GATEFORUM

|MT-GATE-2021|

GENERAL APTITUDE

Q. No. 1 - 5 Carry One Mark Each

1. Five persons P, Q, R, S and T are to be seated in a row, all facing the same direction, but not necessarily in the same order. P and T cannot be seated at either end of the row. P should not be seated adjacent to S. R is to be seated at the second position from the left end of the row. The number of distinct seating arrangements possible is:

(A) 2	(B) 3	(C) 4	(D) 5

Answer: (B)

A

2. Consider the following sentences:

(i) The number of candidates who appear for the GATE examination is staggering.

(ii) A number of candidates from my class are appearing for the GATE examination.

(iii) The number of candidates who appear for the GATE examination are staggering.

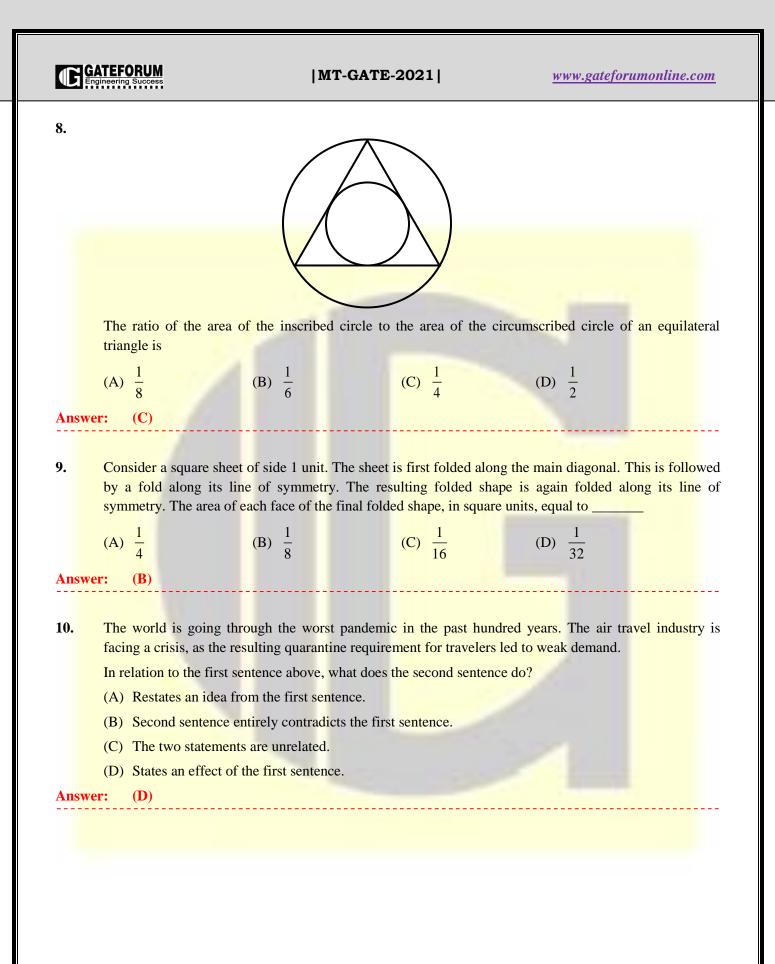
(iv) A number of candidates from my class is appearing for the GATE examination.

Which of the above sentences are grammatically CORRECT?

(A) (i) and (ii)(C) (ii) and (iii)

- (B) (i) and (iii)
- (D) (ii) and (iv)

Answer:	(A)			


3.	A digital watch X beeps every 30 seconds while watch Y beeps every 32 seconds. They beeped together
	at 10 AM.

The immediate next time that they will beep together is

(A) 10.08 AM (B) 10.42AM (C) 11.00 AM (D) 10.00PM

A	nswer: (A)			10	
4.	If $\oplus \div \odot = 2; \oplus \div 2$	$\Delta = 3; \odot + \Delta = 5; \Delta \times \otimes 1$	=10,		
	Then, the value of	$(\otimes - \oplus)^2$, is			
	(A) 0	(B) 1	(C) 4	(D) 16	
A	nswer: (B)				

