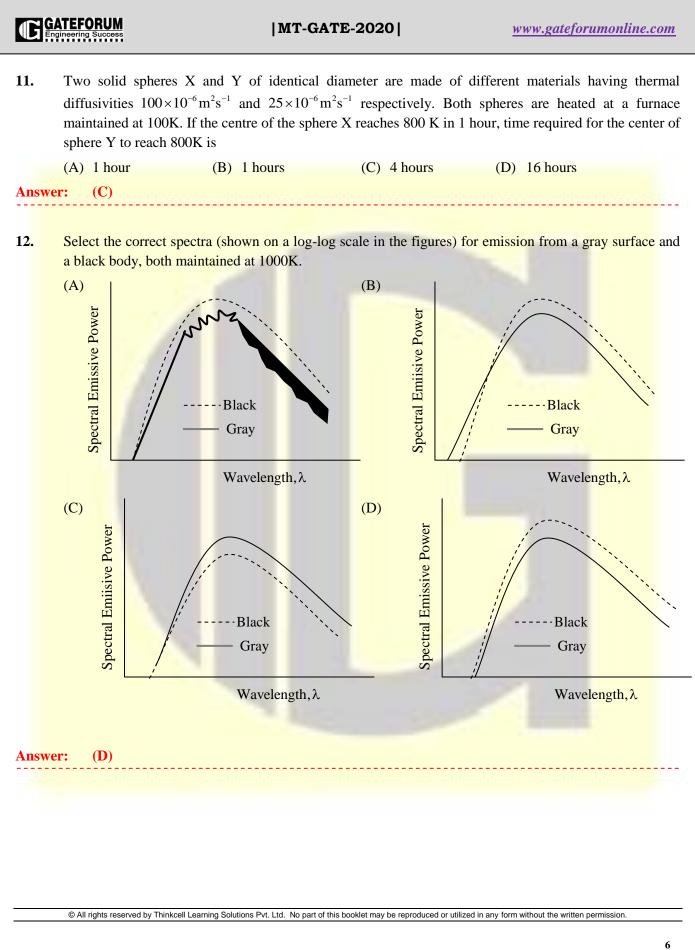
C Engineering Success | MT-

|MT-GATE-2020|

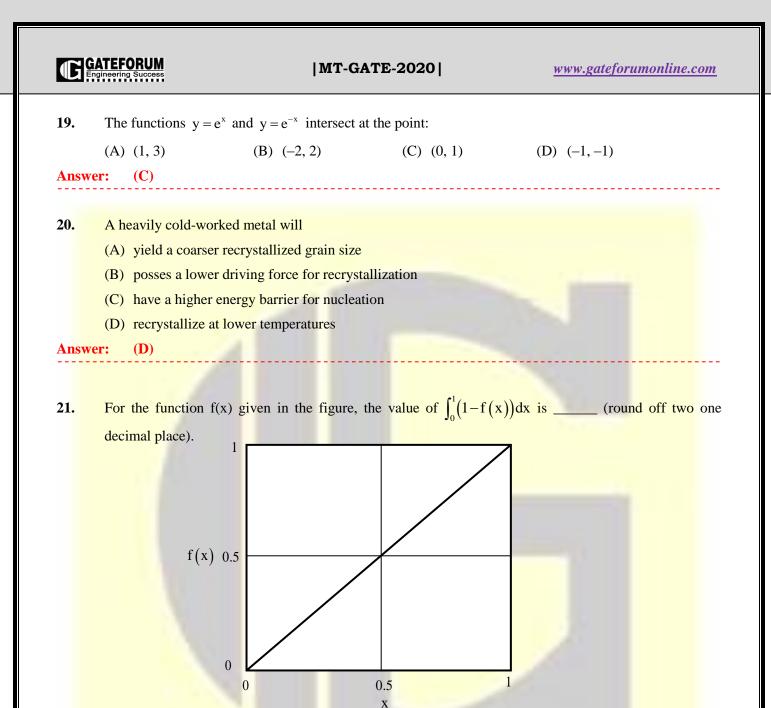
www.gateforumonline.com

GENERAL APTITUDE

Q. No. 1 to 5 Carry One Mark Each


1.					
	under y for $x \in [1, 4]$ i	s			
	(A) 6	(B) 3	(C) 4	(D) 1	
Ans	wer: (A)				
2.				tears to deceive people	2.
	(A) crocodile	(B) fox's	(C) crocodile	e's (D) fox	
Ans	wer: (A)				
3.				ⁿ and $y = x^{1/m}$ properly in	the interval
	$0 \le x \le 1$. for integer v	values of m, where m	> 1.		
	(A) 1 x ^{1/m} x ^m		(B) 1	x ^m x ^{1/m} 1 x	
	(C) y 1 x ^{1/m}	x^{m}	(D) y 1	x ^m x ^{1/m} 1 x	
Ans	wer: (C)				
	© All rights reserved by Thinkcell Le	earning Solutions Pvt. Ltd. No part	of this booklet may be reproduced	or utilized in any form without the written permi	ission.

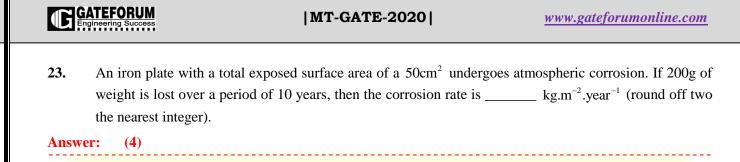
C	GATEFORUM Engineering Success	MT-GATE-2020	www.gateforumonline.com
4.	The sum of the first n term	s in the sequence 8, 88, 888, 8888, is	·
	(A) $\frac{80}{81}(10^n - 1) + \frac{8}{9}n$	(B) $\frac{81}{80}(10^n - 1) +$	$\frac{9}{8}n$
	(C) $\frac{81}{80}(10^n - 1) - \frac{9}{8}n$	(D) $\frac{80}{81}(10^n - 1) - 1$	$\frac{8}{9}$ n
Ans	wer: (D)		
5.	e e e e e e e e e e e e e e e e e e e	mobilisation of funds for a project from a	
