. } \\ { }^{\circ} \mathrm{C} . \\ T \end{gathered}$	Pressure $\mathrm{kPa}, \mathrm{MPa}$ P	$\begin{gathered} \text { Sat. } \\ \text { Liquid } \\ v_{\mathrm{f}} \end{gathered}$	Sat. Vapour \mathbf{v}_{g}	$\begin{gathered} \hline \text { Sat. } \\ \text { Liquid } \\ u_{\mathrm{f}} \end{gathered}$	Evap. $u_{f g}$	$\begin{gathered} \text { Sat. } \\ \text { Vapour } \\ u_{g} \end{gathered}$	$\begin{gathered} \text { Sat. } \\ \text { Liquid } \\ h_{f} \end{gathered}$	$\begin{gathered} \text { Evap. } \\ h_{\mathrm{fg}} \end{gathered}$	$\begin{gathered} \text { Sat. } \\ \text { Vapour } \\ h_{\mathrm{g}} \end{gathered}$	Sat. Liquid sf	$\begin{gathered} \text { Evap. } \\ s_{f_{\mathrm{g}}} \end{gathered}$	$\begin{gathered} \text { Sat. } \\ \text { Vapour } \\ s_{\mathrm{g}} . \end{gathered}$
105	0.12082	0.001047	1.4194	$440.0{ }^{\circ}$	2072.3	2512.3	440.13	2243.7	2683.8	1.3629	5.9328	7.2958
110	0.14328	0.001052	1.2102	461.12	2057.0	2518.1	461.27	2230.2	2691.5	1.4184	5.8202	7.2386
115	0.16906	0.001056	1.0366	482.28	2041.4	2523.7	482.46	2216.5	2699.0	1.4733	5.7100	7.1832
120	0.19853	0.001060	0.8919	503.48	2025:8	2529.2	503.69	2202.6	2706.3	1.5275	5.6020	7.1295
125	0.2321	0.001065	0.77059	524.72	2009:9	2534.6	524.96	2188.5	2713.5	1.5812	5.4962	7.0774
130	0.2701	0.001070	0.66850	546.00	1993.9	2539.9	546.29	2174.2	2720.5	1.6343	5.3925	7.0269
135	0.3130	0.001075	0.58217	567.34	1977.7	2545.0	567.67	2159.6	2727.3	1.6869	5.2907	6.9777
140	0.3613	0.001080	0.50885	588.72	1961.3	2550.0	589.11	2144.8	2733.9	1.7390	5.1908	6.9298
145	0.4154	0,001085	0.44632	610.16	1944.7	2554.9	610.61	2129.6	2740.3	1.7906	5.0926	6.8832
150	0.4759	0.001090	0.39278	631.66	1927.9	2559.5	632.18	2114.3	2746.4	1.8417	4.9960	6.8378
155	0.5431	0.001096	0.34676	653.23	1910.8	2564.0	653.82	2098.6	2752.4	1.8924	4.9010	6.7934
160	0.6178	0.001102	0.30706	674.85	1893.5	2568.4	675.53	2082.6	2758.1	1.9426	4.8075	6.7501
165	0.7005	0.001108	0.27269	696.55	1876.0	2572.5	697:32	2066.2	2763.5	1.9924	4.7153	6.7078
170	0.7917	0.001114	0.24283	718.31	1858.1	2576.5	719.20	2049.5	2768.7	2.0418	4.6244	6.6663
175	0.8920	0.001121	0.21680	740.16	1840.0	2580.2	741.16	2032.4	2773.6	2.0909	4.5347	6.6256
180	1.0022	0.001127	0.19405	762.08	1821.6	2583.7	763.21	2015.0	2778.2	2.1395	4.4461	6.5857
185	1.1227	0.001134	0.17409	784.08	1802.9	2587.0	785.36	1997.1	2782.4	2.1878	4.3586	6.5464
190	1.2544	0.001141	0.15654	806.17	1783.8	2590.0	807.61	1978.8	2786.4	2.2358	4.2720	6.5078
195	1.3978	0.001149	0.14105	828.36	1764.4	2592.8	829.96	1960.0	2790.0	2.2835	4.1863	6.4697
200	1.5538	0.001156	0.12736	850.64	1744.7	2595.3	852.43	1940.7	2793.2	2.3308 2.3779	4.1014	6.4322 6.3951
205	1.7230	0.001164	0.11521	873.02	1724.5	2597.5	875.03 897.75	1921.0	2796.0 2798.5	2.3779 2.4247	4.0172 3.9337	6.3951 6.3584
210	1.9063	0.001173	0.10441	895.51			920.61	1879.9	2800.5	2.4713	3.8507	6.3221
215	2.1042	0.001181	0.09479	918.12 940.85	1682.9 1661.5	$\begin{aligned} & 2601.1 \\ & 2602.3 \end{aligned}$	943.61	1858.5	2802.1	2.5177	3.7683	6.2860
220	2.3178	0.001190	0.08619	940.85	1661.5	2602.3						