C	GATEFORUM Engineering Success	MT-GATE-2021	www.gateforumonline.com
5.	door that is situated dired	s house faces East. Mr. X leaves the hou ctly opposite to the front door. He then tu n of the point Mr. X is now located a	arns to his right, walks for another 50 m
	(A) South-East	(B) North-East	st
	(C) West	(D) North-We	est
Ans	wer: (D)		
		Q. No. 6 to 10 Carry Two Marks E	ach
6.	Given below are two star	tements 1 and 2, and two conclusions I ar	nd II.
	Statement 1: All entrepre		
	Statement 2: All wealthy		
	Conclusion I: All risk se		
		e entrepreneurs are risk seekers.	
	Based on the above state	ments and conclusions, which one of the	following options is CORRECT?
	(A) Only conclusion I is	s correct	
	(B) Only conclusion II	is correct	
	(C) Neither conclusion	I nor II is correct	
	(D) Both conclusions I	and II are correct	
Ansy	wer: (C)		
7.		balls and 45 black balls. If 2 balls are second come in which the first selected is a blue	
	(A) $\frac{3}{16}$	(B) $\frac{45}{236}$ (C) $\frac{1}{4}$	(D) $\frac{3}{4}$
Ans	wer: (B)		
	© All rights reserved by Thinkcell Learning Sc	lutions Pvt. Ltd. No part of this booklet may be reproduced or utilize	d in any form without the written permission
	Source the served by Think Cell Lealthing SC	Augusta FAL ER. No part of this booklet may be reproduced of Utilize	2

|MT-GATE-2021|

Metallurgical Engineering

Q. No. 1-25 Carry One Mark Each

1. For the matrix given below, the eigen values are:

 $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ (A) 0, 2, 2 (B) 1, 1, 2 (C) 0, 1, 2 (D) 0, 1, 3 Answer: (C)

2. Which one of the following is a homogeneous function of degree three?

(A)	$x^3 + 2x^2y^2$	(B)	$y^2x + 2yx^2$
(C)	$y^3 + 2x^2$	(D)	$xy^2 + 3xy$

Answer: (B)

3. The divergence of a vector field $\vec{V}(x, y, z)$, where its three components (V_x, V_y, V_z) are functions of x, y, z, is:

(A)
$$\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

(B) $\left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}\right) i + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right) j + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right) k$
(C) $\frac{\partial V_x}{\partial x} i + \frac{\partial V_y}{\partial y} j + \frac{\partial V_z}{\partial z} k$
(D) $\frac{\partial^2 V_x}{\partial x^2} + \frac{\partial^2 V_y}{\partial y^2} + \frac{\partial^2 V_z}{\partial z^2}$

Answer: (D)

G	ATEFORUM ingineering Success	MT-GATE-2021	www.gateforumonline.com
4.	Which one of the following	g is 'center split' defect in rolling operation	on?
	(A)	(B)	
	/		
		117	
	$\langle \langle \rangle \rangle$		- /
	V		
			\frown
		(D)	
Answ	er: (D)		
5.	Single crystal turbine blade	es of nickel-based superalloys for aero-er	ngines are manufactured using:
	(A) Investment casting	(B) Die casting	
	(C) Squeeze casting	(D) Directional	solidification
Answ	er: (D)		
5.	Elements A and B have th following is true?	ne same crystal structure. For a dilute s	solution of B in A, which one of the
	(Given: ΔH_{mix} – Mixing en	x_{B} thalpy, a_{B} – Activity of B and X_{B} – Mole	e fraction of B)
	(A) If $\Delta H_{mix} = 0$, then a_B .	$< X_{\rm B}$ (B) If $\Delta H_{\rm mix} = 0$	0, then $a_{\rm B} > X_{\rm B}$
	(C) If $\Delta H_{mix} > 0$, then $a_B \sim 0$	$< X_B$ (D) If $\Delta H_{mix} < 0$	0, then $a_{\rm B} < X_{\rm B}$
	er: (D)		