	°	amounts through web-based platform in t	x v
		aph, which of the following is correct abou coerced contributions on web-based platfo	
	-	voluntary contributions on web-based plat	
		large contributions on web-based platform	
		unwilling contributions on web-based plat	
Ansy	wer: (B)		
		<u>O. No. 6 to 10 Carry Two Marks Each</u>	
6.	I do not think you know th point.	e case well enough to have opinions. Havi	ng said that, I agree with your other
	What does the phrase "hav	ing said that" mean in t <mark>he given text?</mark>	
	(A) as opposed to what I h	ave said	
	(B) in addition to what I h	ave said	
	(C) contrary to what I hav	e said	
	(D) despite what I have sa	id	
Ans	wer: (D)		
7.	respectively, can be coded		
		3) $\beta\beta$ and $\alpha\alpha$ (C) $\beta\alpha$ and $\beta\beta$	
Ans	wer: (C)		


8.	Select the word that Build: Building::Gro (A) Growth	w:	(C) Grew	(D)	Growed
Ansv	wer: (A)				
9.		vs the data of the student S. The average of success i		-	n an examination for fou
		Performance of S	chools P,Q,R and S		
	800 700 500 500 400 300 200 100 0	Appeared Passo 600 500 280 330 330 4 4 500 500 500 500 500 500 5	700	240 001 S	
	(A) 59.0%	(B) 59.3%	(C) 58.5%	(D)	58.8%
Ansv 10.	(A) more fast	gland fast bowler, is (B) more faster			faster