Steam Table

$\begin{gathered} \text { Pressure } \\ \underset{P}{\text { MPa }} \end{gathered}$	$\begin{aligned} & \text { Temp. } \\ & { }^{\text {ecp }} \end{aligned}$	Specific Volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy, k/kg			Enthat			Entropy, k/kg-K		
		$\begin{gathered} \text { Sat } \\ \substack{\text { Liquid } \\ v_{f}} \end{gathered}$	$\begin{gathered} \text { Sat. } \\ \begin{array}{c} \text { Sapour } \\ v_{g} \end{array} \end{gathered}$	$\begin{gathered} \text { Sat } \\ \substack{\text { Siquid } \\ u_{f}} \end{gathered}$	$\begin{gathered} \text { Evap. } \\ u_{f g} \end{gathered}$	$\begin{gathered} \text { Sat } \\ \text { Vapour }^{\prime} \\ u_{8} \end{gathered}$	$\begin{gathered} \text { Sat } \\ \text { Liquid } \\ h_{f} \end{gathered}$	$\begin{gathered} \text { Evap, } \\ h_{f(g} \end{gathered}$	$\begin{gathered} \text { Sat. } \\ \left.\begin{array}{c} \text { Vapour } \\ h_{g} \end{array}\right) \end{gathered}$	$\begin{gathered} \text { Sat } \\ \substack{\text { Liquid } \\ s_{\mathrm{f}}} \end{gathered}$	$\underset{s_{\mathrm{fg}}}{\mathrm{Evap}^{2}}$	$\begin{gathered} \text { Sat. } \\ \substack{\text { Vapour } \\ s_{g}} \end{gathered}$
0.275	130.60	0.001070	0.6573	548.57	1992.0	2540.5	548.87	2172.4	2721.3	1.6407	5.3801	7.0208
0.300	133:55	0.001073	0.6058	56173	1982.4	2543.6	561.45	2163.9	2725.3	1.6717	5.3201	6.9918
0.325	13630	0.001076	0.5620	572.88	1973.5	2546.3	573:23	2155.8	2729.0	1.7005	5.2646	6.9651
0.350	138.88	0.001079	$0: 5243$	583.93	1965.0	2548.9	584.31	2148.1	2732.4	1.7274	5.2130	6.940
0.375	141:32	0.001081	0.4914	594.38	1956.9	2255.13	594.79	2140.8	2735.6	1.7527	5.1647	6.9174
0.40	143.63	0.001084	0.4625	604.29	1949.3	2553.6	604/73	2133.8	2738.5	1.776	5.1193	6.8958
0.45	147.93	0.001088	0.4140	622.75	1934.9	2557.6	623.24	2120.7	2743.9	1.8206	5.0359	6.8565
0.50	151.86	0.001093	$0: 3749$	639.66	1921.6	2561.2	640.21	2108.5	2748.7	1.8606	4.9606	6.8212
0.55	155:48	0.001097	0.3427	655.30	1909.2	2564.3	655.91	2097.0	2752.9	1:8972	4.8920	6.789
0.60	158.85	0.001101	$0: 3157$	669.88	1897.5	2567.4	670:54	2086.3	2756.8	1.9311	4.8289	6.760
0.65	162:01	$0: 001104$	0.2927	683:55	1886.5	2570.3	684.26	2076.0	2760.3	1.9627	4.7704	6.7330
0:70	164.97	0.001108	$0: 2729$	696.43	1876.1	2572.5	697:20	2066.3	2763.5	1.9922	4.7158	6.7080
0.75	167.97	0.001111	0.2556	708:62	1866.1	2574.7	709.45	2057.0	2766.4	2.0199	4.6647	6.6846
0.80	170.43	0,001115	0.2404	720.20	1856.6	2576.8	72110	2048.0	2769.1	2.0461	4.6166	6.6627
0.85	172.96	0.001118	0.2270	731:25	1847.4	2578.7	732:20	2039.4	2771.6	2.0709	4.5711	6.6421
0.90	175.38	0,001121	0.2150	741.81	1838.7	2580.5	742:82	2031.1	2773.9	2.0946	4.5280	6.6225
0.95	177.69	0.001124	0.2042	7519.94	1830.2	2582.1	753.00	2023.1	2776.1	2.1171	4.4869	6.6040
1.00	179.91	0.00\%127	0.19444	761.67	1822.0	2583.6	762.79	2015.3	2778.1	2.1386	4.4478	6.5864
1.10	184:09	0.001133	0.17753	780.08	1806.3	2686.4	78132	2000.4	2781.7	2.1791	4.3744	6.5535
1.20	187.99	0.001139	0.16333	797.27	1791.6	2588.8	798.64	1986.2	2784.8	2.2165	4.3067	6.5233
1.30	191.64	0,001144	0.15125	813.42	1777.5	2590.9	814.91	1972.7	2787.6	2.2514	4.2438	6.4953
1.40	195,07	0.001149	0.14084	828.68	1764.1	2592.8	830.29	1959.7	2790.0	2.2842	4.1850	6.4692
1.50	198.32	0.0001154	0.13177	843.14	1751.3	2594.5	844.87	19473	2792.1	2.3150	4.2198	6.4448
1.75	205.76	0.001166	0.11349	876.44	1721.4	2597.8	878.48	1918.0	2796.4	2.3851	4.0044	6.3895
2.00	212.42	0.001177	0.09963	906.42	1693.8	2600.3	908.77	1890.7	2799.5	2.4473	3.8935	6.3408
2.25	218.45	0.001187	0.08875	933.81	1668.2	2602.0	936.48	1865.2	2801.7	2.5034	3.7938	6.29