	GATEFO Engineering	RUM Success	MT-GA7	re-2021	www.gateforumonline.com
7.		uniaxial tensile str ments is FALSE?	ess-strain behaviour o	f polycrystalline alun	ninium, which one of the following
	(A)	True stress is alwa	ys higher than the engi	neering stress.	
	(B)	At the ultimate ten	sile stress point on the	true stress - strain cur	ve, $\frac{d\sigma}{a\varepsilon} = 0$
			ea under the elastic reg		
	(D)	Maximum true stre	ess does not correspond	l to the maximum load	1.
Answ	ver:	(B)		-	and the second se
8.	Whic	ch one of the f <mark>o</mark> llov	ving is FALSE for cree	p deformation?	
	(A)	The minimum cree	p rate is obtained in th	e primary stage (stage	I).
	(B)	Creep resistance de	ecreases with decrease	in grain size.	
	(C)	Coble creep occurs	s via grain boundary di	ffusion.	
	(D)	Nabarro-Herring c	reep occurs via lattice of	diffusion.	
Answ	ver:	(A)			
9.	Whic		ving elements alloyed v		
	(A)	ch one of the follow	ving elements alloyed v	with iron is a ferrite st	abilizer?
9. Answ	(A) ver:	ch one of the follow Nickel (D)	ving elements alloyed v (B) Manganese	with iron is a ferrite sta (C) Carbon	abilizer? (D) Silicon
9.	(A) ver: Whic	ch one of the follow Nickel (D) ch one of the follow	ving elements alloyed v (B) Manganese ving is the correct decr	with iron is a ferrite sta (C) Carbon easing sequence of Qu	abilizer? (D) Silicon
9. Answ	(A) ver: Whic Powe	ch one of the follow Nickel (D) ch one of the follow er for quenchants u	ving elements alloyed v (B) Manganese ving is the correct decr sed in heat treatment o	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels?	abilizer? (D) Silicon tenching
9. Answ	(A) ver: Whic Powe (A)	ch one of the follow Nickel (D) ch one of the follow er for quenchants u Oil > Water> Brin	ving elements alloyed v (B) Manganese ving is the correct decr sed in heat treatment o e> Air	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels? (B) Brine > Oil >	abilizer? (D) Silicon enching > Water > Air
9. Answ	(A) ver: Whic Powe (A)	ch one of the follow Nickel (D) ch one of the follow er for quenchants u	ving elements alloyed v (B) Manganese ving is the correct decr sed in heat treatment o e> Air	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels?	abilizer? (D) Silicon enching > Water > Air
9. Answ	(A) ver: Whic Powe (A) (C)	ch one of the follow Nickel (D) ch one of the follow er for quenchants u Oil > Water> Brin	ving elements alloyed v (B) Manganese ving is the correct decr sed in heat treatment o e> Air il > Air	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels? (B) Brine > Oil >	abilizer? (D) Silicon enching > Water > Air e> Oil> Air
9. Answ 10. Answ	(A) wer: Whice Power (A) (C) wer:	ch one of the follow Nickel (D) ch one of the follow er for quenchants u Oil > Water> Brine Brine > Water > O (C)	ving elements alloyed v (B) Manganese ving is the correct decresed in heat treatment of e> Air il > Air	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels? (B) Brine > Oil > (D) Water> Brin	abilizer? (D) Silicon enching > Water > Air e> Oil> Air
9. Answ 10.	(A) ver: Whio Powe (A) (C) ver: For a	ch one of the follow Nickel (D) ch one of the follow er for quenchants u Oil > Water> Brind Brine > Water > O (C)	ving elements alloyed v (B) Manganese ving is the correct decr sed in heat treatment o e> Air il > Air	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels? (B) Brine > Oil = (D) Water> Brin	abilizer? (D) Silicon enching > Water > Air e> Oil> Air
9. Answ 10. Answ	(A) ver: Whice Powe (A) (C) ver: For a (A)	ch one of the follow Nickel (D) ch one of the follow er for quenchants u Oil > Water> Brin Brine > Water > O (C) a zeroth order chem Concentration vers	ving elements alloyed v (B) Manganese ving is the correct decr sed in heat treatment o e> Air il > Air il > Air	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels? (B) Brine > Oil = (D) Water> Brin he of the following is H nt line.	abilizer? (D) Silicon enching > Water > Air e> Oil> Air FALSE?
9. Answ 10. Answ	(A) ver: Whice Powee (A) (C) ver: For a (A) (B)	ch one of the follow Nickel (D) ch one of the follow er for quenchants u Oil > Water> Brine Brine > Water > O (C) a zeroth order chem Concentration vers Increase in concen	ving elements alloyed v (B) Manganese ving is the correct decr sed in heat treatment o e> Air il > Air vical reaction, which or sus time plot is a straightration of reacting spec	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels? (B) Brine > Oil = (D) Water> Brin he of the following is H nt line.	abilizer? (D) Silicon enching > Water > Air e> Oil> Air FALSE? of reaction.
9. Answ 10. Answ	(A) ver: Whio Powe (A) (C) ver: For a (A) (B) (C)	ch one of the follow Nickel (D) ch one of the follow er for quenchants u Oil > Water> Brine Brine > Water > O (C) a zeroth order cherr Concentration vers Increase in concen Half-life depends of	ving elements alloyed v (B) Manganese ving is the correct decr sed in heat treatment o e> Air il > Air ii a Air suical reaction, which or sus time plot is a straightration of reacting spect on the initial concentration	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels? (B) Brine > Oil = (D) Water> Brin he of the following is H nt line.	abilizer? (D) Silicon enching > Water > Air e> Oil> Air FALSE? of reaction.
9. Answ 10. Answ	(A) ver: Whio Powe (A) (C) ver: For a (A) (B) (C)	ch one of the follow Nickel (D) ch one of the follow er for quenchants u Oil > Water> Brine Brine > Water > O (C) a zeroth order cherr Concentration vers Increase in concen Half-life depends of	ving elements alloyed v (B) Manganese ving is the correct decr sed in heat treatment o e> Air il > Air vical reaction, which or sus time plot is a straightration of reacting spec	with iron is a ferrite sta (C) Carbon easing sequence of Qu f steels? (B) Brine > Oil = (D) Water> Brin he of the following is H nt line.	abilizer? (D) Silicon enching > Water > Air e> Oil> Air FALSE? of reaction.