d/d is. TI (A Answer: 2. TI (A Answer: 3. A (A Answer: 3. A (A 4. A	Q. Note the general solution to the following $\frac{2y}{t^2} + 4 \frac{dy}{dt} + 3y = 0$ $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ The values of λ_1 and λ_2 are: and -3 (B) -3 are (A) The number of independent elastic (B) and (B) 2 (B) slip system consists of a slip plane stem in a FCC copper crystal? (111)[10] (111)[10]	nd –3 (C) of an isotropic mat (C) ne and a slip directi (B)	e Mark Each DE, 1 and -3 erial is: 3	 (D) 1 and 3 (D) 4 he following is NOT a valid slip
d is. TI (A Answer: 2. TI (A Answer: 3. A (A Answer: (A (A	the general solution to the following $\frac{2y}{t^2} + 4\frac{dy}{dt} + 3y = 0$ $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ The values of λ_1 and λ_2 are: and -3 (B) -3 are (A) The number of independent elastic (B) slip system consists of a slip plane stem in a FCC copper crystal? (111)[1 $\overline{10}$] (1 $\overline{11}$][10 $\overline{1}$]	ng homogeneous O nd –3 (C) of an isotropic mat (C) ne and a slip directi (B)	DE, 1 and –3 erial is: 3 on. Which one of t	(D) 4
d is. TI (A Answer: 2. TI (A Answer: 3. A (A Answer: (A (A	$y(t) = c_1 e^{\lambda_1 t} + 3y = 0$ $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ the values of λ_1 and λ_2 are: (A) (B) -3 ar (A) (B) 2 (B) slip system consists of a slip plan stem in a FCC copper crystal? (111)[1 $\overline{10}$] (1 $\overline{11}$][10 $\overline{1}$]	nd –3 (C) of an isotropic mat (C) ne and a slip directi (B)	1 and –3 erial is: 3 on. Which one of t	(D) 4
is. Ti (A Answer: 2. Ti (A Answer: 3. A sy (A (C Answer: 4. A	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ the values of λ_1 and λ_2 are: (A) (A) (B) -3 ar (A) (B) 2 (B) (B) (111)[1 $\overline{10}$] (1 $\overline{11}$][10 $\overline{1}$]	of an isotropic mat (C) ne and a slip directi	erial is: 3 on. Which one of t	(D) 4
Ti (A Answer: 2. Ti (A Answer: 3. A sy (A (C Answer: 4. A	the values of λ_1 and λ_2 are: (A) (B) -3 ar (A) (A) (B) 2 (B) (B) (B) (B) (111)[1 $\overline{10}$] (111)[10 $\overline{1}$]	of an isotropic mat (C) ne and a slip directi	erial is: 3 on. Which one of t	(D) 4
(A Answer: 2. Ti (A Answer: 3. A sy (A (C Answer: 4. A	b) -1 and -3 (B) -3 ar (A) (B) -3 ar (A) (B) 2 (B) (B) (B) (B) (B) (B) (B) (B)	of an isotropic mat (C) ne and a slip directi	erial is: 3 on. Which one of t	(D) 4
Answer: 2. Ti (A Answer: 3. A sy (A (C Answer: 4. A	 (A) (A) (A) (A) (A) (A) (B) (B) (B) (B) (B) (B) (B) (B) (C) (A) (A)	of an isotropic mat (C) ne and a slip directi	erial is: 3 on. Which one of t	(D) 4
2. Ti (A Answer: 3. A sy (A (C Answer: 4. A	te number of independent elastic (B) 2 (B) slip system consists of a slip plan stem in a FCC copper crystal? (111)[110] (111)[101]	(C) ne and a slip directi (B)	3 on. Which one of t	
(A Answer: 3. A sy (A (C Answer: 4. A	(B) 2 (B) slip system consists of a slip plar stem in a FCC copper crystal? (111)[110] (111)[101]	(C) ne and a slip directi (B)	3 on. Which one of t	
(A Answer: 3. A sy (A (C Answer: 4. A	(B) 2 (B) slip system consists of a slip plar stem in a FCC copper crystal? (111)[110] (111)[101]	(C) ne and a slip directi (B)	3 on. Which one of t	
3. A sy (A (C Answer: 4. A	slip system consists of a slip plar stem in a FCC copper crystal?) (111)[110]) (111)[101]	(B)		he following is NOT a valid sli
sy (A (C <mark>Answer:</mark> 4. A	stem in a FCC copper crystal?) (111)[110]) (111)[101]	(B)		he following is NOT a valid sli
(C <mark>Answer:</mark> 4. A) (111)[101]		$(\overline{1}11)[011]$	
<mark>Answer:</mark> 4. A				
4. A		(D)	$(11\overline{1})[101]$	
	(C)			
(<i>A</i>	dielectric material is			
(6) Electrical conductor		Metallic magnet Electrical insulate	or.
(C Answer:) Two coupled electrical conduct(D)	101S (D)		
Answer:	(D)	-		
5. W	hich one of the following process	ses is an example o	f an electrolytic cel	11?
(A) Corrosion of a metal rod in am	bient atmosphere		
(E		-		
(0				
(I	, I	system		
Answer:	(B)			