4. (a) A truncated cone has top and bottom diameters of 10 cm and 20 cm respectively, and a height of 10 cm . Calculate the shape factor between the top surface and the side, and also the shape factor between the side and itself. Use the figure showing the radiation shape factor for radiation between two parallel coaxial disks:

(b) A Francis turbine supplied through an 8.0 m diameter penstock has the following particulars:

Output power $=65000 \mathrm{~kW}$
Speed $=150$ r.p.m .
Hydraulic efficiency $=90 \%$
Flow rate $=120 \mathrm{~m}^{3} / \mathrm{s}$
Mean diameter of turbine at entry $=5 \mathrm{~m}$
Mean blade height at entry $=1.5 \mathrm{~m}$
Entry diameter of draft tube $=4.5 \mathrm{~m}$
Velocity in tailrace $=2.5 \mathrm{~m} / \mathrm{s}$
The static pressure head in the penstock measured just before entry to the runner is 60 m . The point of measurement is 3.2 m above the level of the tailrace. The loss in the draft tube is equivalent to 30% of the velocity head at entry to it. The exit plane of the runner is 2 m above the tailrace and the flow leaves the runner without swirl. Calculate:
(i) The overall efficiency
(ii) The direction of flow relative to the runner at inlet
(iii) The pressure head at entry to draft tube
(c) Two containers are connected with a pipe having a closed valve. One container contains a 5 kg mixture of $62.5 \% \mathrm{CO}_{2}$ and $37.5 \% \mathrm{O}_{2}$ on a mole basis at $30^{\circ} \mathrm{Cand} 125 \mathrm{kPa}$. The second container contains 10 kg of N_{2} at $15^{\circ} \mathrm{C}$ and 200 kPa .

The valve in the pipe is opened and gases are allowed to mix. During themixing process, 100 kJ of heat energy is supplied to the combined tank. Determine the volume of the mixture and write an energy balance equation.
[Required property tables are attached]
[20 Marks]

Molar mass, gas constant, and critical-point properties

Substance	Formula	Molar mass, $M \mathrm{~kg} / \mathrm{kmol}$	Gas constant, $R \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}^{*}$	Critical-point properties		
				Temperature, K	Pressure, MPa	Volume, $\mathrm{m}^{3} / \mathrm{kmol}$
Air	-	28.97	0.2870	132.5	3.77	
Ammonia	NH_{3}	17.03	0.4882	405.5	11.28	0.0883
Argon	Ar	39.948	0.2081	151	11.28 4.86	0.0749
Berzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78.115	0.1064	562	4.92	0.2603
Bromine	Br_{2}	159.808	0.0520	584	10.34	0.1355
n-Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	58.124	0.1430	425.2	3.80	0.2547
Carbon dioxide	CO_{2}	44.01	0.1889	304.2	7.39	0.0943
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930
Carbon tetrachloride	CCl_{4}	153.82	0.05405	556.4	4.56	0.2759
Chiorine	CH_{2}	70.906 119.38	0.1173	417.	7.71	0.1242
Dichlorodifluoromethane (R-12)	CHCl_{3}	119.38 120.91	0.06964	536.6	5.47	0.2403
Dichlorofluoromethane (R-21)	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	120.91 102.92	0.06876	384.7	4.01	0.2179
Ethane	$\mathrm{C}_{2} \mathrm{H}$	30.070	0.276	451.7 305.5	5.17	0.1973
Ethyl alcohol	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}$	46.07	0.1805	05.5	6.38	0.1480
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	28.054	0.2964	282.4	6.38 5.12	0.1673 0.1242
Helium	He	4.003	2.0769	5.3	0.23	0.0578
n-Hexane	$\mathrm{C}_{6} \mathrm{H}_{34}$	86.179	0.09647	507.9	3.03	0.3677
Hydrogen (normal)	H_{2}	2.016	4.1240	33.3	1.30	0.0649
Krypton Methane	$\mathrm{Kr}^{\mathrm{CH}}$	83.80	0.09921	209.4	5.50	0.0924
Methane Methyl alcohol	CH_{4}	16.043	0.5182	191.1	4.64	0.0993
Methyl chloride	$\mathrm{CH}_{3} \mathrm{OH}$ $\mathrm{CH}_{3} \mathrm{Cl}$	32.042 50.488	0.2595	513.2	7.95	0.1180
Neon	Ne	50.488 20.183	0.1647 0.4119	416.3 44.5	6.68	0.1430
Nitrogen	N_{2}	28.013	0.4119 0.2968	126	2.73	0.0417
Nitrous oxide	$\mathrm{N}_{2} \mathrm{O}$	44.013	0.1889	126.2 309.7	3.39 7.27	0.0899 0.0961
Oxygen	O_{2}	31.999	0.2598	154.8	5.08	0.0780
Propane	$\mathrm{C}_{3} \mathrm{H}_{3}$	44.097	0.1885	370	4.26	0.1998
Propylene	$\mathrm{C}_{3} \mathrm{H}_{6}$	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO_{2}	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{~F}$	102.03 137.37	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11) Water	$\mathrm{CCl}_{3} \mathrm{~F}$ $\mathrm{H}_{2} \mathrm{O}$	137.37	0.06052	471.2	4.38	0.2478
Water Xenon	$\mathrm{H}_{2} \mathrm{O}$	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