G	CATEFORUM Engineering Success	MT-GATE-2021	<u>www.gateforumonline.com</u>
12.		g elements oxidizes first in basic oxygen ste 3) Carbon (C) Manganese	eel making process? (D) Phosphorns
Answ	ver: (A)		
13.		g is a hydrometallurgical operation?	
Answ	vor: (P)	3) Leaching (C) Zone refining	Table and the
14.	The value of $\lim_{x \to 0} \frac{\sin^2 5x}{\sin^2 x}$ is	s: (round off to nearest integer).	
Answ	ver: (25 to 25)		
15. Answ	standard deviation (a) of 0 expected to be: (round off the Given: For the symmetric of the	aled specimens follows a symmetric distribu- .5 μ m. The percentage of specimens with g to nearest integer). distribution: Probability $P(X \le \mu + 2\sigma) = 0$.	grain size in the range 5 to 6 μ m is
16.	integer).	value of $\mu_{Ni^{2+}}^{o}$ (in J mol ⁻¹) at 298 K is:	(round off to nearest
Answ	Given: $F = 96500 \text{ C mol}^{-1}$ ver: (-48251 to -48240)		
		V and its anthalny of malting is 12400	
17.		d to solid transformation at 1058 K is: (rour	
17. Answ	change (in J mol') for liquid Assume: $C_P^{liquid} = C_P^{solid}$	d to solid transformation at 1058 K is: (rour	nd off to nearest integer).
	change (in J mol') for liquid Assume: $C_P^{liquid} = C_P^{solid}$		nd off to nearest integer).

18. A body is subjected to a state of stress given by the following stress tensor: 50 0 0 200 0 0 MPa. 1000 0 If yielding is predicted by the Tresca Criterion, the uniaxial tensile yield stress (in MPa) of the body should be less than or equal to: _____ (round off to nearest integer). (150 to 150) Answer: _____ 19. Consider homogeneous nucleation of a spherical solid in liquid. For a given undercooling, if surface

|MT-GATE-2021|

www.gateforumonline.com

19. Consider homogeneous nucleation of a spherical solid in liquid. For a given undercooling, if surface energy of a nucleus increases by 20 %, the corresponding increase (in percent) in the critical radius of the nucleus is: ______(round off to nearest integer).

Answer: (20 to 20)

GATEFORUM

20. If saturation magnetization of iron at room temperature is 1700 kA m^{-1} , the magnetic moment (in A m²) per iron atom in the crystal is: ______ ×10⁻²³ (round off to 1 decimal place).

(Given: Lattice parameter of iron at room temperature = 0.287 nm)

Answer: (1.7 to 2.3)

21. In the X-ray diffraction pattern of a FCC crystal, the first reflection occurs at a Bragg angle (θ) of 30°. The Bragg angle (in degree) for the second reflection will be: _____ (round off to 1 decimal place).

Answer: (34.8 to 36.1)

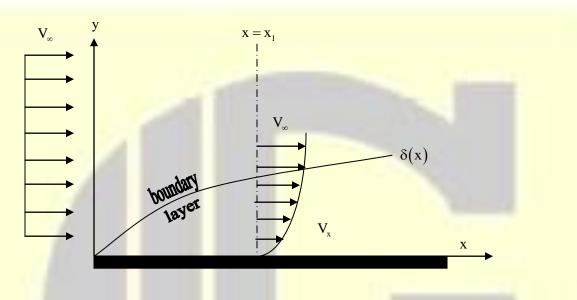
22. A 0.6 wt.% C steel sample is slowly cooled from 900 °C to room temperature. The fraction of proeutectoid ferrite in the microstructure is: ______ (round off to 2 decimal places). Given: Eutectoid composition: 0.8 wt.% C

Maximum solubility of carbon in α -Fe: 0.025 wt.%C

Answer: (0.22 to 0.30)

23. If the degree of polymerization of polyethylene is 30000, the average molecular weight (in g mol⁻¹) is:_____(round off to nearest integer).