G	GATEFORUM Engineering Success	MT-GATE-2020	www.gateforumonline.com			
6.	Which one of the following statements regarding selective teaching of a binary alloy is TRUE?					
	(A) The lower atomic weight element is leached.					
	(B) The element having higher diffusivity is leached					
	(C) The more electronegative element is leached					
	(D) The element with lower	density is laeched				
Answ						
7.	In green sand casting, which	one of the following is NOT a part of t	the gating system?			
	(A) Runner (B)	Sprue (C) Riser	(D) Pouring basin			
Ansv	ver: (*)					
8.	For a material to exhibit superlasticity, one of the requirements is:					
	(A) Coarse-grained microstruture					
	(B) High strain-rate sensitiv	ity				
	(C) Low strain-hardening ex	sponent				
	(D) High modulus of elastic	ity				
Answ	ver: (B)					
9.	The dye penetrant test for de	tecting flaws is based on:				
	(A) Magnetism	(B) Sound propa	agation			
	(C) X-ray absorption	(D) Capillary ac	tion			
Ansv	ver: (D)					
10.	When 1 mole of $C_{3}H_{8}$ at 300K is burnt with stoichiometric amount of oxygen at 300K to form CO					
	and H_2O , the adiabatic flame temperature is 5975K. If C_3H_8 is burnt under the same conditions bu					
	with excess oxygen, the adiabatic flame temperature will be					
	(A) Equal to 5975 K irrespective of the amount of excess oxygen					
	(B) Higher than 5975 K irrespective of the amount of excess oxygen					
	(C) Lower than 5975 K irres	spective of the amount of excess oxyge	n			
	(D) Higher or lower than 59	75 K depending on the amount of exce	ss oxygen			
Ansv	ver: (C)					

G	CATEFORUM Engineering Success	MT-GATE-2020	www.gateforumonline.com
13.		-j + k, Y = $-I + 2j + k$ and Z	= i + k, which one of the following
	statements is TRUE?		
	(A) X, Y and Z are mutually per	pendicular	
	(B) X,Y and Z are coplanar		
	-	th the normal to the plane containing	-
	(D) Z makes an angle of 60° wit	h the normal to the plane containing	ng X and Y
Answ	ver: (A)		
14.	Angle between two neighboring t	tetrahedral bonds in Si having a dia	amond cubic structure is:
	(A) 102.5° (B) 109	9.5° (C) 120°	(D) 135.5°
Answ	ver: (B)		
15 <mark>.</mark>	The sequence of precipitation du	ring aging of A1- <mark>4 wt% Cu alloy i</mark>	s:
	(A) GP zone $\rightarrow \theta^n \rightarrow \theta'' \rightarrow \theta$	(B) GP zone \rightarrow	$\theta \rightarrow \theta' \rightarrow \theta''$
	(C) GP zone $\rightarrow \theta' \rightarrow \theta'' \rightarrow \theta$	(D) $\theta'' \to \theta' \to \theta'$	GP zone $\rightarrow \theta$
Answ	7er• (A)		
16.	The indenter used in Rockwell ha	ardness measurements on C scale i	8
101	(A) diamond cone	(B) 10 mm steel	
	(C) diamond pyramid	(D) 1/16-in stee	
Answ			1 0uii
		du	
17.	For the function $y = a^x$, the deriv	vative $\frac{dy}{dx}$ at x = 1 is:	
			(D) aℓna
	(A) 1 (B) a	(D) a^2	(D) atna
Answ	ver: (D)		
10	Constations formant used to much		
18.	Cupola is a furnace used to produ		
	(A) cast irons	(B) plain carbo	
	(C) copper alloys	(D) aluminium	alloys
	ver: (A)		



Answer: (0.5)

22. A component subjected to tensile stress in mechanical device is monitored periodically for cracks by NDT. The NDP technique can only detect craks (both surface and internal) which are larger than 1 mm. Keeping a 10% margin of safety, the maximum allowed tensile stress on the component will be _____MPa (round off two the nearest integer).

Given, fracture toughness $K_{IC} = 30 \text{ MPa m}^{1/2}$ and assume crack geometry factor of unity.

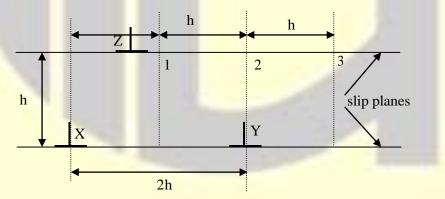
Answer: (480 to 494)

24. In cold-rolling, for the sheet to be drawn into rolls, the angle of contact (or angle of bite) should be less than or equal to ______ degree (round off to one decimal place).