 and M is the molar mase.
loeal-gas specific heats of various common gases

Gas	Formula	Gas constant, R $\mathrm{kl} / \mathrm{kg} \cdot \mathrm{K}$	C, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	c $\mathrm{k} / \mathrm{kg} \cdot \mathrm{K}$	k
Air	-	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_{2}	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	0.2765	1.7662	1.4897	1.186
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_{2}	4.1240	14.307	10.183	1.405
Methane	CH_{4}	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_{2}	0.2968	1.039	0.743	1.400
Octane	$\mathrm{C}_{5} \mathrm{H}_{28}$	0.0729	1.7113	1.6385	1.044
Oxygen	O_{2}	0.2598	0.918	0.658	1.395
Propane	$\mathrm{C}_{3} \mathrm{H}_{3}$	0.1885	1.6794	1.4909	1.126
Steam	$\mathrm{H}_{2} \mathrm{O}$	0.4615	1.8723	1.4108	1.327

Note : The wnit $\mathbf{k} J / / \mathbf{k} \mathbf{K}$ is equivalent to $\mathbf{k J} / \mathbf{k g}{ }^{*} \mathrm{C}$.

SECTION-B

5. (a) A six-cylinder SI engine operates on a four-stroke cycle. The bore of each cylinder is 75 mm and the stroke is 100 mm . The clearance volume percylinder is 60 cc . At a speed of $4000 \mathrm{r} . \mathrm{p} . \mathrm{m}$., the fuel consumption is $18 \mathrm{~kg} / \mathrm{h}$ and the torque developed is $140 \mathrm{~N}-\mathrm{m}$. Calculate the
(i) brake thermal efficiency;
(ii) relative efficiency on the basis of brake power.

The calorific value of the fuel can be taken as $45000 \mathrm{~kJ} / \mathrm{kg}$.
(b) Draw the T-s and h-s diagrams for steam jet refrigeration system and write the expressions for the following
(i) Nozzle efficiency
(ii) Entrainment efficiency
(iii) Compression efficiency
(c) Briefly describe a natural draught cooling tower. Explain why it is hyperbolic inshape.
(d) Distinguish among the following
(i) Renewable energy
(ii) Green energy
(iii) Clean energy

Also, mention the relative environmental effects of the above.
(e) Describe the emission norms for Indian vehicles if they have to comply withBharat Stage (BS) Emission Standards-VI. Mention the devices and technologyintroduced to meet the BS-VI norms.
[12 Marks]
6. (a) A gasoline engine has a stroke volume of $0.002 \mathrm{~m}^{3}$ and a compression ratio of 6 . At the end of the compression stroke, the pressure is 10 bar and the temperature is $400^{\circ} \mathrm{C}$. Ignition is set so that the pressure rises along a straight line during combustion and attains its highest value of 30 bar after the piston has travelled $(1 / 40)$ of the stroke. The charge consists of a gasoline-air mixture in proportion of 1: 18 by mass. Calculate the heat lost per kg of charge during combustion. Take $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, calorific value of the fuel $=45 \mathrm{MJ} / \mathrm{kg}, \mathrm{C}_{\mathrm{p}}=1 \mathrm{~kJ} / \mathrm{kg}$.
(b) A room is designed for air conditioning as per the following data

Room sensible heat gain $=30 \mathrm{~kW}$
Room latent heat gain $=10 \mathrm{~kW}$
Inside design conditions are : $25^{\circ} \mathrm{C}$ DBT and $50 \% \mathrm{RH}$
Outside conditions are : $40^{\circ} \mathrm{C}$ DBT and $27^{\circ} \mathrm{C}$ WBT
Bypass factor of the cooling coil $=0.10$
The return air from the space is mixed with the outside air before entering the cooling coil in the ratio of 4: 1 by weight. Determine the following:
(i) Apparatus dew point
(ii) Condition of air leaving the cooling coil
(iii) Quantity of dehumidified air
(iv) Mass of ventilation air
(v) Volume flow rate of fresh air
(vi) Total refrigeration load
[Psychrometric chart is attached]

Ref. Point for SHF is $25^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$
(c) The angles at inlet and discharge of the blading of a 50% reaction turbine are 35° and 20° respectively. The speed of rotation is 1500 r.p.m. and at a particular stage, the mean ring diameter is 0.67 m and the steam condition is at 1.5 bar, 0.96 dry. Determine-
(i) the required height of blading to pass $3.6 \mathrm{~kg} / \mathrm{s}$ of steam;
(ii) the power developed by the ring.
[Saturated steam table is attached at the end]
7. (a) The following data refer to a boiler unit consisting of an economizer, a boiler and a superheater:

Mass of water evaporated per hour $=5940 \mathrm{~kg}$
Mass of coal burnt per hour $=675 \mathrm{~kg}$
Lower calorific value of coal $=31600 \mathrm{~kJ} / \mathrm{kg}$
Pressure of steam at boiler stop valve $=14$ bar
Temperature of feedwater entering economizer $=32^{\circ} \mathrm{C}$
Temperature of feedwater leaving economizer $=115^{\circ} \mathrm{C}$
Dryness fraction of steam leaving boiler and entering superheater $=0.96$
Temperature of steam leaving superheater $=260^{\circ} \mathrm{C}$
Specific heat of superheater steam $=2.3 \mathrm{~kJ} / \mathrm{kgK}$
Determine the following:
(i) Percentage of heat in coal utilized in economizer, boiler and superheater
(ii) Overall efficiency of the boiler unit

Assume specific heat of water $=4.187 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
[Saturated steam table is attached at the end]
(b) (i) Explain the various factors affecting anaerobic digestion process. Why do anaerobic microbes normally grow at a much lower rate than aerobicbacteria?
(ii) A family biogas plant is required to be designed to utilize the cow dung of five cows. The hydraulic retention time is 30 days. The temperature of the digester is to be maintained at $30^{\circ} \mathrm{C}$. The dry matter consumption per day is 2 kg . The biogas yield is $0.25 \mathrm{~m}^{3} / \mathrm{kg}$. The efficiency of the burner is 60%. The heat of combustion of methane is $26 \mathrm{MJ} / \mathrm{m}^{3}$. The methaneproportion is 70%. The density of feedstock material may be taken as $50 \mathrm{~kg} / \mathrm{m}^{3}$. Find (1) the volume of biogas digester and (2) its thermal power.
[10 + 10 Marks]
(c) (i) A refrigeration system with R-22 as refrigerant operates with an evaporating temperature of $-10^{\circ} \mathrm{C}$ and a condensing temperature of $35^{\circ} \mathrm{C}$. If the vapour leaves the evaporator saturated and is compressed isentropically,what is the COP of the cycle--(1) if saturated liquid enters the expansion device and (2) if the refrigerant entering the expansion device is with 10% vapour?
[R -22 refrigerant chart is attached]

(ii) What is a liquid-to-suction heat exchanger in refrigeration and air conditioning? Illustrate the benefits of liquid-to-suction heat exchanger.
[10 Marks]
8. (a) (i) Describe the working principle of hydrogen fuel cell. Also, comment on the reversible energy conversion efficiency of fuel cells.
(ii) A flat plate solar collector measuring $2 \mathrm{~m} \times 1.2 \mathrm{mhas}$ a loss resistance of $0.13 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$ and a plate transfer efficiency of 0.85 . The glass cover has transmittance of 0.9 and the absorptance of the plate is also 0.9 . Water enters at a temperature of $35^{\circ} \mathrm{C}$. The ambient temperature is $20^{\circ} \mathrm{C}$ and the irradiance in the plane of the collector is $750 \mathrm{~W} / \mathrm{m}^{2}$. Calculate the flow rate needed to produce a temperature rise of $10^{\circ} \mathrm{C}$. The density of water and its specific heat at mean film temperature may be taken as $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $4.2 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$ respectively.
[10 Marks]
(b) A two-pass surface condenser is required to handle the exhaust from a turbine developing 15 MW with specific steam consumption of $5 \mathrm{~kg} / \mathrm{kWh}$. The condenser vacuum is 660 mm of mercury when the barometer reads 760 mm of mercury. The mean velocity of water is $3 \mathrm{~m} / \mathrm{s}$ and the water inlet temperature is $24^{\circ} \mathrm{C}$. The condensate is saturated water and the outlet temperature of cooling water is $4^{\circ} \mathrm{C}$ less than the condensate temperature. The quality of exhaust steam is 0.9 dry. The overall heat transfer coefficient based on outer area of tubes is $4000 \mathrm{~W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}$. The water tubes are 38.4 mm in outer diameter and 29.6 mm in inner diameter. Calculate the following:
(i) Mass of cooling water circulated in $\mathrm{kg} / \mathrm{min}$
(ii) Condenser surface area
(iii) Number of tubes required per pass
(iv) Tube length

Assume atmospheric pressure to be 760 mm of mercury or 1.01325 bar and specific heat of water $=4.187 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
[Saturated steam table is attached at the end]
(c) The total pressure maintained in an Electrolux refrigerator is 15 bar. Thetemperature obtained in the evaporator is $-15^{\circ} \mathrm{C}$. The quantities of heatsupplied to the generator are
(i) 420 kJ to dissociate one kg of vapourand
(ii) $1460 \mathrm{~kJ} / \mathrm{kg}$ for increasing the total enthalpy of NH_{3}. The enthalpy of NH_{3} entering the evaporator is $330 \mathrm{~kJ} / \mathrm{kg}$. Take the following properties of NH_{3} at $-15^{\circ} \mathrm{C}$:

Pressure $=2.45$ bar
Enthalpy of vapour $=1666 \mathrm{~kJ} / \mathrm{kg}$
Specific volume $=0.5 \mathrm{~m}^{3} / \mathrm{kg}$
The hydrogen enters the evaporator at $25^{\circ} \mathrm{C}$
Gas constant for $\mathrm{H}_{2}=4.218 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{p}}\left(\right.$ for $\left.\mathrm{H}_{2}\right)=12.77 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$
Find the COP of the system assuming NH_{3} leaves the evaporator in saturated condition.
[20 Marks]