(Given: Atomic weights of carbon and hydrogen are 12 and 1, respectively)


Answer: (840000 to 840000)

GATEFORUM Engineering Success

|MT-GATE-2021|

24. Water flows over a plate of finite length. At $x = x_1$ from the leading edge, the velocity of the flow is $V_x = 0.5y - 0.5y^3$. The thickness, δ (in meter) of the boundary layer at $x = x_1$ is: _____ (round off to 2 decimal places),

Given: V_{∞} is the free stream velocity.

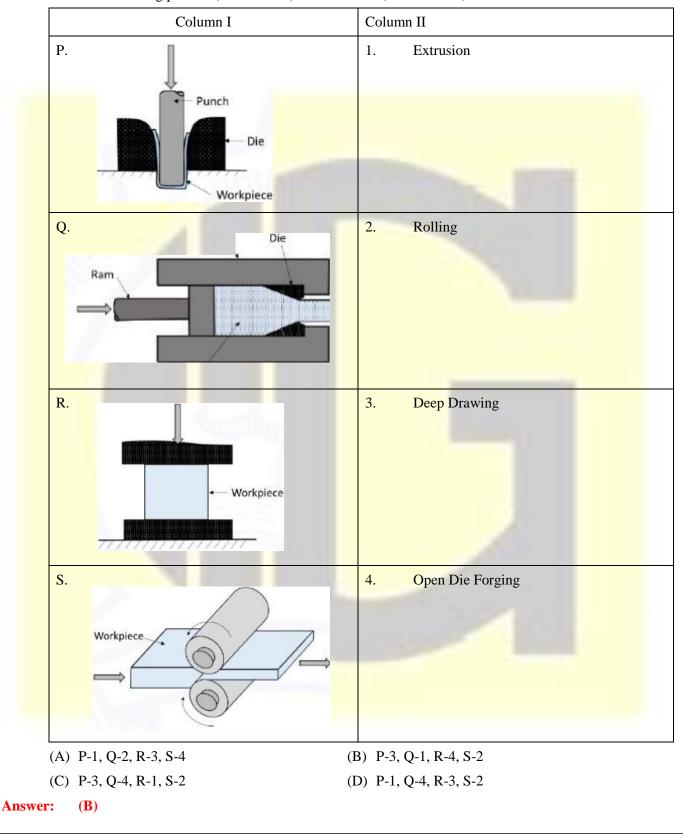
Answer: (0.53 to 0.59)

25. The vacancy concentration in a crystal doubles upon increasing the temperature from 27°C to 127°C. The enthalpy (in kJ mot1) of vacancy formation is: (round off to 2 decimal places).

Given: $R = 8.314 \text{ J mol}^{-1} \text{K}^{-1}$

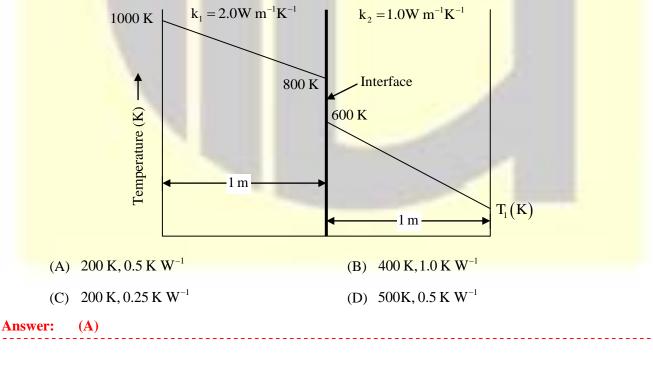
Answer: (6.85 to 7.00)