Given, the coefficient of friction between sheet and roll is 0.1.

Answer: (5.6 to 5.8)

25. The number of atoms per unit area in (100) plane of Pb is _____ nm^{-2} (round off two the nearest integer).


Given, crystal structure and atomic radius of Pb are FCC and 0.175 nm respectively.

Answer: (7 to 9)

Q. No. 26 - 55 Carry Two Marks Each

26. In the edge dislocation configuration given in the figure, dislocations X and Y are fixed and separated by a distance 2h on the same slip plane. Dislocation Z is free to glide on a parallel slip plane. The two slip planes are separated by a distance h. Which one of the following statements is TRUE regarding the stability of dislocation Z at positions 1, 2 and 3?

Assume all dislocations have identical Burgers vector

- (A) Position 1: unstable equilibrium; Position 2; unstable ; Position 3; unstable
- (B) Position 1: stable equilibrium; Position 2; unstable ; Position 3; unstable
- (C) Position 1: unstable equilibrium; Position 2; stable; Position 3; unstable
- (D) Position 1: stable equilibrium; Position 2; unstable ; Position 3; stable

Answer: (D)

C	GATEFORUM Engineering Success	GATE-2020	www.gateforumonline.com			
27.	Which one of the following dislocation re	eactions is NOT feasible in a FC	C crystal?			
	(A) $\frac{1}{2} \left[0\overline{1}1 \right] \rightarrow \frac{1}{6} \left[1\overline{2}1 \right] + \frac{1}{6} \left[\overline{1}\overline{1}2 \right]$	(B) $\frac{1}{6} \left[1\overline{10} \right] + \frac{1}{2} \left[1\overline{11} \right]$	$\rightarrow \left[1\overline{1}0\right]$			
	(C) $\frac{1}{6} [11\overline{2}] + \frac{1}{3} [111] \rightarrow \frac{1}{2} [110]$	(D) $\frac{1}{2} \left[\overline{101} \right] \rightarrow \frac{1}{6} \left[\overline{211} \right]$	$]+\frac{1}{6}[\overline{1}\overline{1}2]$			
Ansv	ver: (B)					
28.	A galvanic is formed by connecting zn		$_{\rm F/Fe} = -0.44 \rm V$ wires immersed			
	in their respective ion solutions. The cel the concentration of [Fe ²]to[Zn ²⁺] ions		a voltage of 0.5V. The ratio of			
	Given, $R = 8.314 \text{ J.mol}^{-1}$. K^{-1} , $F = 96500 \text{ C.mol}^{-1}$, $T = 298 \text{ K}$					
	(A) 10^{-6} (B) 10^{-5}	(C) 10 ⁶	(D) 10 ⁷			
Answer: (C)						
29.	The divergence of the vector field $(x^3 + y)$	$(y^3)i + 3xy^2j + 3zy^2k$ is				
	(A) $3y^2 + 6xy + 6x^2$	(B) $3x^2 + 6y^2 + 9xy + $	буz			
	(C) 12xyz	(D) $3(x+y)^2$				
Ansv	ver: (D)					
30.	Match the products in Column I with the	manufacturing processes in Colu	ımn II			
	Column I	Column I	I			
	P. Blades of a gas turbine	1. Sand casting				
	Q. Seamless tubing	2. Extrusion				

Q.	Seamless tubing	۷.	Extrusion
R.	Automative cylinder blocks	3.	Powder metallurgy and wire drawing
S.	Tungsten filament	4.	Investment casting
(A) P-1	, Q-2, R-3, S-4		(B) P-2, Q-3, R-1, S-4
(C) P-4	, Q-1, R-2, S-3		(D) P-4, Q-2, R-1, S-3

Answer: (D)

G	CATEFORUM Ingineering Success	MT-GATE-2020	www.gateforumonline.com
31.	$f(x) = x \ell n(x) + (1-x) \ell n(1-x)$	$(x) + 3x(\ell - x)$ has at x = 0.5	
	(A) a local minimum	(B) a local maximum	
	(C) a point of inflection	(D) a non-zero slope	
Answ	rer: (B)		