Saturated Steam Pressure Table

Saturated Steam Pressure Table

$\begin{gathered} p \\ \text { bar } \end{gathered}$	${ }^{\circ} \mathrm{C}$	$\begin{gathered} v_{\mathrm{f}} \\ \mathrm{~m}^{3} / \mathrm{kg} \end{gathered}$	$\begin{gathered} v_{g} \\ \mathrm{~m}^{3} / \mathrm{kg} \end{gathered}$	h_{f} $\mathrm{kJ} / \mathrm{kg}$	h_{g} $\mathrm{kJ} / \mathrm{kg}$	$\begin{gathered} h_{f g} \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\begin{gathered} s_{f} \\ \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \end{gathered}$	$\begin{gathered} 5_{8}^{8} \\ \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \end{gathered}$
20	120.23	. 0010008	88544	504.70	27043	2201.6		
2.1	121.78	. 0010623	84500	511.28	2708.5	2201.6	1.5301	7.1268
22	123.27	. 0010615	.80084	517.62	2710.6	2193.0	1.5627	7.1106
2.3	124.71	.0010650	.77681	523.73	2712.6	2188.0	1.6827	7.0049 7.0800
2.4	125.99	.00100e3	.74645	529.63	2714.5	2184	1.5929	7.08067
2.5	127.43	.0010675	71844	535.34	27164	2181.0	1.6071	
2.8	128.73	.0010888	. 00251	540.87	2718.2	2177.3	1.6209	$\begin{aligned} & 7.0620 \\ & 7039 \end{aligned}$
2.7	129.98	.0010700	. 66844	546.24	2718.9	2173.6	1.6209 1.6342	7.0389 7.0288
2.8	131.20	.0010712	54604	851.44	2721.5	2170.1	1.6471	7.0262
2.9	132.39	. 0010724	. 62513	\$56.50	2723.1	2168.8	1.6471	7.0140 70023
3.0	133.54	. 0010735	. 60565	561.43	2724.7			
3.1	134.68	. 0010746	. 5872	868.23	2726.1	2163.2	1.6716 1.684	6.9809 8.9709
3.2	135.75	. 0010787	. 56090	870.90	2727.6	2158.7	1.0048	6.979
3.3	13688	. 0010768	. 55376	575.46	27290	2153.5	1.7000	6.9589
3.4	137.86	.0010779	. 53846	579.92	2730.3	2150.4	1.7168	8.9499
3.5	138.87	. 0010789	. 52400	58.27	2731.6	2147.4	1.7273	
3.6	139.80	. 0010799	. 51032	588.53	2732.9	2144.4	1.7376	6.9392
3.7	140.83	. 0010809	49736	502.69	2734.1	2141.4	1.7476	6.9205
3.8	141.78	. 0010619	. 48505	506.76	2735.3	2138.6	1.7574	6.9116
3.9	142.71	. 0010629	47336	600.76	2736.5	2135.7	1.7670	6.9028
4.0	143.62	.0010839	40222	604.67	2737.6	2133.0	1.7764	
4.1	144.52	. 0010348	45162	608.51	2738.7	21302	1.7856	6.8960
4.2	145.39	. 0010858	. 415150	612.27	2739.8	2187.5	1.7945	6.8779
4.3	148.25	. 0010867	13184	615.97	2740.9	2124.9	1.8033	8.8700
4.4	147.09	. 0010876	. 22260	618.60	2741.9	2122.3	1.8120	8.8623
4.5	147.92	.0010685	. 61375	623.16	2742.9	2119.7		
4.6	148.73	. 0010804	40528	826.67	2743.9	2117.2	1.8287	6.8847
4.7	149.53	. 0010003	. 39716	630.11	2744	2114.7	1.838	6.8401
4.8	150.31	. 0010911	38936	633.50	2745.7	21122	1.8448	6.8330