Q. No. 26-55 Carry Two Marks Each


26.	The minimum v	value of y for the equation	$y = x^2 - 2x + 4$ is		
	(A) 3	(B) 1	(C) 4	(D) 6	
Ans	wer: (A)				

GATEFORUM Engineering Success

|MT-GATE-2021|

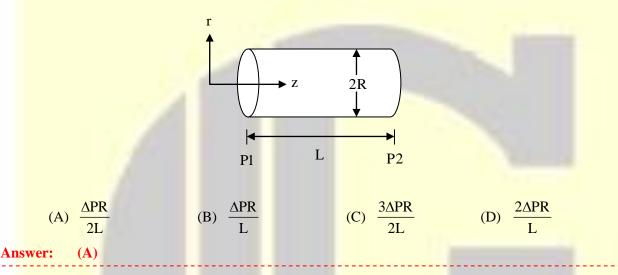

www.gateforumonline.com

27. Match the forming process (in Column I) with its name (in Column II):

<u>GATEFORUM</u> **|MT-GATE-2021|** www.gateforumonline.com 28. Match the nondestructive technique (in Column I) with its underlying phenomenon (in Column II): Column I **Column II P.** Dye penetrant test 1. X-ray absorption **Q.** Radiography 2. Capillary action **R.** Eddy current test Elastic waves reflection 3. S. Ultrasonic inspection 4. Electromagnetic induction (A) P-4, Q-3, R-2, S-1 (B) P-2, Q-1, R-3, S-4 (C) P-2, Q-1, R-4, S-3 (D) P-3, Q-2, R-1, S-4 **Answer: (C)** Number of degrees of freedom for the following reacting system is: $M(s) + CO_2(g) = MO(s) + CO(g)$ 29. (C) 2 **(B)** 1 (D) 3 (A) 0 Answer: (C) 30. The condition for getting the binary phase diagram of A-B (shown below) is: Liquid Т Solid 100% A Weight % of B 100% B Given: ΔH_{mix}^{solid} – Enthalpy of mixing of solid ΔH_{mix}^{liquid} – Enthalpy of mixing of liquid (A) $\Delta H_{mix}^{solid} = 0$ and $\Delta H_{mix}^{liquid} = 0$ (B) $\Delta H_{mix}^{solid} \ll 0 \text{ and } \Delta H_{mix}^{liquid} = 0$ (D) $\Delta H_{mix}^{solid} = 0 \text{ and } \Delta H_{mix}^{liquid} << 0$ (C) $\Delta H_{mix}^{solid} > 0$ and $\Delta H_{mix}^{liquid} = 0$ Answer: **(B)** _____

C	ATEFORUM gineering Success MT-GATE-2021 <u>www.gateforumonline.com</u>
31.	In the absence of any external stress, which one of the following statements related to the interaction of point defect and a dislocation is FALSE:
	(A) An oversized solute atom would preferentially migrate below the slip plane of an edge dislocation.
	(B) A spherically symmetric point defect can interact with both the hydrostatic and shear stress fields of a dislocation.
	(C) A point defect can locally modify the elastic modulus and thereby can change the interaction energy.
	(D) Vacancies are attracted towards the compressive region of dislocation.
Answ	r: (B)
32.	A single crystal aluminium sample is subjected to uniaxial tension along [112] direction. If the applied tensile stress is 100 MPa and the critical resolved shear stress (CRSS) is 25 MPa, which one of the following slip systems will be activated?
	(A) $[\overline{101}](111)$ (B) $[\overline{110}](111)$ (C) $[101](11\overline{1})$ (D) $[011](11\overline{1})$
Answ	r: (A)
33.	One-dimensional steady-state temperature distribution in two adjacent refractory blocks (with thermal conductivities, k_1 and k_2) of unit cross- sectional area are shown below. The temperature T_1 and thermal contact resistance of the interface, respectively, are:

|MT-GATE-2021|


www.gateforumonline.com

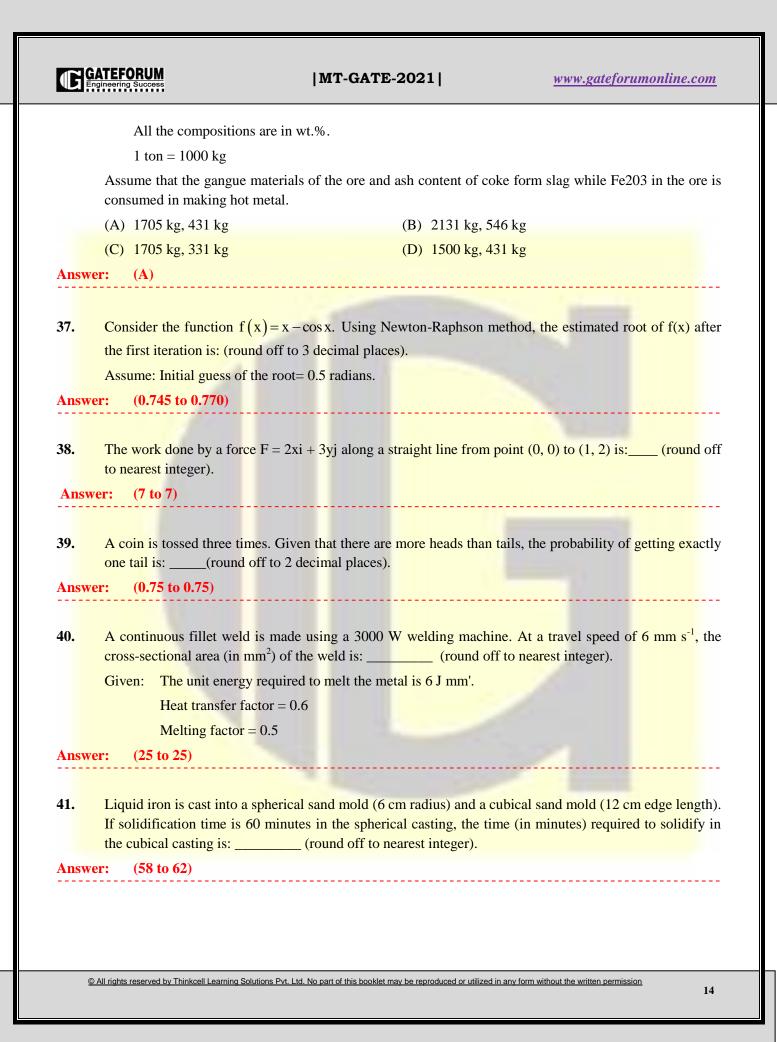
34. For a fully developed 1-D flow of a Newtonian fluid through a horizontal pipe of radius R (see figure), the axial velocity (v_z) is given by:

$$\mathbf{v}_{z} = \left[\frac{\Delta \mathbf{P}}{\mathbf{L}}\right] \left(\frac{\mathbf{R}^{2} - \mathbf{r}^{2}}{4\mu}\right),$$

GATEFORUM

where, ΔP is the pressure difference (P1-P2), μ is the viscosity, r is the radial distance from the axis and L is the length of the tube. The shear stress exerted by the fluid on the tube wall is:

35. Match the terms (in Column I) with the unit process (in Column II)


Column I	Column II		
P. Submerged Entry Nozzle	1. Ladle Furnace		
Q. Electric Heating	2. Continuous Casting		
R. Raceway Zone	3. LD Converter		
S. Oxygen Lancing	4. Blast Furnace		
(A) P-2, Q-1, R-4, S-3	(B) P-4, Q-1, R-2,		
(C) P-4 Q-3 R-1 S-2	(D) P-2, Q-3, R-4,		
ver: (A)			

36. A blast furnace uses hematite ore with 80% Fe2<n and 20% gangue materials. It uses 600 kg coke per ton of hot metal. The coke contains 85% C and 15% ash. The composition of hot metal is 95.5% Fe and 4.5% C.

The weight of iron ore used and slag produced per ton of hot metal respectively, are:

Given: Atomic weight: O = 16, C = 12, N = 14, Fe = 56

Engineering Success

|MT-GATE-2021|

42. True strain for 60% height reduction of a sample subjected to hot forging is: _____(round off to 2 decimal places).

```
Answer: (-0.94 to -0.90)
```

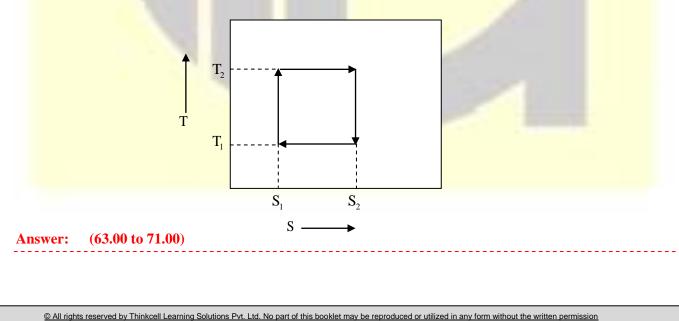
43. For the equilibrium reaction: $2Cu(s) + SO_2(g) = Cu_2S(s) + O_2(g)$, the value of $ln\left(\frac{P_{O_2}}{P_{SO_2}}\right)$ at 973 K is:

_____ (round off to 2 decimal places).

Given:

 $2Cu(s) + 0.5S_{2}(g) = Cu_{2}(s) \qquad \Delta G^{\circ} \text{ at } 973 \text{ K} = -100 \text{ kJ}$ $SO_{2}(g) = 0.5S_{2}(g) + O_{2}(g) \qquad \Delta G^{\circ} \text{ at } 973 \text{ K} = 292 \text{ kJ}$ $R = 8.314 \text{ J mol}^{-1} \text{K}^{-1}$

Assume: Cu and Cu₂S are pure solids.


Answer: (-24.00 to 23.50)

44. One mole of an ideal gas at 10 atm. and 300 K undergoes reversible adiabatic expansion to a pressure of one atm. The work done (in Joule) by the gas is: _____ (round off to nearest integer).