32. Match the processes in Column I with the most appropriate mechanism in Column II

Column I	Column II
P. Blast furnace iron making process	1. Metallothermic reduction
Q. Hall-Herouli's process	2. Oxidation
R. Basic oxygen furnace steel making process	3. Carbothermic reduction
S. Kroll's process	4. Fused salt electrolysis
(A) P-1, Q-4, R-2, S-4	(B) P-3, Q-1, R-2, S-4
(C) P-3, Q-4, R-2, S-1	(D) P-1, Q-2, R-2, S-4
nswer: (C)	

33. Match the reactors in Column I with the corresponding products in Column II

	Column I	Column II	
	P. COREX	1. Sponge iron	
	Q. MIDREX	2. Copper matte	
	R. Flash smelting reactor	3. Hot metal or pig iron	
	S. Submerged arc furnace	4. Ferrochrome	
	(A) P-1, Q-3, R-2, S-4	(B) P-3, Q-1, R-2, S-4	
	(C) P-3, Q-4, R-2, S-1	(D) P-3, Q-1, R-4, S-2	
An	nswer: (C)		
34	X-ray diffraction pattern from an elemen Bragg angle $\theta = 24.65^\circ$. The lattice paran Given, wavelength of the X-ray used is 0.		<mark>ak</mark> at a
	(A) 0.185 (B) 0.262	(C) 0.320 (D) 0.370	
An	nswer: (C)	part of this booklet may be reproduced or utilized in any form without the written permission.	

35. Match the materials in Column I with their common applications in Column II Column I Column II Ρ. Gray iron 1. Cladding for uranium fuel in nuclear reactor Ductile iron 2. Base structure of heavy machines 0. R. Ductile iron 3. Valves and pump bodies S. Zirconium alloy 4. Jet aircraft landing gear bearings (A) P-1, Q-3, R-2, S-4 (B) P-3, Q-1, R-2, S-4 (D) P-3, Q-1, R-4, S-2 (C) P-3, Q-4, R-2, S-1 **Answer: (D)** The Mg-Sn phase diagram exhibits two eutectics on either side of the high melting intermetallic line 36. compound, Mg₂Sn, as given below At, 561°C: L(36.9 wt% Sn) $\rightarrow \alpha$ (14.482wt%Sn) + Mg₂Sn At, 203°C: L(97.87 wt%Sn) $\rightarrow \beta$ -Sn(almost 100wt.%Sn) + Mg₂Sn After the eutectic reaction has gone to completion and equilibrium has been attained at a temperature just below 561°C, the amount of eutecis constituent present in the alloy, Mg-50 wt.% is approximately _____ (in wt.%). Given, atomic weight of Sn is 118.7 and Mg is 24.3 (C) 62 (A) 25 (B) 38 (D) 75 **(C) Answer:** 37. Determine the correctness or otherwise of the following Assertion [a] and the Reason [r] Assertion [r]: During creep deformation, the particles with higher misfit with the matrix, lose coherency. (A) Both [a] and [r] are true and [r] is the correct reason for [a] (B) Both [a] and [r]are true but [r] is not the correct reason for [a] (C) Both [a] and [r] and false (D) [a] is true but [r] is false **Answer: (B)**

|MT-GATE-2020|

www.gateforumonline.com

GATEFOR

 Image: Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]

 Assertion [a]: The rate of homogenization in a dilute substitutional solid solution of B in A is controlled by the diffusivity of B.

 Reason [r]: Atomic migration cannot occur along dislocations and grain boundaries.

 (A) Both [a] and [r] are true and [r] is the correct reason for [a]

 (B) Both [a] and [r] are true but [r] is not the correct reason for [a]

(D) [a] is true but [r] is false

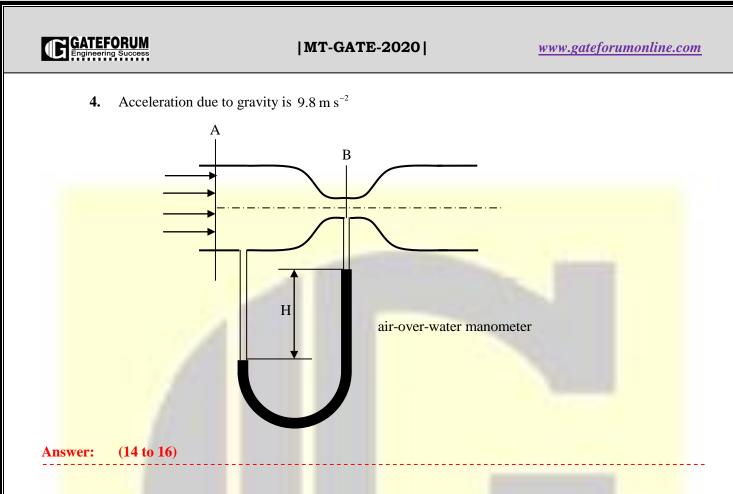
Answer: (D)