4.9	151.08	. 0010020	.38188	636.83	2746.6	21098	1.5227	$\begin{aligned} & 68330 \\ & 6.8200 \end{aligned}$
5.0	151.84	. 0010928	. 37468	640.12			1.8004	6.8192
5.2	153.33	. 00109095	. 36108	646.53	2749.3	2102.7	1.8754	6.8059
5.4	154.76	. 0010961	34846	652.76	2750.9	2098.1	1.8800	6.7932
5.6	156.16	. 0010977	. 33671	658.81	2752.5	2003.7	1.9040	6.7809
5.8	157.52	. 0010093	. 32574	664.69	2754.0	2069.3	1.9176	$\begin{aligned} & 6.7809 \\ & 6.7600 \end{aligned}$
6.0	158.84	. 0011009	31847	670.42	2755.5			6.7575
62	160.12	. 0011024	30885	676.01	2756.9	2080.9	1.9427	6.7464
64	161.38	. 0011039	29681	631.46	2758.2	2076.8	1.9662	6.7357
6.6	162.60	. 0011063	28830	688.78	2759.5	2072.7	1.9084	6.7357 6.722
68	163.79	. 0011088	28027	601.98	2760.8	2068.8	1.1 .9802	$\begin{aligned} & 6.7262 \\ & 6.7150 \end{aligned}$
7.0	164.96	.0011082	. 27268				1.9918	6.7062
7.2	166.10	. 0011098	. 28550	702.03	2763.2	2061.1	2.0031	6.6966
74	167.21	.0011110	. 25870	708.90	2764	2037.4	2.1041	6.6862
7.6	168.30	.0011123	. 25224	711.67	2765.4	2063.7	2.0249	6.5771
7.8	160.37	.0011137	. 24610	716.35	2766.4	2050.1	2.0354	6.6883
80	170.61	. 0011150	24026	720.94	2767.5			
82	171.44	. 0011163	23409	725.43	2768.5	2043.0	2.0467 2.0568	6.6506 6.6511
8.4	172.45	. 0011176	22938	729.85	2769.4	2039.6	2.0657	6.6429
8.6	173.44	.0011188	. 22430	734.19	2770.4	2008.2	2.0657	6.6429 6.6348
8.8	174.41	. 0011201	. 21945	738.45	2771.3	2002.8	2.0763 2.0848	6.6348 6.6260
9.0	175.36	.0011213	. 21481	742.64				
9.2	176.29	.0011225	. 21006	746.76	2772.1	$\begin{aligned} & 2029.5 \\ & 2026.2 \end{aligned}$	2.0941 2.1093	6.6182
9.4	177.21	.0011238	.20610	750.82	2773.8	2023.0	2.1122	6.6116 6.6012
9.6	178.12	. 0011250	.20201	754.81	2774.6	2018.8	2.1210	6.6032
98	179.01	.0011262	. 19807	758.74	2775.4	2016.7	2.1297	6.5805
10.0 10.5	179.88 18208	. 0011274	. 19429	762.61	2776.2	2013.6	2.1382	6.5828
10.6 11.0	182.02 184.07	. 0011308	. 18545	772.03	2778.0	2005.9	2.1588	6.5659
11.5	18.07	. 0011331	.17738	781.12	2779.7	1908.5	2.1786	6.5497
12.0	187.96	. 0011359	. 16999	789.92	2781.3	19013	2.1977	6.5342
12.5	189.81	. 00113812	-16320	796.43	2782.7	1384.3	2.2161	6.5194
13.0	191.61	. 0011433	.15693	806.69 814.70	2784.1	1977.4	2.2338	6.5051
13.5	193.35	. 0011464	. 14574	814.70 822.49	27854	1970.7	2.2510	6.4913
14.0	195.04	. 0011489	. 14072	822.49 830.07	27866 27878	1964.2	2.2576	6.4760
14.5	196.69	. 0011514	. 13604	897.46	2787.8 2788.9	1957.7 1951.4	2.2837 2.2909	6.4651 6.4526