Given: $R = 8.314 \text{ J mol}^{-1}\text{K}^{-1}$; 1 atm. = 101325 Pa; Cp = 2.5R

Answer: (2240 to 2256)

45. The figure shows the entropy versus temperature (S-T) plot of a reversible cycle of an engine. If $T_1 = 200$ K and $T_2 - 600$ K, the efficiency of the engine (in percent) is: _____(round off to 2 decimal places).

|MT-GATE-2021|

46. Two dislocation lines parallel to z-axis lying in the x-z plane are shown in the figure. The glide force (in Newton) exerted by the edge dislocation on the screw dislocation is: (round off to nearest integer).

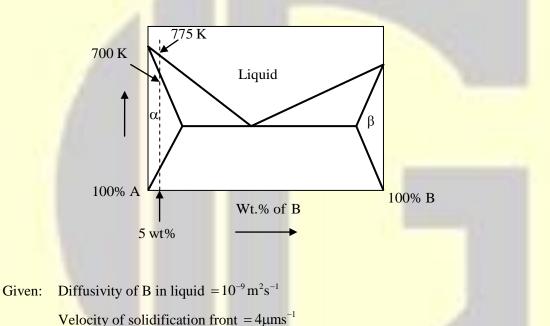


Image: Matrix of the plate is a central through thickness crack of length $\frac{80}{\pi}$ mm. The maximum applied stress (in MPa) that the plate can sustain in mode I is: _____ (round off to nearest integer). Assume: Linear elastic fracture mechanics is valid Given: Fracture toughness, $K_{IC} = 20 \text{ MPa m}^{1/2}$

Answer: (98 to 102)

50. A hypothetical binary eutectic phase diagram of A–B is shown below. An alloy with 5 wt.% B solidifies with no convection. Assuming steady state, the critical temperature gradient (in K mm") required to maintain planar solidification front is: (round off to nearest integer).

Answer: (298 to 302)

51. A thick steel plate containing 0.1 wt.% C is carburized at 950°C. The plate's surface carbon concentration is maintained at 1.1 wt.% C. After 9 hours, the depth (in mm) below the surface at which the carbon concentration is 0.6 wt.% C will be: _____ (round off to 2 decimal places).

Given: Diffusivity of carbon in γ -Fe at 950°C = 1.6×10⁻¹¹ m²s⁻¹

Error function table:

Z	0.35	0.40	0.45	0.50	0.55	0.60
erf(z)	0.3794	0.4284	0.4755	0.5205	0.5633	0.6039

Answer: (0.65 to 0.75)

GATEFORUM Engineering Success

|MT-GATE-2021|

www.gateforumonline.com

52. At 25°C, iron corrodes in a deaerated acid of pH 3 with a corrosion current density of $4 \,\mu\text{A cm}^{-2}$. The corrosion potential (V) is: ______ (round off to 2 decimal places).

Given: $\beta_c = 0.1 V$ per decade of current density

Exchange current density of hydrogen on iron surface $=10^{-9} \text{ A cm}^{-2}$

 $R = 8.314 \text{ J mol}^{-1}\text{K}^{-1}, F = 96500 \text{ C mol}^{-1}$

All potential are with reference to standard hydrogen electrode.

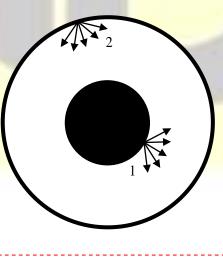
Answer: (-0.60 to -0.50)

53. The radius of an interstitial atom which just fits (without distorting the structure) inside an octahedral void of a bcc-iron crystal (in nm) is: ______ (round off to 3 decimal places).

Assume the radius of Fe atom to be 0.124 nm.

Answer: (0.017 to 0.023)

54. Nickel undergoes isothermal oxidation at 800 K for a duration of 400 s resulting in a weight gain of 2 mg cm². The weight gain (mg cm²) after a duration of 1600 s is: _____ (round off to nearest integer). Assume: Weight gain is proportional to square root of time.


Answer: (4 to 4)

Answer:

(074 to 0.75)

55. A solid sphere (0.5 m radius) is enclosed within a larger hollow sphere (1 m radius), as shown in figure. The radiation exchange takes place between the outer surface (surface 1) of the small sphere and the inner surface (surface 2) of the bigger sphere. The value of the view factor, F_{22} is: _____ (round off to 2 decimal places).

Given: View factor (F_{ii}) is the fraction of the radiation leaving surface i that is intercepted by surface j.