39. Match the elements in Column I with their electronic behavior given in Column II

Column I	Column II
P. Copper	1. Ferromagnetic
Q. Iron	2. Superconducting
R. Mercury	3. Semiconducting
S. Silicon	4. Diaganetic
(A) P-1, Q-2, R-3, S-4	(B) P-3, Q-4, R-1, S-2
(C) P-4, Q-1, R-2, S-3	(D) P-4, Q-3, R-1, S-2

Answer: (C)

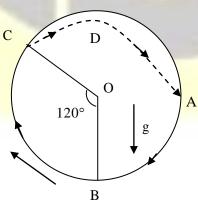
40. Radius of the largest interstitial atom that can be accommodated in an octahedral void in BCC iron without distorting the lattice is ______nm (round off to three decimal places).


Assume hard sphere model and radius of Fe atoms as 0.124 nm.

Answer: (0.018 to 0.02)

41. The production process of cylindrical pipes results in a statistical scatter in their diameter which is modeled by a normal distribution with a mean value of 10mm. If the area under the normal curve between 9mm and 10 mm is 0.35, then the probability of producing pipes of diameter greater than 11 mm is ______ (round off to two decimal places).

Answer: (0)


C	ATEFORUM ingineering Success MT-GATE-2020 <u>www.gateforumonline.com</u>
42.	The solution (using trapezoidal rule) of the integra
	$\int_{0}^{t} e^{-x^{2}} dx$
Ansv	By dividing the range 0 to 1 into two equal intervals is(round off to two decimal places). er: (073)
	ci. (075)
43 .	Iron is corroding in fresh water which has dissolved oxygen concentration of 15mM. The anodic current
	density at an over potential of 120mV isA.cm ⁻² (round off to three decimal places).
	Given:
	1. Anodic Tafel slope is 0.06V
	2. Diffusion coefficient of oxygen is 2.42×10^{-5} cm ² .s ⁻¹
	3. Diffusion layer thickness if 0.06 cm
Ansv	er: (0.19 to 0.238)
44.	A metal oxidizes at 1200 K with a parabolic rate constant of $3 \times 10^{-6} \text{ g}^2 \text{ cm}^{-4} \text{ s}^{-1}$. Time taken for the oxide film to grow to a thickness of 2 μ m is s(round off to two decimal places).
	Given, density of oxide is $6.5 \mathrm{g.cm}^{-3}$.
Ansv	rer: (0.54 to 0.58)
45 <mark>.</mark>	Two plates composition, Fe – 10 wt% Ni and Fe–20 wt% Cr–5 wt% Ni are fusion-welded using a filler rod of composition 20 wt% Ni-80 wt.% Cr.
	Contribution to dilution of the weld pool is 20% from each plate. The Ni content in the weld pool iswt% (round off to the nearest integer).
Ansv	er: (15)
46 <mark>.</mark>	Figure shows schematic of a venturimetr. The cross sectional area is 100 mm^2 at A and is 50 mm^2 at B.
	If air is flowing through the venturimeter at a flow rate of 10^{-3} m ³ s ⁻¹ , the height H in the air-over-water manometer ismm (round off to the nearest integer).
	Assume:
	 Incompressible flow with no friction losses,
	2. Density of air is 1 kg m^{-3} .
	3. Density of water is 1000 kg m^{-3}
	© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

47. For effective communition in a ball mill, it is desire that the balls travelling along the mill wall leave the wall a point C and travel freely in air along the path CDA, as shown in the figure. I \angle BOC is 120°, the rotational speed of the mill is ______rpm (rounded off to one decimal place) by performing suitable force balance at point C.