Saturated Steam Pressure Table

$\begin{gathered} p \\ \text { bar } \end{gathered}$	${ }^{\circ} \mathrm{C}$	$\begin{gathered} v_{f} \\ m^{3} / \mathrm{kg} \end{gathered}$	$\begin{gathered} v_{g} \\ \mathrm{~m}^{3} / \mathrm{kg} \end{gathered}$	$\begin{gathered} h_{f} \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\begin{gathered} h_{\mathrm{g}} \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\begin{gathered} h_{\mathrm{fg}} \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\begin{gathered} s_{f} \\ \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \end{gathered}$	$\stackrel{s_{\mathrm{g}}}{\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}}$
15.0	198.29	. 0011539	. 13166	844.65	2789.9	1945.2	23145	6.4406
15.5	199.85	.0011563	. 12785	851.60	2790.8	1939.2	23292	6.428
16.0	201.37	.0011588	. 12369	858.65	2791.7	19032	2.3436	6.4175
16.5	202.86	. 0011610	, 12005	865.28	2792.6	1927.3	2.3576	6.4065
17.0	204.31	. 001163	. 1162	871.84	2793.4	1921.5	2.3713	6.3957
17.5	206.72	.0011656	. 11338	878.27	27941	19159	2.3846	63853
18.0	207.11	. 0011678	. 11032	884.57	27948	19109	2.3976	6.3751
18.5	208.47	. 0011701	. 10741	800.75	2796.5	19047	2.4103	6.3651
19.0	200.80	. 0011723	. 10485	896.81	2796.1	18993	2.4228	6.3584
19.5	211.10	. 0011744	. 10203	902.75	2796.7	1883.9	2.4369	6.3459
20.0	212.37	.0011766	. 090953	908.59	2797.2	1888.6	2.4689	6.3367
20.5	213.63	. 0011787	. 097158	914.32	2797.7	18834	2.4585	6.3276
21.0	21485	. 0011809	. 094800	919.96	2798.2	1878.2	2.4700	6.3187
21.5	216.06	.0011830	.002723	925.50	2798.6	1873.1	2.4812	6.3100
22.0	21724	. 0011850	. 090052	930.95	2799.1	1868.1	2.4922	6.3015
22.5	218.41	.0011871	. 088660	936.32	2790.4	1863.1	2.5030	6.2931
23.0	219.55	. 0011892	. 086769	941.00	27998	1858.2	2.5136	62849
23.5	220.68	. 0011912	064048	946.80	2800.1	1853.3	2.5241	62769
24.0	221.78	.0011932	. 083190	961.93	2800.4	1848.5	2.5343	63600
24.5	222.87	.0011962	.081520	956.98	2800.7	1843.7	2.514	6.2612
25.0	223.94	.0011972	. 079805	961.96	28009	1839.0	2.5543	6.2536
25.5	225.00	. 0011901	. 078352	906.87	2801.2	1834.3	2.5640	6.2461
26.0	226.04	. 0012011	.076856	971.72	2801.4	1829.6	2.5736	6.2387
26.5	227.06	. 0012081	.075615	976.50	2801.8	1825.1	2.5831	62315
27.0	228.07	. 0012050	. 074025	981.22	2801.7	1820.5	2.5924	6.2244
27.5	229.07	.0012060	. 072884	985.88	2801.9	1816.0	2.8016	6.2173
28.0	230.05	. 0012088	.071389	900.48	28020	1811.5	2.6108	6.2104
28.5	231.01	. 0012107	. 070138	995.03	2802.1	1807.1	2.6196	6.2036 6.1909
29.0	231.97	. 0012126	. 088928	909.52	2802.2	1802.6	2.6283	6.1969 6.1903
29.5	232.91	. 0012145	. 067758	1003.96	2802.2	1798.3	2.6370	6,1903
30.0	233.84	.0012163	.060626	1003.35	2802.3	1793.9	2.8455	6.1837
31.0	235.67	. 0012200	.064467	1016.99	2802.3	1785.4	2.6623	6.1709
32.0	237.45	.0012237	. 062439	1095.43	2802.3	17769	2.6786	6.1585
33.0	239.18	. 0012274	.060629	1093.70	2502.3	1768.6	2.8945	6.1463
34.0	240.88	. 0012310	. 068728	1041.81	2802.1	1760.3	2.7101	6.1344
35.0	242.54	. 0012345	. 057025	1049.76	2802.0	1752.2	2.7253	6.1228
36.0	24.16	. 0012381	. 065415	1067.56	2801.7	17442	2.7401	6.1115
37.0	245.75	. 0012416	. 063881	1065.21	28014	17362	2.7547	6.1004
38.0	247.31	. 0012451	. 062438	1072.74	2801.1	1728.4	2.7689	6.0696
39.0	24884	.0012486	. 051061	1080.13	2800.8	1720.6	27829	6.0769
40.0	250.33	. 0012521	. 049749	1087.40	2800.3	1712.9	2.7965	6.0685
40.1	251.80	. 0012565	. 048500	1004.56	2799.9	1705.3	2.8009	6.0583
42.0	253.24	. 0012589	. 047307	110160	2790.4	1697.8	2.8231	6.0482 6.0383
43.0	254.66	. 0012623	.046168	110854	2798.9	1690.3	2.8360	6.0383 6.0285
44.0	256.05	. 0012657	. 045079	1115.38	2798.3	1682.9	2.8487	6.0286
45.0	257.41	. 0012691	. 044007	1122.11	2797.7	1675.6	2.8612	6.0191
48.0	258.75	. 0012725	. 043038	1128.76	2797.0	16883	2.8735	6.0097
47.0	260.07	. 0012758	. 042081	1135.31	2796.4	1681.1	2.8855	8.0004
48.0	261.37	. 0012792	. 041161	1161.78	2795.7	1653.9	2.8974	5.9913
42.0	262.65	. 0012825	. 040278	1148.16	2794.9	16468	2.9091	5.9824
50.0	263.91	.0012858	. 039429	1154.47	2794.2	1639.7	2.9206	5.9735
51.0	205.15	. 0012891	. 038611	1160.69	2793.4	1632.7	2.9313	59648
52.0	206.37	. 0012924	. 037824	1166.85	2792.6	1625.7 16188	2.9431	5.9561 59476
53.0	257.58	. 0012957	. 037066	1172.93	2791.7	1618.8	2.9641	5.9476 59392
54.0	268.76	. 0012990	. 036334	1178.94	2790.8	1611.9	2.9650	5.9392
58.0	269.90	. 0013023	. 035628	118489	2780.9	1605.0	2.9757	5.9309
56.0	27.09	. 0013066	. 03496	1190.77	2789.0	1598.2	2.9863	5.9227
57.0	272.28	. 0013069	. 034288	1196.59	27880	1591.4	2.9968	5.9146
58.0	273.35	. 0013121	. 033651	1202.35	2787.0	1584.7	3.0071	5.9066 5.8998
50.0	274.46	. 0013154	. 033034	1208.05	2786.0	1578.0	3.0172	5.8986
60.0	275.55	.0013187	. 032438	1213.69	2785.0	1571.3	3.0273	5.8908 5.8830
61.0	276.63	. 0013219	. 031800	1219.28	2784.0	1564.7	3.0372	5.8830
62.0	277.70	. 0013252	. 031300	1224.82	2782.9	15588	3.0471	5.8763
63.0	278.75	. 0013285	. 030757	1230.31	2781.8	1561.5	3.0668	58677 58801
64.0	279.79	. 0013317	030230	1235.75	2780.6	1544.9	3.0664	5.8601