Assume:

- **1.** There is no slip between the ball and mill wall.
- 2. O is the rotational axis of the mill and OB is parallel to the vector g.
- **3.** Inner diameter of ball mill is 3.26 m
- **4.** Acceleration due to gravity g is 9.8 ms^{-2}

Answer: (*)

C	GATEFORUM Engineering Success MT-GATE-2020 <u>www.gateforumonline.com</u>	<u>e</u>	
48.	If liquid copper is cooled to 1353 K, magnitude of the driving force for liquid to transform to solid is J.mol ⁻¹ (round off to one decimal place).	S	
	Given, melting temperature and enthalpy of melting of copper are 1356 K and 13 kJ.mol ⁻¹ respectively.	•	
Answer: (28.6 to 29)			
49.	1000 kg of liquid steel containing 0.03 wt.% S needs to be desulphurized using a slag to bring the sulphur content down to 0.015 wt%. The quantity of slag needed is kg (round off to the nearest integer).		
	Assume:		
	1. Thermodynamic equilibrium		
	2. No sulphur in the slag prior to desulphurization treatement.		
	Given the equilibrium sulphur partition ratio between slag and steel,		
	$\frac{(\text{wt.\% S})_{\text{in slag}}}{[\text{wt.\% S}]_{\text{in steel}}} \text{is 50.}$		
Ans	ver: (19 to 21)		
		-	
50.	Zone refining of Si results in residual P content of 0.1 parts per billion by weigth. The electrica	ıl	
	conductivity of this zone refined Si is Ω^{-1} .m ⁻¹ (round off to two decimal places).		
	Given:		
	1. Avogadro number is 6.02×10^{23}		
	2. Density of Si is 2.33 g.cm ^{-3} .		
	3. Atomic weight of P is 30.97		
	4. Charge of electron is 1.6×10^{-19} A.s		
	5. Mobility of electron is 0.2 $\text{m}^2.\text{V}^{-1}.\text{s}^{-1}$		
Ans	ver: (0.14 to 0.16)	_	

51. The steady state creep rate of a material increases by a factor of 20 when the temperature is increased from 890 K to 980K. The creep rate at a temperature of _____K (round off to the nearest integer) will be 5 times the creep rate at 890 K.

Answer: (983 to 989)

GATEFORUM Engineering Success

|MT-GATE-2020|

52. Crack growth is being continuously measured in a test specimen subjected to constant amplitude cyclic stress with a mean stress of zero. The crack growth rate is related to the stress intensity range, ΔK as

$$\frac{\mathrm{da}}{\mathrm{dN}} \alpha \left(\Delta K\right)^3$$

Where, a is the crack length and N is the number of cycles. When the crack length increases by a factor of two, the crack growth rate will increase by a factor ______ (round off to one decimal place).

Answer: (2.6 to 3)

53. In a top gated mold, liquid metal enters the mold cavity as a freely falling stream under gravity from a height of 0.5m. Ignore the fluid friction due to viscosity and the drag due to changes in the direction of flow. If the volume of the mod cavity is 10 m³, then the required to fill the mold is _____s (round off to nearest integer).

Given:

- **1.** Acceleration due to gravity is 9.8 m.s^{-2}
- **2.** Cross-sectional area of gate is 0.2 m^2 .

Answer: (14 to 18)

54. A Basic Oxygen Furnace operator, all the end of oxygen blow, measures the dissolved oxygen content in the steel as 0.03 wt% and the steel temperature as 1800 K. The carbon content [C] in the steel _____wt% (round off to two decimal places).

Assume:

- **1.** Equilibrium between dissolved carbon [C], dissolved oxygen [O], and CO (gas) at 1 atmosphere.
- **2.** Henry's law is valid for both [C] and [O]

Given:

 $\begin{bmatrix} C \end{bmatrix}_{1\text{wt \% Henrian std.state}} + \begin{bmatrix} O \end{bmatrix}_{1\text{wt \% Henrian std.state}} \rightarrow (CO)_{1\text{ atm.Std.state}}$ $\Delta G^{\circ} = -19840 - 40.65\text{TJ}$ $R = 8.314 \text{ J.mol}^{-1} \text{ K}^{-1}$

Answer: (0.06 to 0.08)

55. M and N are 3×3 matrices. If the det(M) is -9 and the det(N) is -14, then the det (NM) is _____ (round off to the nearest integer).

Answer: (126)